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Abstract - Traffic models are at the heart of any performance evaluation of data ATN networks. An 
accurate estimation of network  performance is critical for the success of broadband networks. Such 
networks need to guarantee an acceptable quality of service (QoS) level to the users. Therefore, traffic 
models need to be accurate and able to capture the statistical characteristics of the actual traffic. 
Traditional short-range and non-traditional long-range dependent traffic models are presented. Number of 
parameters needed, parameter estimation, analytical tractability, and ability of traffic models to capture 
marginal distribution and auto-correlation structure of actual traffic are discussed. 
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I. INTRODUCTION 
The need for information networks capable of providing diverse and emerging 

communication services such as data, voice and video, motivated the standardization of 
broadband networks. 

Performance modelling techniques are needed to determine which congestion control 
techniques should be used. Performance modelling techniques include: 

- analytical techniques, 
- computer simulation, 
- experimentation. 

Performance models require accurate traffic models which can capture the statistical 
characteristics of actual traffic. If the traffic models do not accurately represent actual traffic, 
one may overestimate or underestimate network performance. 

 

II. MARKOV AND EMBEDDED MARKOV MODELS 
In many situations, the activities of a source can be modelled by a finite number of 

states. In this model, a voice source is either idle or busy. When it is busy, it will only 
transmit packets during speech activity. In general, increasing the number of states results in 
a more accurate model at the expense of increased computational complexity. 

For a given state space MSssS ,....,, 21= , let nX  be a random variable which defines the 
state at time n. The set of random variables { }nX  will form a discrete Marko chain, if the 
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probability of the next Value 
jn sX =−1
 depends only on the current state. This is known as 

Markov property. If state transitions occur at integer values (0, 1, n,), the Markov chain is 
discrete time. Otherwise, the Markov chain will be  
continuous time. 

Markov property implies that the future depends neither on the current state and not on 
previous states nor on the time already spent in the current state. This restricts the random 
variable, which describes the time spent in a state to a geometric distribution in the discrete 
case and to an exponential distribution in the continuous case. 

A semi-Markov process is obtained by allowing the time between state transitions to 
follow an arbitrary probability distribution. If the time distribution between transitions is 
ignored, the sequence of states visited by the semi=Markov process will be a discrete time 
Markov chain, and is referred to as an embedded Markov chain. 

In a simple Markov traffic model, each state transition represents a new arrival. 
Therefore, inter-arrival times are exponentially distributed (for continuous time case), and 
their rates depend on the state from which the transition occur. The rest of this section 
discusses various Markov and embedded Markov models that have been used to model 
network traffic. 

 

A. On-off and IPP models 
The on-off source model is the most popular source model for voice. In this model, 

packets are only generated during talk spurts (on state) with fixed inter-arrival time. The time 
spent in on and off states is exponentially distributed with mean 1−α  and 1−β , respectively. 

The interrupted Poisson process (IPP) is also a two-state process. Arrivals only occur 
in the active state according to a Poisson distribution with rateλ . Hence, IPP and on-off 
models differ in inter-arrival time during the active (on) state. 

 

B. Alternating state renewal process 

The alternating state renewal process is a two state process, 1s  and 2s , with no self 
transition. Therefore, the embedded Markov chain is alternating between 1s  and 2s . The 
traffic amplitude is 0 while in state 1s  and 1 while state 2s . Let the mean sojourn time in 1s  
and in 2s  to be  1d  and 2d , respectively. Then, the steady state probabilities for being in state 

1s  is 
( )21

1
1 dd

dPs +
= , and for 2s  is ( )21

2
2 dd

d
Ps +

= . 

The superposition of identical independent alternating state renewal processes has a 
binomial distribution. 
 

C. Markov modulated Poisson process 
A Markov modulated process, also called doubly stochastic process, uses an auxiliary 

Markov process in which the current state of the Markov process controls (modulate) the 
probability distribution of the traffic. 
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In this model, while in state ks , the arrivals occur according to a Poisson process with 
rate kλ . The introduction of MMPP process allows the modelling of time-varying sources 
while keeping the analytical solution of relates queuing performance tractable. 

The MMPP parameters can be estimated easily from the empirical data as follows: 
quantize the arrival rate into finite number of rates, which corresponds to the number of 
states. Each rate corresponds to a state in the Markov chain. The transition rate from state i to 
state j, denoted by ijq , is estimated by quantizing the empirical data and by calculating the 
fraction of times that the state (rate) i switched to state (rate) j. Note that an MMPP process 
with 1+M  states can be obtained by the superposition of M identical independent IPP 
sources. 

MMPP can model a mixture of voice and data traffic. In this case, the arrivals of voice 
packets while in state k are assumed to be Poisson with rate kλ . Data packets are also Poisson 
with rate dλ . The resulting rate of state ks  will be dk λλ + . The performance measures such as 
queuing distribution and the moments of the delay distribution are obtained using MMPP/G/1 
queue analysis. 

 

D. Markov modulated fluid models 

Fluid models characterize the traffic as a continuous stream with a parameterized flow 
rate (such as bits/sec.). These models are appropriate in the case where individual units of 
traffic (packets or cells) have little impact on the performance of the network. 

Fluid models are conceptually simple and their simulation has an important advantage 
over other models. Consider for example, an event simulation for an ATM multiplexer. All 
models that distinguish between cells and consider the arrival of each cell as a separate event, 
consume vast amount of memory and CPU resources. In contrast, fluid models characterize 
the incoming cells by a flow rate. An event is only triggered when the flow rate changes. 
Since flow rate changes happen much less frequently than cell arrivals, considerable saving in 
computing and memory resources are achieved [1]. 

A fluid model that is typically used to model traffic is the Markov modulated fluid 
model. In this model, the current state of the underlying Markov chain determines the flow 
(traffic) rate. While in state ks , traffic arrives at a constant rate kλ . This model is a Markov 
modulated constant rate model and is used in [7], [20] to model VBR video sources. 

In [7], the continuous bit rate is quantized into a finite set of discrete levels and 
sampled at random Poisson points (i.e. inter-sample time is exponentially distributed). The 
number of states in the Markov chain is equal to the number of quantized levels. Since 
Markov processes have exponentially decaying auto-covariance function, the auto-covariance 
of the empirical data is approximated by ( ) ττ aCeC −= . 

There are many Markov chains that satisfy the above auto-covariance function and the 
average of the empirical data. The birth-death Markov chain is used for its simplicity in [20]. 
In this model, the bit rate while in state i is constant and is given by iA, where A is the 
quantization step size.  The transition rates are chosen such that lower bit-rate-states tend to 
jump to higher-bit-rate states and vice-versa. This model captured approximately the first 10 
lags of the auto-correlation function of the empirical data. This is due to a faster decay in the 
auto-correlation function of the actual data. Moreover, jumps are only allowed to 
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neighbouring states in birth-death Markov chain, so the model lacks the ability to capture 
abrupt changes in the arrival rate between frames. 

In order to capture scene changes in the above model, [7] extended the model by 
allowing the rate to be integer multiples of two basic levels: high level hA , and low level lA . It 
uses a two-dimensional Markov chain in which the state is defined by two indices i and j, 
where 0 “i” M and 0 “j” N. While in state ( )ji, , the flow rate is ( )hl jAiA + . 

The queuing performance of this model is still analytically tractable and it has been 
considered in [20]. The model has many parameters and exponentially decaying auto-
correlation function. The complexity of analytical solution increases by adding more activity 
levels. 

 

III. REGRESSION MODELS 
Regression models define explicitly the next random variable in the sequence by 

previous ones within a specified time window and a moving average of a white noise - [24]: 

• Autoregressive models, 
• Discrete autoregressive models. 

 
IV. TES MODELS 
Transform-expand-sample (TES) models are non-linear regression models with 

modulo-1 arithmetic. They aim to capture both auto-correlation and marginal distribution of 
empirical data. 

TES models consist of two major TES processes [1, 15, and 16]: 
 +TES , 
 −TES . 

 +TES   produces a sequence which has positive correlation at lag 1, while −TES  
produces a negative correlation at lag 1. 

 Before describing +TES  or −TES , we need to introduce a few definitions and 
annotations. The modulo-1 of a real number x, denoted as x , is defined as 

    xxx −=  
Where  x  is the maximum integer less than x?  

 Therefore, x  is always non-negative. If the interval [0, 1) is viewed as a circle that is 
obtained by joining the points 0 and 1, one can define a circular interval [ )baC , , where a 
and [ )1,0∈b , as all the points on the circular unit interval going clockwise from point a to 
point b. Therefore, 

   [ ) [ ) [ )
[ ){ baifba

baifabbaC ≤
〉−= ,,

,,1,0,  
 
 A. +TES and −TES   

 +TES (L, R) is introduced in [19] and is characterized by two parameters, L and R. The 
sequence { }+nU  is generated recursively as follows: initialize 00 UU =+ , where 0U  is uniform 
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in the interval (0, 1), Then +
nU  is uniformly sampled random variable on the circular 

interval [ )RULUC nnUn
++= +

−
+
−+ 11 , . 

 In the −TES (L, R), the sequence is generated as in +TES  with −
nU  is uniform random 

variable over the circular interval 
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+TES  And −TES  can also be characterized by RL +=α , and
α

φ LR −
= . Note that α  represents 

the length of the circular interval. The sample path realizations generated by simulation using 
+TES  and −TES  have shown discontinuity due to the crossing of the 0 point on the unit 

circular interval from both directions. For example, crossing clockwise will result in a jump 
from small values to large values. It was shown in [16] that a continuous sample path 
realization can be obtained by using a simple piece wise transformation ξT  called stitching, 
where 
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 V. LONG-RANGE DEPENDENT TRAFFIC MODELS 
 Stationary traffic models presented in the second and third sections have a correlation 
structure that is characterized by an exponential decay – [23]: 

• Background on long-range dependence,  
• Short-range and long-range dependence,  
• Self-similarity. 
 
 VI. CONCLUSION 
 Traffic models are used in traffic engineering to predict network performance and to 
evaluate congestion control schemes. Traffic models vary in their ability to model various 
correlation structures and marginal distributions. Models that do not capture the statistical 
characteristics of the actual traffic result in poor network performance because they either 
over estimate, or under estimate the network performance. Traffic models must have a 
manageable number of parameters and the estimation of these parameters needs to be simple. 
Traffic models which are not analytically tractable can only be used to generate traffic traces. 
These traffic traces can be used in simulations. 

 It appears that a model that can capture short-range dependence, long-range 
dependence, and an arbitrary distribution is needed. A systematic and simple method that can 
decouple the estimation of long-range and short-range parameters in the model needs to be 
developed. 

 Finally, analytical performance solutions for non-traditional traffic models need to be 
investigated for a single node, as well as for an end-to-end network model. 
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