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Abstract: For high performance computing (HPC), clusters of workstations are becoming
very popular platforms, but performance of these systems is harder to predict than on the
traditional massively parallel machines. The process by which a low-cost, high performance
Beowulf-style Linux cluster was built is discussed in the paper. The first tests of several
parallel tasks and the estimation of the performance of the cluster is shortly described.
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1 Introduction
Clusters of personal computers have become the fastest growing approach for building cost-
effective high-performance parallel computing platforms. The rapid advancement of micropro-
cessor technologies and high-speed interconnects have facilitated many successful deployments
of this type of cluster. Clusters of workstations or PCs are now an alternative to massively
parallel supercomputers. This can be demonstrated by the fact, that in the top500 list there
are already 93 clusters, with 66,614 processors in total (and the number is still growing) [1].
As the operating system of these supercomputers, Linux is very often chosen. The cluster
supercomputer Linux NetworX built for Lawrence Livermore National Laboratory, has been
ranked as the fifth fastest supercomputer in the world on the top500 supercomputing list. The
2,304 -processor cluster can process 5.7 Tflop/s running the Linpack benchmark, and is the only
Linux-based supercomputer to be ranked within the top five.

It is clear, that for such a great number of processors the cluster set up and management is
extremely tedious and error-prone due to the inherent autonomy of the nodes in a cluster and
the obtainable scale. For the same reasons, using a cluster is much more difficult than using
a traditional supercomputer. It is hence better for the cluster to run an operating system that
provides a single system image of the entire cluster. This contrasts with the traditional cluster
architecture which is a loose coupling of many individual single user workstations. To provide
our cluster with the single system image and thus making it easily manageable and extendable
we use the Beowulf Distributed Process Space (BProc) from The Cluster Research Lab [2, 3].
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Figure 1: Scheme of the IQ151 cluster

The Beowulf Distributed Process Space provides a single system image of the entire cluster.
BProc itself consists of a small set of kernel modifications, utilities and libraries which allow
a user to start processes on other machines in a cluster (including reboot). Remote processes
started with this mechanism appear in the process table of the front end. This allows remote
process management using the normal UNIX process control facilities. Signals are transparently
forwarded to remote processes and exit status is received using the usual wait() mechanisms.

2 System Building
The cluster consists of 6 computing nodes, equipped with Intel Pentium IV 2.4GHz, 1GB
DDRAM, 120GB HDD and 100Mbps Fast Ethernet. The master node is of the same type,
equipped with two network cards, one connected to the outside world. The access to the cluster
is available only through the master node using the secure shell (ssh). To use the cluster, a
user can login to the master node (iq151), writes a parallel program in fortran or C/C++ using
the MPI library and submits the program to the cluster using mpirun.

The master node is also a file server for the cluster. The /home directory on the master is
NFS mounted to the /home directories on all the slave nodes enabling users to easily submit
their parallel jobs throughout the cluster. Similarly, the master /usr/local is also exported to
all the nodes, making accessing the parallel applications easier for the users.

The cluster is designed for solving large systems of linear or nonlinear equations arising
from the finite element method. For this purpose, we use PETSc [7] (Portable Extensible Toolkit
for Scientific Computation) version 2.1.5. PETSc is a suite of data structures and routines for the
scalable (parallel) solution of scientific applications modeled by partial differential equations. It
employs the MPI standard for all message-passing communication. The most important features
of PETSc include parallel operations with vectors and matrices, scalable parallel precondition-
ers, Krylov subspace methods and parallel Newton-based nonlinear solvers.

3 Parallel performance measuring methods
To evaluate the parallel performance of the cluster, we first checked one of the PETSc example
problems for scalability. The first example we tried is an iterative solution of the Poisson’s
problem on a uniform mesh in two dimensions. The example can be found in src/sles/



Table 1: Speedup of the PC cluster in user times

# processors small problem medium problem big problem
time [s] speedup time [s] speedup time [s] speedup

1 12.670 1 191.560 1 7236.57 1
2 6.820 1.858 97.020 1.974 3659.24 1.978
3 4.840 2.618 67.150 2.853 2459.68 2.942
4 3.730 3.397 50.710 3.778 1865.24 3.880
5 2.890 4.384 42.840 4.472 1525.81 4.743
6 2.368 5.351 35.435 5.406 1273.82 5.681
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Figure 2: Speed-ups for the small and big problem

examples/tutorials/ex3.c in the PETSc version 2.1.5 distribution tree. The PDE
is discretized using the standard five point cell-centered finite difference formulation, which
produces a linear system of rank

�����������
to be solved, where

�
and

�
are the dimensions of

the discretization mesh. The stiffness matrix of the whole problem as well as the right-hand-
side vector are assembled in parallel using the MatCreate, MatAssemblyBegin/End,
VecCreate, VecAssemblyBegin/End functions. The stiffness matrix and the right-hand-
side (RHS) vector define the linear system �
	��� . After the matrix and RHS vector modi-
fication for Dirichlet boundary conditions, the system is solved using GMRES (Generalized
Minimum RESidual) method.

The problem was solved using one to six nodes of the cluster and the problem rank was
varied across

� � � ������� (small),
� � � ������� (medium) and

� � � ������� (big). The
performance and the speed-ups were calculated using the total execution (user) time. From
these numbers, we computed the MFLOPs rate per processor for each of the test cases and
plotted the speed-up curves (Fig. 2).



4 Parallel Benchmarks
The next step in the process of evaluation of the performance was to benchmark the cluster.
As the most appropriate we chose the NAS Parallel Benchmarks 2.4 developed by Numerical
Aerospace Simulation Systems Division (NAS) of NASA [8]. The goal of these benchmarks
is to measure the performance of parallel architecture by running real scientific calculations.
These include five kernels (random number generator, integer sort, conjugate gradient, multigrid
method for Poisson’s equation and FFT for Laplace equation) and three pseudo applications
(implicit CFD code).

The benchmarks come in 6 sizes (classes): A, B, C, D, W(orkstation) and S(ample). For
classes C and D the disk space required reaches 3 GB and 135 GB respectively. Due to the the
huge disk space requirements we were not able to conduct benchmarks of class D. The NAS
parallel benchmarks show that the peak performance of the cluster can reach ����� Gflops.

Another benchmark we conducted was the Linpack Parallel Benchmark. The benchmark
was run on 6 processors with a total memory requirement of ������� MBytes. The results from
the Linpack benchmark showed similar performance as the NAS parallel benchmarks.

5 Discussion and Conclusions
The first experiences with the cluster are very positive. The speed-up for our problems is
almost linear and the scalability is also unique. The cluster will be used for finite element
calculations of various problems including large nonlinearities, both geometrical and material,
large-scale calculations in biomechanics, where geometrically complex models are constructed
from computer tomography scans making the resulting mesh often very dense and the number
of elements large. It is common for these models to have hundred of thousands nodes.

The cluster was designed as a typical Beowulf [5, 6], making the administration and software
maintenance easy. Very positive is the fact, that the cluster is designed to be easily extensible;
to plug-in another computational node is virtually a question of seconds.
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