1 Introduction

Description of variable: value
Description of random variable: Distribution $=$ all possible values and their "probabilities"
Discrete random variable

where $p_{1} \geq 0$ and $\sum p_{1}=1$ (are probabilities of the values).

Continuous random variable

where $f(x) \geq 0, x \in R$ and $\int_{L}^{H} f(x)=1$.

Discretization

$$
x=\left[x_{1}, x_{2}, \cdots x_{n}\right] ; \text { with } x_{i+1}-x_{i}=h
$$

it is

$$
P\left(x \in\left(x_{i} \pm \frac{h}{2}\right)\right) \doteq f\left(x_{i}\right) h
$$

$\rightarrow f\left(x_{i}\right)$ points at the probability of x_{i} (of the neighborhood of x_{i})

Basic property of distribution: The values are most probably near its center.

the closer the value x is to the top of distribution

$$
\Downarrow
$$

the higher is $f(x)$

$$
\Downarrow
$$

the greater is the probability that x was generated by this distribution

Model: Conditional probability distribution (density function)

$$
f \text { (result|action) }
$$

mostly

$$
f\left(y_{t} \mid \Theta\right) \quad \text { or } \quad f\left(y_{t} \mid x_{t}, \Theta\right)
$$

where y_{t} is the target (modeled) variable, x_{t} is a vector of explanatory variables and Θ are model parameters.

For known parameters, we write $f\left(y_{t} \mid x_{t}\right)$, only.
Remark
$t=1,2,3, \cdots$ is discrete time (instants of measurements).
y_{t} and $x_{t}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]_{t}$ are the data examined; x_{t} should explain behaviour of y_{t}
Θ expresses the properties of the described system.
Example

$$
\begin{gathered}
y_{t}=0.1 y_{t-1} \rightarrow y=10,1,0.1,0.01, \cdots \\
y_{t}=0.99 y_{t-1} \rightarrow y=10,9.9,9.81,9.703, \cdots
\end{gathered}
$$

Estimation: For model with unknown parameters, we need to estimate them.

$$
f(\Theta \mid y) \propto f(y \mid \Theta) f(\Theta)
$$

\cdots this is, from the result we estimate the action which has evoke it.
Usually we use some dataset $y(T)=\left\{y_{1}, y_{2}, \cdots, y_{T}\right\}$. Then the estimation is recursive

$$
f(\Theta \mid y(t)) \propto f\left(y_{t} \mid \Theta\right) f(y(t-1))
$$

for $t=0,1, \cdots T$ where $y(0)$ are prior data.
Remark
Bayes rule

$$
f(B \mid A, C)=\frac{f(A \mid B, C) f(B \mid C)}{f(A \mid C)}
$$

Multimodal data - several working modes generating data with higher density (clusters).

For clusters we introduce discrete variable c_{t} - pointer. Its value at time t points at the active cluster.
Model of data in cluster

$$
f\left(y_{t} \mid c_{t}\right)
$$

Model of clusters in a dataset

$$
f\left(c_{t} \mid y_{t}\right)
$$

It holds

$$
f\left(c_{t} \mid y_{t}\right) \propto f\left(y_{t} \mid c_{t}\right) f\left(c_{t}\right)
$$

Details and programs of model estimation

The details of estimation can be found at

- Laboratory - Chapters 2 and 3 (on main webpage)
- on web: https://www.fd.cvut.cz/personal/nagyivan/MMADpilots/MMAD_pilots.html : PrgsScilab or in zipped file that can be downloaded at Programsto Scilab (these are the programs model*.sce and init*.sce)

2 Classification

Clustering: Grouping data into several classes. E.g. kids, youngsters, adults, old.
Classification: Sorting data into existing classes. E.g. The incoming person is to be assigned into one of the defined groups. (If according to the age, clear; if according to the appearance, uncertain)

Example 1: Let us have $y \in\{1,2,3\}$ with two equally probable classes with the model

$$
\begin{array}{c|cc}
f(y \mid c) & c=1 & c=2 \\
\hline y=1 & 0.2 & 0.4 \\
y=2 & 0.7 & 0.3 \\
y=3 & 0.1 & 0.3
\end{array}
$$

Perform classification of the dataset $y=\{1,3,2,3,2\}$.
The classes are given by the maximum probability of $f(c \mid y) \propto f(y \mid c) ; f(c)$ is uniform. This is equal to the transposition of the model

$f(c \mid y)$	$y=1$	$y=2$	$y=3$
$c=1$	0.2	0.7	0.1
$c=2$	0.4	0.3	0.3

From it, we have

$$
y=1 \rightarrow c=2, y=2 \rightarrow c=1, y=3 \rightarrow c=2
$$

For the dataset $y=\{1,3,2,3,2\}$, the classification is $c=\{2,2,1,2,1\}$.
Example 2: Let us have multimodal system with two modes described by the models (components) $f_{1}(y)$ and $f_{2}(y)$ we denote $f(y)^{1}$

$$
\begin{aligned}
& f(y \mid c=1)=N_{y}(\mu=5, r=1) \\
& f(y \mid c=2)=N_{y}(\mu=2, r=1)
\end{aligned}
$$

The probability of the first class is $f(c=1)=0.2$ and the second is $f(c=2)=0.8$. Perform classification of the dataset $y=\{4.3,2.1,3.4\}$

For the classification we maximize

$$
f(c \mid y) \propto f(y \mid c) f(c)
$$

with respect to c.

$$
{ }^{1} \text { It is } \quad N_{y}(\mu, r)=\frac{1}{\sqrt{2 \pi r}} \exp \left\{-\frac{1}{2 r}(y-\mu)^{2}\right\}
$$

From this we have

y	$f(y \mid c=1) f(c=1)$	$f(y \mid c=2) f(c=2)$	class
4.3	$\underline{0.062}$	0.022	1
2.1	0.001	$\underline{0.317}$	2
3.4	0.022	$\underline{0.119}$	2

and we select the components with the grater value in the rows.

Example 3: Why naive Bayes!
We have 3-dimensional multinomial variable $y=\left[y_{1}, y_{2}, y_{3}\right]$ with categorical distribution (i.e. each triple $\left[y_{1}, y_{2}, y_{3}\right]$ has its probability $p_{1,2,3}$) with $y_{1} \in\{1,2, \cdots, 5\}, y_{2} \in\{1,2, \cdots 8\}$ and $y_{3} \in\{1,2, \cdots 6\}$. The model for a single component is given by a vector of probabilities for each combination of the values of y, i.e.

y_{1}	y_{2}	y_{3}	$p_{1,2,3}$
1	1	1	\cdot
1	1	2	\cdot
	\ldots		
1	2	1	\cdot
	etc.		

This table has $5 \cdot 8 \cdot 6=240$ rows (only for one component).
If we assume independency of y, the description is given by three vectors with total dimension $5+8+6$ $=19$, which is substantially less then before. And the joint probability is given by the product of marginals.

That is, why Naive Bayes method, who assumes y_{i} as independent, is so useful. And moreover, its quality is surprisingly good even if the condition if the independency is not absolutely true.

3 Naive Bayes

Mostly we use more than one variable $y_{t}=\left[y_{1}, y_{2}, \cdots, y_{n}\right]_{t}$ for $t=1,2, \cdots, T$.
y_{t} is a measurement at time $t ; \quad y(t)=\left\{y_{1}, y_{2}, \cdots, y_{t}\right\}$ is a set of all measurements.

Naive Bayes assumption

Naive Bayes method assumes y conditionally independent, i.e.

$$
f(y \mid c)=\prod_{i=1}^{n} f\left(y_{i} \mid c\right)
$$

What is $y \mid c ? \cdots$ Example: For the data $y=\left[y_{1}, y_{2}\right]$ and components c

$\frac{y_{1}}{5.2}$	y_{2}3.8	c	$y \mid 1$		$y \mid 2$	
		1				
1.4	8.3	2			1.4	8.3
1.6	7.9	2	5.2	3.8	1.6	7.9
4.9	3.5	1			1.5	8.1
1.5	8.1	2				

Known parameters of the model

$$
f(c \mid y) \propto f(y \mid c) f(c)=f(c) \prod_{i=1}^{n} f\left(y_{i} \mid c\right)
$$

Example: (the previous one - Example 3)
We have 3-dimensional independent multinomial variable $y=\left[y_{1}, y_{2}, y_{3}\right]$ with categorical distribution (i.e. each variable y_{i} has its probability p_{i}) with $y_{1} \in\{1,2, \cdots, 5\}, y_{2} \in\{1,2, \cdots 8\}$ and $y_{3} \in\{1,2, \cdots 6\}$ and two classes $c \in\{1,2\}$ defined by the models $f(c)=[0.2,0.8]$ and

$$
\begin{array}{c|ccc|cccc|cc}
& & & f\left(y_{2} \mid c\right) & c=1 & c=2 & & & \\
\cline { 3 - 5 } & & & y=1 & 0.1 & 0.2 & & f\left(y_{3} \mid c\right) & c=1 & c=2 \\
\hline y\left(y_{1} \mid c\right) & c=1 & c=2 & & y=2 & 0.1 & 0.1 & & y=1 & 0.1 \\
\hline y=1 & 0.1 & 0.3 & & y=2 \\
y=2 & 0.3 & 0.1 & & y=3 & 0.2 & 0.1 & & y=2 & 0.3 \\
y=3 & 0.2 & 0.1 & y=4 & 0.2 & 0.1 & & y=3 & 0.2 & 0.1 \\
y=4 & 0.3 & 0.4 & y=5 & 0.1 & 0.1 & & y=4 & 0.2 & 0.1 \\
y=5 & 0.1 & 0.1 & y=6 & 0.1 & 0.2 & & y=5 & 0.1 & 0.1 \\
& & & y=7 & 0.1 & 0.1 & & y=6 & 0.1 & 0.2 \\
& & y=8 & 0.1 & 0.1 & & & &
\end{array}
$$

Classify the measured triple $\left[y_{1}, y_{2}, y_{3}\right]=[2,5,3]$

According to Naive Bayes we have

$$
\begin{aligned}
& f\left(c \mid y_{1}=2, y_{2}=5, y_{3}=3\right) \propto f(c) f\left(y_{1}=2 \mid c\right) f\left(y_{2}=5 \mid c\right) f\left(y_{3}=3 \mid c\right) \propto \\
& \quad=[0.2,0.8] \times[0.3,0.1] \times[0.1,0.1] \times[0.2,0.1]=[0.0012,0.0008]
\end{aligned}
$$

As the maximum is at the first entry, we classify to the first class.

Program: PrgsScilab (on web), Chapter 4, Section 4.1: class_1.sce

Unknown parameters of the model

(learning with a teacher)

- Naive Bayes learning with normal components

Teacher knows the switching of the components, i.e. actual values of the pointer c_{t} for learning data $\left\{y_{t}\right\}_{t=1}^{n L}$. We can estimate each component with its data separately.

Example: Estimate multi-model with two normal components using the following data

t	1	2	3	4	5	6	7	8	9	10
$y_{1 ; t}$	4.8	8.1	4.5	4.2	9.1	3.5	9.3	8.5	5.1	4.9
$y_{2 ; t}$	15.3	7.4	16.2	15.8	6.8	14.5	5.1	5.3	15.5	14.9
c_{t}	1	2	1	1	2	1	2	2	1	1

and classify $y=[5.3,14.9]$.
The clusters (data from components) are $C_{\text {variable }}^{\text {component }}$

$$
\begin{gathered}
C_{1}^{1}=\{4.8,4.5,4.2,3.5,5.1,4.9\}, \quad C_{1}^{2}=\{8.1,9.1,9.3,8.5\} \\
C_{2}^{1}=\{15.3,16.2,15.8,14.5,15.5,14.9\}, C_{2}^{2}=\{7.4,6.8,5.1,5.3\}
\end{gathered}
$$

and

cluster	average	variance
C_{1}^{1}	4.5	0.34
C_{1}^{2}	8.75	0.3
C_{2}^{1}	15.37	0.37
C_{2}^{2}	6.15	1.27

The component estimates are

$$
\begin{gathered}
f\left(y_{1} \mid c=1\right)=N_{y_{1}}(4.5,0.34), \quad f\left(y_{1} \mid c=2\right)=N_{y_{1}}(8.75,0.3) \\
f\left(y_{2} \mid c=1\right)=N_{y_{2}}(15.37,0.37), \quad f\left(y_{2} \mid c=2\right)=N_{y_{2}}(6.15,1.27)
\end{gathered}
$$

The model of the pointer is a normalized histogram of the pointer values

$$
f(c)=[0.6,0.4]
$$

Then

$$
\begin{gathered}
f(c \mid y=[5.3,14.9]) \propto \\
\propto\left[f(c=1) f\left(y_{1}=5.3 \mid c=1\right) f\left(y_{2}=0.4 \mid c=1\right) ; f(c=2) f\left(y_{1}=5.3 \mid c=2\right) f\left(y_{2}=0.4 \mid c=2\right)\right]=
\end{gathered}
$$

$$
\begin{gathered}
{\left[0.6 \times N_{y_{1}=5.3}(4.5,0.34) N_{y_{2}=14.9}(15.37,0.37) ; 0.4 \times N_{y_{2}=5.3}(8.75,0.3) N_{y_{2}=14.9}(6.15,1.27)\right]=} \\
{\left[0.0779 ; 2 \times 10^{-23}\right]}
\end{gathered}
$$

Thus, the vector y is classified into the first component.

Program: PrgsScilab (on web), Chapter 4, Section 4.2: class_3.sce

- Naive Bayes with categorical components

Again learning with a teacher.
Example: Learn classification model from the data ($C_{\text {variable }}^{\text {component }}$)

$$
\begin{gathered}
C_{1}^{1}=\{1,1,2,1,2,1\}, C_{1}^{2}=\{2,2,2,1\} \\
C_{2}^{1}=\{2,1,2,2,3,1,2,1\}, C_{2}^{2}=\{3,1,2,3,3\}
\end{gathered}
$$

and classify the data record $y=[1,3]$.
We have

var $1 \mid$ clus 1		
values	1	2
freq.	4	2
prob.	$2 / 3$	$1 / 3$

var $1 \mid$ clus 2		
values	1	2
freq.	1	3
prob.	$1 / 4$	$3 / 4$

var 2\|clus 1			
values	1	2	3
freq.	3	4	1
prob.	$3 / 8$	$1 / 2$	$1 / 8$

var 2\|clus 2			
values	1	2	3
freq.	1	1	3
prob.	$1 / 5$	$1 / 5$	$3 / 5$

From it, we get models of components

$$
\begin{array}{c|cccc|cc}
f\left(y_{1} \mid c\right) & c=1 & c=2 & & f\left(y_{2} \mid c\right) & c=1 & c=2 \\
\hline y_{1}=1 & 2 / 3 & 1 / 4 & & y_{2}=1 & 3 / 8 & 1 / 5 \\
y_{1}=2 & 1 / 3 & 3 / 4 & & y_{2}=2 & 1 / 2 & 1 / 5 \\
& & & y_{2}=3 & 1 / 8 & 3 / 5
\end{array}
$$

and model of the pointer $f(c)=[14 / 23 ; 9 / 23] \cdots$ rel. freq. of $c=1$ and $c=2$.
Classification of $y=[1,3]$

$$
\begin{gathered}
f(c \mid y=[1,3]) \propto f\left(y_{1}=1 \mid c\right) f\left(y_{2} \mid c\right) f(c)= \\
=[2 / 3,1 / 4] \times[1 / 8,3 / 5] \times[14 / 23,9 / 23]=[0.0507,0.0587] .
\end{gathered}
$$

The second entry is greater, so we classify to the second component.

- Naive Bayes with kernel estimation

The kernel function is

$$
\hat{k}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{y-y_{i}}{h}\right)
$$

with $\frac{1}{h} K\left(\frac{y-y_{i}}{h}\right)$ defined in different ways; e.g. like the Gaussian bell function

$$
\frac{1}{h} \exp \left\{-\frac{1}{2}\left(\frac{y-y_{i}}{h}\right)^{2}\right\}
$$

where y_{i} are data from the dataset. Here, $h \rightarrow \sigma$ and $y_{i} \rightarrow \mu$. The parameter h is important and often is selected as

$$
h=\frac{\sqrt{\sigma^{2}}}{N^{1 / 5}}
$$

σ^{2} is variance of y and N is the length of the dataset.
Example: Perform classification of multimodal data y with three components based on kernel approximation of the component models with the learning data sorted to the clusters $C_{j}, j=1,2,3$.

$$
\begin{gathered}
C_{1}=\{2.6,3.1,0.4,2.9\} \\
C_{2}=\{13.2,11.3,15.4,12.8\}
\end{gathered}
$$

$$
C_{3}=\{7.5,8.2,6.7,9.1\}
$$

First we can see, that the estimate of the probabilities of components are uniform (why?). The density functions of the components will be kernel approximated:

$$
\begin{aligned}
& \hat{k}_{1}(y)=\frac{1}{h} \exp \left\{-\frac{1}{2}\left(\frac{y-2.6}{h}\right)^{2}\right\}+\frac{1}{h} \exp \left\{-\frac{1}{2}\left(\frac{y-3.1}{h}\right)^{2}\right\}+ \\
& +\frac{1}{h} \exp \left\{-\frac{1}{2}\left(\frac{y-0.4}{h}\right)^{2}\right\}+\frac{1}{h} \exp \left\{-\frac{1}{2}\left(\frac{y-2.9}{h}\right)^{2}\right\}
\end{aligned}
$$

where $h=1.03$ for all kernels.
Similarly $\hat{k}_{2}(y)$ and $\hat{k}_{3}(y)$. We get

Remark: Notice, that the kernel functions are not Gaussian functions - they approximate the distribution of the points.

Now, the classification is very natural

$$
f(c \mid y) \propto f(y \mid c), c=1,2,3
$$

We insert the value of the classified variable into each component and classify to that with the greatest value.
E.g. for $y=6.4$ we have

$$
f(c \mid 6.4)=[0.0024,0.0001,0.6919]
$$

and we classify into th third class.

For multivariate $y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]$ perform the above procedure for each variable y_{i} and in the end, we perform the product

$$
f(y \mid c)=\prod_{i=1}^{n} f\left(y_{i} \mid c\right), \forall c
$$

Again, we classify to the class with the maximum probability.

Program: PrgsScilab (on web), Chapter 4, Section 4.4: class_5b.sce

Mixture estimation

(learning without a teacher)

Uses on-line estimation with weighted data in statistics update. The weights follow from probabilistic classification.

Algorithm (runs in time $t=1,2 . \cdots$)

1. measure new data record y_{t}
2. construct proximities q_{j} (values of component models with currently estimated parameters and the measured data)

$$
q_{j}=f_{j}\left(y_{t} \mid \hat{\Theta}_{j ; t-1}\right), \forall \text { components } j
$$

3. construct weights $w=q / \sum q_{j}$ (normalization)
4. update all component statistics with weighted data (e.g.)

$$
\begin{gathered}
S_{j ; t}=S_{j ; t-1}+w_{j} y_{t} \\
\kappa_{j ; t}=\kappa_{j ; t-1}+w_{j}
\end{gathered}
$$

5. construct point estimates of parameters

$$
\hat{\Theta}_{j ; t}=S_{j ; t} / \kappa_{j ; t}
$$

6. Increment time $t \rightarrow t+1$ and go to 1 .

Remark: For on-line estimation consult the Laboratory, Chapter 2 - Models and their estimation.
Program: See PrgsScilab.pdf - class_6a.sce
For comparison of single model estimation, estimation with teacher and mixture estimation see: Est1RegMod.sce, Est2Teacher.sce and Est3Mixture.sce.

Program: PrgsScilab (on web), Chapter 4, Section 4.5: class_6a.sce

4 Regression

Logistic regression

For binomial data $c_{t} \in\{0,1\}$.
Bernoulli distribution

$$
f\left(c_{t} \mid p\right)=p^{c_{t}}(1-p)^{1-c_{t}}, p \in(0,1)
$$

where $p=P\left(c_{t}=1\right)$.
With explanatory variables $x_{t}=\left[x_{1 ; t}, x_{2 ; t}, \cdots, x_{m ; t}\right], t=1,2, \cdots, T$ we model $\operatorname{logit}(p)$ by regression

$$
\underbrace{\ln \left(\frac{p}{1-p}\right)}_{\operatorname{logit(p)}}=x_{t} b=\underbrace{b_{0}+b_{1} x_{1 ; t}+\cdots b_{m} x_{m ; t}}_{z_{t}}
$$

Remark: It holds

$$
\begin{gathered}
z_{t}=x_{t} b \\
\ln \left(\frac{p}{1-p}\right)=z_{t} \Longleftrightarrow p=\left\{\begin{array}{lll}
\frac{\exp \left(z_{t}\right)}{1+\exp \left(z_{t}\right)} & \text { for } c_{t}=1 \\
\frac{1}{1+\exp \left(z_{t}\right)} & \text { for } c_{t}=0 & \text { - norgression } \\
\end{array}\right.
\end{gathered}
$$

The logit defines the function, i.e. transformation $R \rightarrow(0,1)$

How classification works

1. Measure x_{t}
2. Compute $x_{t} b=z_{t}$
3. Apply inverse logit: $\quad p=\frac{\exp \left(z_{t}\right)}{1+\exp \left(z_{t}\right)}$
4. If $p=P\left(c_{t}=1\right)>0.5$ assign $c_{t}=1$ otherwise $c_{t}=0$
$=$ classification of x_{t} to class 0 or 1.

Estimation

Model $f\left(c_{t} \mid p\right)=[1-p, p]=\left[P\left(c_{t}=0\right), P\left(c_{t}=1\right)\right]$

$$
P\left(c_{t}\right)=\frac{\exp \left(c_{t} x_{t} b\right)}{1+\exp \left(x_{t} b\right)}, \forall c_{t}
$$

Maximum likelihood

$$
L(p)=\prod_{t=1}^{T} \frac{\exp \left(c_{t} x_{t} b\right)}{1+\exp \left(x_{t} b\right)}
$$

\rightarrow numerical maximization

$$
\hat{b}=\arg \max _{b}\left(L_{p}\right)
$$

Program: in KNIME
see PrgsKNIME on web: Task01_Logistic_Regresion

Poisson regression

For nonnegative integer data $c_{t}=0,1,2, \cdots$.
Poisson distribution

$$
f\left(c_{t} \mid \lambda\right)=\exp (-\lambda) \frac{\lambda^{c_{t}}}{c_{t}!}, \lambda>0
$$

The regression is

$$
\ln (\lambda)=x_{t} b=b_{0}+b_{1} x_{1}+b_{2} x_{2}, \cdots, b_{m} x_{m} \Longleftrightarrow \lambda=\exp \left(x_{t} b\right)
$$

Model (in logarithm) with this regression is

$$
\ln \left[f\left(c_{t} \mid x_{t}, b\right)\right]=-\exp \left(x_{t} b\right)+c_{t} x_{t} b-\ln \left(c_{t}\right)
$$

logLikelihood

$$
\ln L(b)=\sum_{t=1}^{T} \ln \left[f\left(c_{t} \mid x_{t}, b\right)\right]
$$

and

$$
\hat{b}=\arg \min (\ln L)
$$

5 Classical clustering

K-means algorithm

The task: Divide the dataset $X=\left\{\left[x_{1}, x_{2}, \cdots, x_{n}\right]_{t}\right\}_{t=1}^{T}$ into m clusters according to their density.

0 . Determine the number m of clusters and set their initial centers.

1. Measure the distance from each data point to each cluster center and assign the point to the nearest center. The points form clusters.
2. Compute the average of points in each cluster and set it as its new center.
3. Check, if the centers changed. If yes, go to 1 . If not, the algorithm ends.

Program: in KNIME
see PrgsKNIME on web: Task02_k-Means_Clustering

Remark: K-medoids algorithm is similar, but centers are always some of the points.

Example

C-means algorithm (fuzzy clustering)

The task: Divide the dataset $X=\left\{\left[x_{1}, x_{2}, \cdots, x_{n}\right]_{t}\right\}_{t=1}^{T}$ into m clusters according to their density. In the c-means algorithm we minimize criterion

$$
J=\sum_{i=1}^{N} \sum_{j=1}^{m} u_{i j}^{\omega}\left\|x_{i}-c_{j}\right\|^{2}, \omega \geq 1
$$

where $u_{i j}$ is a degree of membership of the point x_{i} to cluster c_{j} and $\|\cdot\|$ is a norm.
The algorithm runs in the iteration of the following two points:

- construct weights (are given as the membership functions)

$$
\begin{equation*}
u_{i j}=\frac{1}{\sum_{k=1}^{m}\left(\frac{\left\|x_{i}-c_{j}\right\|}{\left\|x_{i}-c_{k}\right\|}\right)^{\frac{2}{\omega-1}}} \tag{1}
\end{equation*}
$$

- determine new centers (follows from minimization of the criterion)

$$
c_{j}=\frac{\sum_{i=1}^{N} u_{i j}^{\omega} x_{i}}{\sum_{i=1}^{N} u_{i j}^{\omega}}
$$

The algorithm starts with prior centers set by the user.

Remarks

1. The formula for c_{j} follows from minimization the criterion J.
2. $u_{i j}$ says how strongly the point x_{i} belongs to the center c_{j}
3. $\frac{\left\|x_{i}-c_{j}\right\|}{\left\|x_{i}-c_{k}\right\|}$ is the distance of x_{i} from c_{j} relative to the distance of x_{i} from some other center c_{k}.
4. $\sum_{k=1}^{m}\left(\frac{\left\|x_{i}-c_{j}\right\|}{\left\|x_{i}-c_{k}\right\|}\right)^{\frac{2}{\omega-1}}$ is the share of the x_{i} to c_{j} distance in total distance of x_{i} from all centers.

Programs
see PrgsKNIME on web: Task04_c-Means_Clustering
and PrgsScilab on web: Section 4.6, C-means algorithm (program Cmeans.sce)

DBSCAN (density based clustering)

The task: In the dataset $X=\left\{\left[x_{1}, x_{2}, \cdots, x_{n}\right]_{t}\right\}_{t=1}^{T}$ find subsets of data with high density separated by areas with lover density.

The basic notion is ϵ-neighborhood of a point. It decides whether the points are sufficiently dense.

- Inner point is such one that has in its neighborhood at least given number n_{0} of points.
- A point x_{i} is accessible from the point x_{j}, if a sequence of inner points from x_{i} to x_{j} exists.
- A connection between points x_{i} a x_{j} exists, it both these points are accessible from some their inner point.

Clusters are formed by the connected points.
Remark : The choice of ϵ is critical.

Example

For $n_{0}=1$, the points $1,2,3$ and 5,6 form clusters; the point 4 is a noise.

Program

see PrgsKNIME on web: Task05_Density_Clustering

Hierarchical clustering (agglomerative)

The task: In the dataset $X=\left\{\left[x_{1}, x_{2}, \cdots, x_{n}\right]_{t}\right\}_{t=1}^{T}$ construct a tree of clusters (dendrogram) and on its base cluster the data.

Example of a dendrogram

Creating dendrogram

At the beginning, all points are clusters with weight 1 ; then

1. Create new cluster by joining to nearest clusters,
(a) the weight of the new cluster is sum of the weights of the joined clusters,
(b) its position is $x_{k}=\frac{w_{i} x_{i}+w_{j} x_{j}}{w_{i}+w_{j}}$ where k is new cluster, i, j are joined clusters and w are weights.
2. Repeat, until all points are joined.

Cluster creation

After creating the histogram, the required number of clusters can be created by the horizontal line (see the dashed line in the picture).

Program: see PrgsKNIME on web: Task06_Hierarchical_Clustrig

Another approach is divisive clustering. Here we start with one cluster containing all points and it is subsequently divided until all points are clusters. However, this task is $n p$-hard and is solved in an heuristic way.

6 Classical classification

K-nearest neighbour

The task: Classify a newly measured data record into one of the created components.
The procedure of classification is the following:

1. Compute the distance of the new point y from all points from $x_{i} \in X$.
2. Mark k points $x_{i}, i=1,2, \cdots, k$ nearest to y.
3. Assign y to the cluster to which majority of the nearest points belongs.

Remark: If there are more than one such cluster, take the first of them.

Program: see PrgsKNIME on web: Task07_k-NearNeighb

Decision trees

The task: In the learning dataset $X=\left\{\left[x_{1}, x_{2}, \cdots, x_{n}\right]_{t}\right\}_{t=1}^{T}$ with the pointer variable c_{t} (learning with a teacher) construct a classification tree and then perform classification for new data records.

The tree describes subsequent division of the remaining data according to the values of selected variables.

Example
Let us have the following data

t	x_{1}	x_{2}	c
1	1	1	1
2	1	2	2
3	2	1	1
4	2	2	2

where x_{1}, x_{2} are the data records and c is the pointer variable.
For the selected variable x_{1} we obtain two tables

$x_{1}=1$				
x_{2}	c			
1	1			
2	2	and \quad	$x_{1}=2$	
:---:	:---:			
x_{2}	c			
1	1			
2	2			

As the assignment $x_{1} \rightarrow c$ is not unique, we continue

$$
\text { and } \quad
$$

As there is no other variable, we end. The tree is unique (the decision will be deterministic). E.g. for $x=[2,1]$ we start at the top: $x_{1}=2$ points at the right part of the tree. Then $x_{2}=1$ leads us to the left part of the branch. Down we obtain $c=1$. So, x is classified to the class 1 .

Remark
If we start the tree from x_{2}, we are ready in one step. The order of selection of the variables matters.

Program: see PrgsKNIME on web: Task08_Decision_Tree
Tree in KNIME

t	x_{1}	x_{2}	c
1	1	1	1

For the above example

2	1	2	2	we have the Tree $\mathbf{1}$
3	2	1	1	
4	2	2	2	

t	x_{1}	x_{2}	c	
1	1	1	1	
2	1	2	2	
3	2	1	1	we get the Tree $\mathbf{2}$
4	2	2	2	
5	1	1	1	
6	1	1	2	

Tree 1
x_{1}, x_{2}

1 (2/4)	
- Table:	
Category	\% n
1	50,0 2
2	50,0 2
Total	100,0 4

1 (1/2)		
- Table:		
Category	\%	n
1	50,0	1
2	50,0	1
Total	50,0	2

x_{2}, x_{1}

Tree 2

Support vector machines

Task: Linear classification into two classes. The goal is to find a hyperplane that optimally partitions the data points so that the training data belonging to different classes lie in opposite half-spaces. The optimal hyperplane is such that the value of the minimum of the distances of the points from the plane is as large as possible.

For two variables we have e.g. (dots one class, squares other one)

Program: see PrgsKNIME on web: Task09_Support_Vec_Mach

The derivation can be found in the Texts on web.

