
1 Introduction

Description of variable: value

Description of random variable: Distribution = all possible values and their �probabilities�

Discrete random variable

x

f(x)

p1

p2

p3

1 2 3

where p1 ≥ 0 and
∑
p1 = 1 (are probabilities of the values).



Continuous random variable

x

f(x)

Ix

P (x ∈ Ix)

L H

where f (x) ≥ 0,x ∈ R and
∫ H

L
f (x) = 1.

Discretization

x = [x1, x2, · · ·xn] ; with xi+1 − xi = h

it is

P

(
x ∈

(
xi ±

h

2

))
.
= f (xi)h

→ f (xi) points at the probability of xi (of the neighborhood of xi)



Basic property of distribution: The values are most probably near its center.

x

f(x)

the closer the value x is to the top of distribution

⇓

the higher is f (x)

⇓

the greater is the probability that x was generated by this distribution



Model: Conditional probability distribution (density function)

f (result|action)

mostly

f (yt|Θ) or f (yt|xt,Θ)

where yt is the target (modeled) variable, xt is a vector of explanatory variables and Θ are model

parameters.

For known parameters, we write f (yt|xt) , only.

Remark

t = 1, 2, 3, · · · is discrete time (instants of measurements).

yt and xt = [x1, x2, · · · , xn]t are the data examined; xt should explain behaviour of yt

Θ expresses the properties of the described system.

Example

yt = 0.1yt−1 → y = 10, 1, 0.1, 0.01, · · ·

yt = 0.99yt−1 → y = 10, 9.9, 9.81, 9.703, · · ·



Estimation: For model with unknown parameters, we need to estimate them.

f (Θ|y) ∝ f (y|Θ) f (Θ)

· · · this is, from the result we estimate the action which has evoke it.

Usually we use some dataset y (T ) = {y1, y2, · · · , yT} . Then the estimation is recursive

f (Θ|y (t)) ∝ f (yt|Θ) f (y (t− 1))

for t = 0, 1, · · ·T where y (0) are prior data.

Remark

Bayes rule

f (B|A,C) =
f (A|B,C) f (B|C)

f (A|C)



Multimodal data - several working modes generating data with higher density (clusters).

Discrete Continuous

For clusters we introduce discrete variable ct - pointer. Its value at time t points at the active cluster.

Model of data in cluster

f (yt|ct)

Model of clusters in a dataset

f (ct|yt)

It holds

f (ct|yt) ∝ f (yt|ct) f (ct)



Details and programs of model estimation

The details of estimation can be found at

• Laboratory - Chapters 2 and 3 (on main webpage)

• on web: https://www.fd.cvut.cz/personal/nagyivan/MMADpilots/MMAD_pilots.html : PrgsS-

cilab or in zipped �le that can be downloaded at Programsto Scilab (these are the programs

model*.sce and init*.sce)



2 Classi�cation

Clustering: Grouping data into several classes. E.g. kids, youngsters, adults, old.

Classi�cation: Sorting data into existing classes. E.g. The incoming person is to be assigned into

one of the de�ned groups. (If according to the age, clear; if according to the appearance, uncertain)

Example 1: Let us have y ∈ {1, 2, 3} with two equally probable classes with the model

f (y|c) c = 1 c = 2

y = 1 0.2 0.4

y = 2 0.7 0.3

y = 3 0.1 0.3

Perform classi�cation of the dataset y = {1, 3, 2, 3, 2}.

The classes are given by the maximum probability of f (c|y) ∝ f (y|c) ; f (c) is uniform. This is equal

to the transposition of the model

f (c|y) y = 1 y = 2 y = 3

c = 1 0.2 0.7 0.1

c = 2 0.4 0.3 0.3



From it, we have

y = 1→ c = 2, y = 2→ c = 1, y = 3→ c = 2

For the dataset y = {1, 3, 2, 3, 2} , the classi�cation is c = {2, 2, 1, 2, 1} . �

Example 2: Let us have multimodal system with two modes described by the models (components)

f1 (y) and f2 (y) we denote f (y)1

f (y|c = 1) = Ny (µ = 5, r = 1)

f (y|c = 2) = Ny (µ = 2, r = 1)

The probability of the �rst class is f (c = 1) = 0.2 and the second is f (c = 2) = 0.8. Perform

classi�cation of the dataset y = {4.3, 2.1, 3.4}

For the classi�cation we maximize

f (c|y) ∝ f (y|c) f (c)

with respect to c.

1
It is

Ny (µ, r) =
1√
2πr

exp

{
− 1

2r
(y − µ)2

}



From this we have

y f (y|c = 1) f (c = 1) f (y|c = 2) f (c = 2) class

4.3 0.062 0.022 1

2.1 0.001 0.317 2

3.4 0.022 0.119 2

and we select the components with the grater value in the rows. �

Example 3 : Why naive Bayes!

We have 3-dimensional multinomial variable y = [y1, y2, y3] with categorical distribution (i.e. each

triple [y1, y2, y3] has its probability p1,2,3) with y1 ∈ {1, 2, · · · , 5} , y2 ∈ {1, 2, · · · 8} and y3 ∈ {1, 2, · · · 6}.
The model for a single component is given by a vector of probabilities for each combination of the

values of y, i.e.

y1 y2 y3 p1,2,3

1 1 1 ·
1 1 2 ·
· · ·

1 2 1 ·
etc.



This table has 5·8·6 = 240 rows (only for one component).

If we assume independency of y, the description is given by three vectors with total dimension 5+8+6

= 19, which is substantially less then before. And the joint probability is given by the product of

marginals. �

That is, why Naive Bayes method, who assumes yi as independent, is so useful. And moreover, its

quality is surprisingly good even if the condition if the independency is not absolutely true.



3 Naive Bayes

Mostly we use more than one variable yt = [y1, y2, · · · , yn]t for t = 1, 2, · · · , T.

yt is a measurement at time t; y (t) = {y1, y2, · · · , yt} is a set of all measurements.

Naive Bayes assumption

Naive Bayes method assumes y conditionally independent, i.e.

f (y|c) =
n∏

i=1

f (yi|c)

What is y|c? · · · Example: For the data y = [y1, y2] and components c

y1 y2 c

5.2 3.8 1

1.4 8.3 2

1.6 7.9 2

4.9 3.5 1

1.5 8.1 2

y|1
5.2 3.8

4.9 3.5

y|2

1.4 8.3

1.6 7.9

1.5 8.1



Known parameters of the model

f (c|y) ∝ f (y|c) f (c) = f (c)
n∏

i=1

f (yi|c)

Example: (the previous one - Example 3)

We have 3-dimensional independent multinomial variable y = [y1, y2, y3] with categorical distri-

bution (i.e. each variable yi has its probability pi) with y1 ∈ {1, 2, · · · , 5} , y2 ∈ {1, 2, · · · 8} and

y3 ∈ {1, 2, · · · 6} and two classes c ∈ {1, 2} de�ned by the models f (c) = [0.2, 0.8] and

f (y1|c) c = 1 c = 2

y = 1 0.1 0.3

y = 2 0.3 0.1

y = 3 0.2 0.1

y = 4 0.3 0.4

y = 5 0.1 0.1

f (y2|c) c = 1 c = 2

y = 1 0.1 0.2

y = 2 0.1 0.1

y = 3 0.2 0.1

y = 4 0.2 0.1

y = 5 0.1 0.1

y = 6 0.1 0.2

y = 7 0.1 0.1

y = 8 0.1 0.1

f (y3|c) c = 1 c = 2

y = 1 0.1 0.3

y = 2 0.3 0.2

y = 3 0.2 0.1

y = 4 0.2 0.1

y = 5 0.1 0.1

y = 6 0.1 0.2

Classify the measured triple [y1, y2, y3] = [2, 5, 3]



According to Naive Bayes we have

f (c|y1 = 2, y2 = 5, y3 = 3) ∝ f (c) f (y1 = 2|c) f (y2 = 5|c) f (y3 = 3|c) ∝

= [0.2, 0.8]× [0.3, 0.1]× [0.1, 0.1]× [0.2, 0.1] = [0.0012, 0.0008]

As the maximum is at the �rst entry, we classify to the �rst class.

Program: PrgsScilab (on web), Chapter 4, Section 4.1: class_1.sce



Unknown parameters of the model

(learning with a teacher)

• Naive Bayes learning with normal components

Teacher knows the switching of the components, i.e. actual values of the pointer ct for learning data

{yt}nLt=1 . We can estimate each component with its data separately.

Example: Estimate multi-model with two normal components using the following data

t 1 2 3 4 5 6 7 8 9 10

y1;t 4.8 8.1 4.5 4.2 9.1 3.5 9.3 8.5 5.1 4.9

y2;t 15.3 7.4 16.2 15.8 6.8 14.5 5.1 5.3 15.5 14.9

ct 1 2 1 1 2 1 2 2 1 1

and classify y = [5.3, 14.9] .

The clusters (data from components) are C
component
variable

C1
1 = {4.8, 4.5, 4.2, 3.5, 5.1, 4.9} , C2

1 = {8.1, 9.1, 9.3, 8.5}

C1
2 = {15.3, 16.2, 15.8, 14.5, 15.5, 14.9} , C2

2 = {7.4, 6.8, 5.1, 5.3}



and

cluster average variance

C1
1 4.5 0.34

C2
1 8.75 0.3

C1
2 15.37 0.37

C2
2 6.15 1.27

The component estimates are

f (y1|c = 1) = Ny1 (4.5, 0.34) , f (y1|c = 2) = Ny1 (8.75, 0.3)

f (y2|c = 1) = Ny2 (15.37, 0.37) , f (y2|c = 2) = Ny2 (6.15, 1.27)

The model of the pointer is a normalized histogram of the pointer values

f (c) = [0.6, 0.4]

Then

f (c|y = [5.3, 14.9]) ∝

∝ [f (c = 1) f (y1 = 5.3|c = 1) f (y2 = 0.4|c = 1) ; f (c = 2) f (y1 = 5.3|c = 2) f (y2 = 0.4|c = 2)] =



[0.6×Ny1=5.3 (4.5, 0.34)Ny2=14.9 (15.37, 0.37) ; 0.4×Ny2=5.3 (8.75, 0.3)Ny2=14.9 (6.15, 1.27)] =[
0.0779; 2× 10−23

]
Thus, the vector y is classi�ed into the �rst component.

Program: PrgsScilab (on web), Chapter 4, Section 4.2: class_3.sce



• Naive Bayes with categorical components

Again learning with a teacher.

Example: Learn classi�cation model from the data ( C
component
variable

)

C1
1 = {1, 1, 2, 1, 2, 1} , C2

1 = {2, 2, 2, 1}

C1
2 = {2, 1, 2, 2, 3, 1, 2, 1} , C2

2 = {3, 1, 2, 3, 3}

and classify the data record y = [1, 3] .

We have

var 1|clus 1

values 1 2

freq. 4 2

prob. 2/3 1/3

var 1|clus 2

values 1 2

freq. 1 3

prob. 1/4 3/4

var 2|clus 1

values 1 2 3

freq. 3 4 1

prob. 3/8 1/2 1/8

var 2|clus 2

values 1 2 3

freq. 1 1 3

prob. 1/5 1/5 3/5



From it, we get models of components

f (y1|c) c = 1 c = 2

y1 = 1 2/3 1/4

y1 = 2 1/3 3/4

f (y2|c) c = 1 c = 2

y2 = 1 3/8 1/5

y2 = 2 1/2 1/5

y2 = 3 1/8 3/5

and model of the pointer f (c) = [14/23; 9/23] · · · rel. freq. of c = 1 and c = 2.

Classi�cation of y = [1, 3]

f (c|y = [1, 3]) ∝ f (y1 = 1|c) f (y2|c) f (c) =

= [2/3, 1/4]× [1/8, 3/5]× [14/23, 9/23] = [0.0507, 0.0587] .

The second entry is greater, so we classify to the second component.



• Naive Bayes with kernel estimation

The kernel function is

k̂ =
1

n

n∑
i=1

1

h
K

(
y − yi
h

)
with 1

h
K
(
y−yi
h

)
de�ned in di�erent ways; e.g. like the Gaussian bell function

1

h
exp

{
−1

2

(
y − yi
h

)2
}

where yi are data from the dataset. Here, h → σ and yi → µ. The parameter h is important and

often is selected as

h =

√
σ2

N1/5

σ2 is variance of y and N is the length of the dataset.

Example: Perform classi�cation of multimodal data y with three components based on kernel ap-

proximation of the component models with the learning data sorted to the clusters Cj, j = 1, 2, 3.

C1 = {2.6, 3.1, 0.4, 2.9}

C2 = {13.2, 11.3, 15.4, 12.8}



C3 = {7.5, 8.2, 6.7, 9.1}

First we can see, that the estimate of the probabilities of components are uniform (why?). The

density functions of the components will be kernel approximated:

k̂1 (y) =
1

h
exp

{
−1

2

(
y − 2.6

h

)2
}

+
1

h
exp

{
−1

2

(
y − 3.1

h

)2
}

+

+
1

h
exp

{
−1

2

(
y − 0.4

h

)2
}

+
1

h
exp

{
−1

2

(
y − 2.9

h

)2
}

where h = 1.03 for all kernels.

Similarly k̂2 (y) and k̂3 (y) . We get



Remark: Notice, that the kernel functions are not Gaussian functions - they approximate the distri-

bution of the points.

Now, the classi�cation is very natural

f (c|y) ∝ f (y|c) , c = 1, 2, 3

We insert the value of the classi�ed variable into each component and classify to that with the

greatest value.



E.g. for y = 6.4 we have

f (c|6.4) = [0.0024, 0.0001, 0.6919]

and we classify into th third class.

For multivariate y = [y1, y2, · · · , yn] perform the above procedure for each variable yi and in the end,

we perform the product

f (y|c) =
n∏

i=1

f (yi|c) , ∀c

Again, we classify to the class with the maximum probability.

Program: PrgsScilab (on web), Chapter 4, Section 4.4: class_5b.sce



Mixture estimation

(learning without a teacher)

Uses on-line estimation with weighted data in statistics update. The weights follow from probabilistic

classi�cation.

Algorithm (runs in time t = 1, 2. · · · )

1. measure new data record yt

2. construct proximities qj (values of component models with currently estimated parameters and

the measured data)

qj = fj

(
yt|Θ̂j;t−1

)
, ∀ components j

3. construct weights w = q/
∑
qj (normalization)

4. update all component statistics with weighted data (e.g.)

Sj;t = Sj;t−1 + wjyt

κj;t = κj;t−1 + wj



5. construct point estimates of parameters

Θ̂j;t = Sj;t/κj;t

6. Increment time t→ t+ 1 and go to 1.

Remark: For on-line estimation consult the Laboratory, Chapter 2 - Models and their estimation.

Program: See PrgsScilab.pdf - class_6a.sce

For comparison of single model estimation, estimation with teacher and mixture estimation see:

Est1RegMod.sce, Est2Teacher.sce and Est3Mixture.sce.

Program: PrgsScilab (on web), Chapter 4, Section 4.5: class_6a.sce



4 Regression

Logistic regression

For binomial data ct ∈ {0, 1}.

Bernoulli distribution

f (ct|p) = pct (1− p)1−ct , p ∈ (0, 1)

where p = P (ct = 1) .

With explanatory variables xt = [x1;t, x2;t, · · · , xm;t] , t = 1, 2, · · · , T we model logit(p) by regression

ln

(
p

1− p

)
︸ ︷︷ ︸

logit(p)

= xtb = b0 + b1x1;t + · · · bmxm;t︸ ︷︷ ︸
zt



Remark: It holds

zt = xtb � regression

ln

(
p

1− p

)
= zt ⇐⇒ p =


exp(zt)

1+exp(zt)
for ct = 1

1
1+exp(zt)

for ct = 0 � normalization

The logit de�nes the function, i.e. transformation R→ (0, 1)

p

z = xb0

1z = logit(p)



How classi�cation works

1. Measure xt

2. Compute xtb = zt

3. Apply inverse logit: p = exp(zt)
1+exp(zt)

4. If p = P (ct = 1) > 0.5 assign ct = 1 otherwise ct = 0

= classi�cation of xt to class 0 or 1.



Estimation

Model f (ct|p) = [1− p, p] = [P (ct = 0) , P (ct = 1)]

P (ct) =
exp (ctxtb)

1 + exp (xtb)
, ∀ct

Maximum likelihood

L (p) =
T∏
t=1

exp (ctxtb)

1 + exp (xtb)

→ numerical maximization

b̂ = arg max
b

(Lp)

Program: in KNIME

see PrgsKNIME on web: Task01_Logistic_Regresion



Poisson regression

For nonnegative integer data ct = 0, 1, 2, · · · .

Poisson distribution

f (ct|λ) = exp (−λ)
λct

ct!
, λ > 0

The regression is

ln (λ) = xtb = b0 + b1x1 + b2x2, · · · , bmxm ⇐⇒ λ = exp (xtb)

Model (in logarithm) with this regression is

ln [f (ct|xt, b)] = − exp (xtb) + ctxtb− ln (ct)

logLikelihood

lnL (b) =
T∑
t=1

ln [f (ct|xt, b)]

and

b̂ = arg min (lnL)



5 Classical clustering

K-means algorithm

The task: Divide the dataset X = {[x1, x2, · · · , xn]t}
T
t=1 into m clusters according to their density.

0. Determine the number m of clusters and set their initial centers.

1. Measure the distance from each data point to each cluster center and assign the point to the

nearest center. The points form clusters.

2. Compute the average of points in each cluster and set it as its new center.

3. Check, if the centers changed. If yes, go to 1. If not, the algorithm ends.

Program: in KNIME

see PrgsKNIME on web: Task02_k-Means_Clustering

Remark: K-medoids algorithm is similar, but centers are always some of the points.



Example

1

1

2

1

2

1 1

2

2

1

2

1

2

2

1

2

1 1

2

2

1

2



C-means algorithm (fuzzy clustering)

The task: Divide the dataset X = {[x1, x2, · · · , xn]t}
T
t=1 into m clusters according to their density.

In the c-means algorithm we minimize criterion

J =
N∑
i=1

m∑
j=1

uωij‖xi − cj‖2, ω ≥ 1

where uij is a degree of membership of the point xi to cluster cj and ‖ · ‖ is a norm.

The algorithm runs in the iteration of the following two points:

- construct weights (are given as the membership functions)

uij =
1∑m

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
ω−1

(1)

- determine new centers (follows from minimization of the criterion)

cj =

∑N
i=1 u

ω
ijxi∑N

i=1 u
ω
ij



The algorithm starts with prior centers set by the user.

Remarks

1. The formula for cj follows from minimization the criterion J.

2. uij says how strongly the point xi belongs to the center cj

3.
‖xi−cj‖
‖xi−ck‖

is the distance of xi from cj relative to the distance of xi from some other center ck.

4.
∑m

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
ω−1

is the share of the xi to cj distance in total distance of xi from all centers.

Programs

see PrgsKNIME on web: Task04_c-Means_Clustering

and PrgsScilab on web: Section 4.6, C-means algorithm (program Cmeans.sce)



DBSCAN (density based clustering)

The task: In the dataset X = {[x1, x2, · · · , xn]t}
T
t=1 �nd subsets of data with high density separated

by areas with lover density.

The basic notion is ε-neighborhood of a point. It decides whether the points are su�ciently dense.

• Inner point is such one that has in its neighborhood at least given number n0 of points.

• A point xi is accessible from the point xj, if a sequence of inner points from xi to xj exists.

• A connection between points xi a xj exists, it both these points are accessible from some their

inner point.

Clusters are formed by the connected points.

Remark : The choice of ε is critical.



Example

1 2 3 4 5 6

For n0 = 1, the points 1,2,3 and 5,6 form clusters; the point 4 is a noise.

Program

see PrgsKNIME on web: Task05_Density_Clustering



Hierarchical clustering (agglomerative)

The task: In the dataset X = {[x1, x2, · · · , xn]t}
T
t=1 construct a tree of clusters (dendrogram) and

on its base cluster the data.

Example of a dendrogram

1 2 3 4 5 6 7

Two clusters

Three clusters



Creating dendrogram

At the beginning, all points are clusters with weight 1; then

1. Create new cluster by joining to nearest clusters,

(a) the weight of the new cluster is sum of the weights of the joined clusters,

(b) its position is xk =
wixi+wjxj

wi+wj
where k is new cluster, i, j are joined clusters and w are

weights.

2. Repeat, until all points are joined.

Cluster creation

After creating the histogram, the required number of clusters can be created by the horizontal line

(see the dashed line in the picture).

Program: see PrgsKNIME on web: Task06_Hierarchical_Clustrig

Another approach is divisive clustering. Here we start with one cluster containing all points and

it is subsequently divided until all points are clusters. However, this task is np-hard and is solved in

an heuristic way.



6 Classical classi�cation

K-nearest neighbour

The task: Classify a newly measured data record into one of the created components.

The procedure of classi�cation is the following:

1. Compute the distance of the new point y from all points from xi ∈ X.

2. Mark k points xi, i = 1, 2, · · · , k nearest to y.

3. Assign y to the cluster to which majority of the nearest points belongs.

Remark: If there are more than one such cluster, take the �rst of them.

Program: see PrgsKNIME on web: Task07_k-NearNeighb



Decision trees

The task: In the learning dataset X = {[x1, x2, · · · , xn]t}
T
t=1 with the pointer variable ct (learning

with a teacher) construct a classi�cation tree and then perform classi�cation for new data records.

The tree describes subsequent division of the remaining data according to the values of selected

variables.

Example

Let us have the following data

t x1 x2 c

1 1 1 1

2 1 2 2

3 2 1 1

4 2 2 2

where x1, x2 are the data records and c is the pointer variable.

For the selected variable x1 we obtain two tables



x1 = 1

x2 c

1 1

2 2

and

x1 = 2

x2 c

1 1

2 2

As the assignment x1 → c is not unique, we continue

x1 = 1

x2 = 1 x2 = 2

c = 1 c = 2

and

x1 = 2

x2 = 1 x2 = 2

c = 1 c = 2

As there is no other variable, we end. The tree is unique (the decision will be deterministic). E.g.

for x = [2, 1] we start at the top: x1 = 2 points at the right part of the tree. Then x2 = 1 leads us

to the left part of the branch. Down we obtain c = 1. So, x is classi�ed to the class 1.

Remark

If we start the tree from x2, we are ready in one step. The order of selection of the variables

matters.



Program: see PrgsKNIME on web: Task08_Decision_Tree

Tree in KNIME

For the above example

t x1 x2 c

1 1 1 1

2 1 2 2

3 2 1 1

4 2 2 2

we have the Tree 1

and for the extended data

t x1 x2 c

1 1 1 1

2 1 2 2

3 2 1 1

4 2 2 2

5 1 1 1

6 1 1 2

we get the Tree 2



Tree 1 x1, x2 x2, x1



Tree 2



Support vector machines

Task: Linear classi�cation into two classes. The goal is to �nd a hyperplane that optimally partitions

the data points so that the training data belonging to di�erent classes lie in opposite half-spaces.

The optimal hyperplane is such that the value of the minimum of the distances of the points from

the plane is as large as possible.

For two variables we have e.g. (dots one class, squares other one)

B+

B−

x1

x2

x1
x3

x4

x5

Program: see PrgsKNIME on web: Task09_Support_Vec_Mach

The derivation can be found in the Texts on web.
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