
Mathematical methods of data analysis

Ivan Nagy

Dept. of Applied Mathematics, FTS, CTU-Prague

Contents

1 Naive Bayes classi�cation 4

1.1 Preliminaries . 4

1.2 Introduction . 5

1.3 Model generally . 6

1.4 Model for classi�cation . 7

1.5 Classi�cation . 7

1.6 Naive Bayes classi�cation . 9

1.7 Mixture estimation . 14

2 Regression 16

2.1 Logistic regression . 17

2.2 Poisson regression . 18

3 Classical clustering 19

3.1 K-means algorithm . 19

3.2 K-medoids algorithm . 21

3.3 Fuzzy clustering . 21

3.4 Density based clustering . 23

3.5 Hierarchical clustering . 25

4 Classical classi�cation 28

4.1 K-nearest neighbour . 28

4.2 Decision tree . 29

4.3 Support vector machines . 35

5 Appendix 39

5.1 Programs in Scilab . 39

6 Simulation and estimation 39

6.1 Binary model . 39

6.2 Categorical model . 39

6.3 Binomial model . 40

6.4 Poisson model . 40

6.5 Constant regression model . 41

6.6 Explanatory regression model . 42

6.7 Dynamic regression model . 42

6.8 Exponential model . 43

6.9 Uniform model . 43

7 Initialization 44

7.1 Binary model . 44

7.2 Categorical model . 45

7.3 Regression model . 46

8 Prediction 47

8.1 Zero-step prediction . 47

8.2 K-step prediction . 49

9 Classi�cation 55

9.1 Known components . 55

9.2 Teacher . 56

9.3 Naive Bayes . 57

9.4 Kernel estimation . 59

9.5 Mixture estimation . 61

2

10 Functions 63

10.1 Gaussian pdf . 63

10.2 Histogram for continuous data . 63

10.3 Histogram for discrete data . 64

10.4 Kernel function . 65

10.5 Programs in KNIME . 65

11 Clustering 68

11.1 K-means clustering . 68

11.2 K-medoids clustering . 68

11.3 C-means clustering . 69

11.4 DBSCAN - density based clustering . 70

11.5 Hierarchical clustering . 71

12 Classi�cation 72

12.1 K-nearest neighbour classi�cation . 72

12.2 Decision tree classi�cation . 73

12.3 Support vector machine classi�cation . 73

3

Lecture 1

1 Naive Bayes classi�cation

1.1 Preliminaries

Laboratory

On the web

https://www.fd.cvut.cz/personal/nagyivan/WebLabNew/MAIN.pdf

you can �nd an overview of Stochastic Systems under Bayesian methodology. It begins with the

most frequent stochastic models each of them supplied with the formulas to their estimation.

Then a treatment of the initialization necessary for good estimation is discussed. After it the

task of prediction (estimation of the future values of the modeled variable) is introduced. The

the task of �ltration (estimation of the values of an unmeasured variable) follows. Finally the

problem of classi�cation (sorting values of the measured variable into several classes) based

on mixture estimation is tackled. An extension to the theory of mixture estimation are so called

metamixtures. Here, a solution of the problem of classi�cation of a multivariate discrete variable

is indicated in the form of marginal mixtures.

Distribution

Let us have normal distribution f (y, µ) = Ny (µ, 1). This distribution generates data around

the value µ (expectation). The closer the generated value lies to µ, the better it agrees with the

model (given by the expectation µ) and the grater is the value of the distribution. The value ỹ

for which is f (ỹ|Θ) very small hardly belongs to this distribution.

Model and its estimation

For y being random variable, the description is a distribution

f (y|Θ) ∼ distribution

where Θ - parameter (represents the reality), y - generated variable (data). For more see the

Laboratory.

The reality Θ is action from which we have results y. The model says what actions we can

probably expect from given reality, i.e.

f (result|action) .

4

However, we also can recognize the action from the measured results. It is estimation with the

model

f (Θ|y) ∝ f (y|Θ) f (Θ) .

For given data y1, y2, · · · yT we can look for parameter which �ts them best, i.e. which maximizes

the distribution (see the previous paragraph) and its factorization

f (y1, y2, · · · yT ,Θ) = f (Θ|y1, y2, · · · yT) f (Θ) = f (Θ)

T∏
t=1

f (yt|Θ) ,

where the last adjustment of the expression is due to the independency of measured variables.

Here,
∏T
t=1 f (yt|Θ) = LT (Θ) is likelihood (re�ecting information brought by data) and f (Θ)

is prior (re�ecting the expert knowledge). The maximization leads to a de�nition of suitable

statistics which can be recursively updated wit coming data. The parameter estimates can be

derived from the updated statistics. The for of the statistics, their update and the construction

of the estimates for the most frequent model is described in the Laboratory, Section 2 Models

and their estimation.

Example: Normal model f (y|µ) generated by the equation yt = µ+ et.

The statistic are St =
∑t
τ=1 yτ and κt = t.

Update

St = St−1 + yt; κt = κt−1 + 1

Estimate

µ̂t =
St
κt
.

1.2 Introduction

We will mainly deal with classi�cation. A general formulation of this task as follows: We have

a multimodal system - it acts in several di�erent working regimes and thus produces several

di�erent types of data.

Example: Tra�c intensities: morning are high, at noon a bit lower, afternoon again high,

evening lover, at night practically zero. �

On this system, we measure the variable y and want to sort its measured values to the classes

corresponding with the working regimes.

Remark: If the activity of the working classes is known, the task is trivial. An interesting case is, when the

switching of the classes is not known or even if the classes themselves are not known.

5

https://www.fd.cvut.cz/personal/nagyivan/WebLabNew/MAIN.pdf

In the case, when the switching of working regimes is not known, we must learn about the

system. The learning can be:

1. With a teacher - here we have some learning data at disposal where both the values of

y and also the number of working regime c. From these data we train the model. After

this, we measure only values of y and guess the values of c - the corresponding regime.

2. Without a teacher - here no training data are at disposal and we must determine the

classes (clustering) and to assign them by the regimes (classi�cation).

1.3 Model generally

The set of classi�ers, we will be mainly interested in, is based on a model of the variables of the

system under investigation. The variables can be continuous (with real values) or discrete (with

a �nite number of values).

Example 1: The time of traveling from the point A to B.

y = ax

where a = 1
v , v is the average speed of traveling and x = s, s is the distance between the points

A and B. �

Example 2: The same as previous but with uncertainty in speed (with various drivers).

y = ax+ e

where e is random variable representing uncertain disturbance. �

Remark: Notice, that e is random variable and due to it y is also a random variable. So, y is no longer

determined by its value but by its distribution - it is by its all possible values and their �probabilities�.

Example 3: The same as previous but using distribution.

f (y|x)

where y is the described variable, x is the explanatory variable and the distribution expresses the

nature of the uncertainty. �

Example 4: If even the distance is under uncertainty (e.g. the way is uncertain due to road

closures), the model will be

f (x, y) = f (x) f (y|x) (1)

where f (x) expresses the probabilities of individual distances and f (y|x) models the travel time

on condition that x is as it is. �

6

In a standard situations we often want to explain the behavior of a multidimensional variable

y = [y1, y2, · · · yn] by means of more explanatory variables x = [x1, x2, · · · , xm] . Construction

of such model is more demanding, in many cases even impossible. However, if we can assume

the variables independent, we can make do with just scalar models. The formula is

f (y|x) ∝
n∏
i=1

f (yi)

m∏
j=1

f (yi|xj)
f (yi)

Proof

f (y1 · · · yn|x1 · · ·xn) =
∏
i

f (yi|x1 · · ·xn) ∝
∏
i

f (x1 · · ·xn|yi) f (yi) =

=
∏
i

f (yi)
∏
j

f (xj |yi) ∝
∏
i

f (yi)
∏
j

f (yi|xj)
f (yi)

1.4 Model for classi�cation

In the above models, the explanatory variable x is known and according to its values the target

y is modeled. If it is not known, it must be estimated. And it is the case of classi�cation.

Here, the explanatory variable is denoted by c and it is called a pointer (because it points at

the class to which y is to be classi�ed). In this case, both y and c are unknown, so the model

(corresponding to (1)) is

f (y, c) ∝ f (y|c) f (c) (2)

where f (c) expresses our uncertainty about the classes and f (y|c) says to which class y belongs.

Remark: If the classes are equally probable, then f (x) is uniform and we need only the distribution f (y|c) .

Lecture 2

1.5 Classi�cation

In classi�cation we ask: Given the measured value of y, what is the class to which it belongs,

i.e. what we need is the probability function

f (c|y)

and how can we construct it using the model (2)?

It holds

f (c|y) ∝ f (y, c) ∝ f (y|c) f (c)

Example 1: Let us have y ∈ {1, 2, 3} with two equally probable classes with the model

7

f (y|c) c = 1 c = 2

y = 1 0.2 0.4

y = 2 0.7 0.3

y = 3 0.1 0.3

Perform classi�cation of the dataset y = {1, 3, 2, 3, 2}.

The classes are given by the maximum probability in the rows:

y = 1→ c = 2

y = 2→ c = 1

y = 3→ c = 2

For the dataset y = {1, 3, 2, 3, 2} , the classi�cation is c = {2, 2, 1, 2, 1} . �

Example 2: Let us have multimodal system with two modes described by the models (compo-

nents) f1 (y) and f2 (y) we denote f (y)1

f1 (y) = Ny (µ = 5, r = 1)

f2 (y) = Ny (µ = 2, r = 1)

The probability of the �rst class is f (c = 1) = 0.2 and the second is f (c = 2) = 0.8. Perform

classi�cation of the dataset y = {4.3, 2.1, 3.4}

For the classi�cation we maximize

f (c|y) ∝ f (c, y) = f (y|c) f (c)

with respect to c.

From this we have

y f (y|c = 1) f (c = 1) f (y|c = 2) f (c = 2) class

4.3 0.062 0.022 1

2.1 0.001 0.317 2

3.4 0.022 0.119 2

and we select the components with the grater value in the rows. �

1
It is

Ny (µ, r) =
1
√
2πr

exp

{
−

1

2r
(y − µ)2

}

8

Example 3 : Why naive Bayes!

We have 3-dimensional multinomial variable y = [y1, y2, y3] with categorical distribution (i.e.

each triple [y1, y2, y3] has its probability p1,2,3) with y1 ∈ {1, 2, · · · , 5} , y2 ∈ {1, 2, · · · 8} and

y3 ∈ {1, 2, · · · 6}. The model for a single component is given by a vector of probabilities for each

combination of the values of y, i.e.

y1 y2 y3 p1,2,3

1 1 1 ·
1 1 2 ·

· · ·
1 2 1 ·

etc.

This table has 5·8·6 = 240 rows (only for one component).

If we assume independency of y, the description is given by three vectors with total dimension

5+8+6 = 19, which is substantially less then before. And the joint probability is given by the

product of marginals. �

That is, why Naive Bayes method is so useful. And moreover, its quality is surprisingly good

even if the condition of independency is not absolutely true.

Lecture 3

1.6 Naive Bayes classi�cation

We assume that variables in y are independent. Then we have

f (c|y) ∝ f (c, y) = f (c) f (y|c) = f (c)

n∏
i=1

f (yi|c) (3)

and only f (c) and scalar models of individual variables f (yi|c) are necessary. For equal proba-
bilities of the classes, even f (c) disappears (into the ∝ sign).

In the previous examples we assumed that the models of the components fj (y|c) as well as the
probabilities of the classes f (c) are known. In reality, they are not and have to be estimated.

A standard Naive Bayes method performs the estimation with the teacher, i.e. with learning

data. If the learning data are not at disposal - the learning without the teacher must be used.

It is based on mixture estimation.

Example

Let us have the following learning dataset DL of the measured values of the variable yt = [y1, y2]t
supplied by the values of the pointer ct indicating to which the data record belongs; it is ct ∈ {1, 2}
- two components

DL = {yt, ct}nLt=1 = {y1;t, y2;t, ct}nLt=1

9

e.g

t y1 y2 c

1 3.4 8.1 1

2 3.2 8.5 1

3 9.7 1.3 2

4 2.9 8.6 1

5 9.5 1.1 2

We de�ne models

f1 (y1;t|ct = 1) , f1 (y1;t|ct = 2) , f1 (y2;t|ct = 1) and f2 (y2;t|ct = 2)

for the �rst and second variable y and the �rst and second component. As we know the values

of the pointer.

Now, the data Cvariablecomponent belonging to the �rst model are C1
1 = {3.4, 3.2, 2.9} and similarly for

the second model (�rst variable and second component) C1
2 = {9.7, 9.5} and C2

1 = {8.1, 8.5, 8.6}
and �nally C2

2 = {1.3, 1.1} . These data can be used for estimation pf the individual models.

For normal constant components yi;t = µij + ei;t (i - variable, j - component), the estimates are

µ1
1 =

3.4 + 3.2 + 2.9

3
= 3.166, µ1

2 =
9.7 + 9.5

2
= 9.6

µ2
1 =

8.1 + 8.5 + 8.6

3
= 8.4, µ2

2 =
1.3 + 1.1

2
= 1.2

So, using the independence of y1 and y2, and common variance equal to 1 we have

f (y|c = 1) = Ny1
(
µ1

1, 1
)
Ny2

(
µ2

1, 1
)

=

f (y|c = 2) = Ny1
(
µ1

2, 1
)
Ny2

(
µ2

2, 1
)

For the pointer we have

f (c = 1) =
3

5
and f (c = 2) =

2

5
.

Then, according to (3), we have

f (c|y) ∝ [f (c = 1) f (y1|c = 1) f (y2|c = 1) , f (c = 2) f (y1|c = 2) f (y2|c = 2)]

10

Now, to classify e.g. the data record yt = [3.1, 8.3] we have

f (c|yt) ∝
[
0.068, 1.4 · 10−18

]
.

As the �rst number is greater, we classify yiinto the �rst class. �

Program for more complex situation is in the �le class_4.sce.

Naive Bayes with kernel estimation

The estimated probability density function is approximately expressed as an average of kernel

functions

f (y|c) .
= k̂ =

1

n

n∑
i=1

1

h
K

(
y − yi
h

)
.

The most frequent kernel function is the standard Gaussian density proportional to 1√
r

exp
(
− 1

2e
2
)

where e = y−µ√
r
. Here,

√
r = h is standard deviation and µ = yi is expectation. In this way, the

approximation reads

k̂ =
1

n

n∑
i=1

1

h
exp

{
−1

2

(
y − yi
h

)2
}

where y is the argument of the function, yi, i = 1, 2, · · · , n are learning data and h sets the width

of the kernel function. Its value can be chosen as2

h =

√
r̂

N
1
5

where r̂ is the sample variance and N number of the learning dataset.

Remark: The method is very simple, however, each evaluation needs using all learning data.

Example: Perform classi�cation of multimodal data y with three components based on kernel

approximation of the component models with the learning data sorted to the clusters Cj , j =

1, 2, 3.

C1 = {2.6, 3.1, 0.4, 2.9}

C2 = {13.2, 11.3, 15.4, 12.8}

C3 = {7.5, 8.2, 6.7, 9.1}

First we can see, that the estimate of the probabilities of components are uniform (why?). The

2It so called rule-of-thumb.

11

density functions of the components will be kernel approximated:

k̂1 (y) =
1

h
exp

{
−1

2

(
y − 2.6

h

)2
}

+
1

h
exp

{
−1

2

(
y − 3.1

h

)2
}

+

+
1

h
exp

{
−1

2

(
y − 0.4

h

)2
}

+
1

h
exp

{
−1

2

(
y − 2.9

h

)2
}

where h = 1.03 for all kernels.

Similarly k̂2 (y) and k̂3 (y) . We get

Remark: Notice, that the kernel functions are not Gaussian functions - they approximate the distribution of

the points.

Now, the classi�cation is very natural

f (c|y) ∝ f (y|c) , c = 1, 2, 3

We insert the value of the classi�ed variable into each component and classify to that with the

greatest value.

E.g. for y = 6.4 we have

f (c|6.4) = [0.0024, 0.0001, 0.6919]

and we classify into th third class. �

Remark: The averages of data in the learning set are [2.1, 13.75, 7.875]. It can be seen that the value

y = 6.4 is closest to the third component.

If y = [y1, y2, · · · , yn] is multivariate then we perform the above procedure for each variable yi

12

and in the end, we perform the product

f (y|c) =

n∏
i=1

f (yi|c) , ∀c

Again, we classify to the class with the maximum probability.

Another example is solved in the �le

Naive Bayes with parametric estimation

The kernel estimation is elegant but very demanding. Instead of kernels we will describe the

components by some distribution and will estimate its parameters. We will proceed with normal

distributions. We will demonstrate it with the same example as before but with two variables

y.

Example (as before): We have the learning data in clusters Cvariablecomponent

C1
1 = {2.6, 3.1, 0.4, 2.9} ; C1

2 = {13.2, 11.3, 15.4, 12.8} ; C1
3 = {7.5, 8.2, 6.7, 9.1}

for the �rst variable y1 and

C2
1 = {12.5, 13.9, 11.4, 12.7} ; C2

2 = {3.2, 1.3, 5.4, 2.8} ; C2
3 = {9.5, 7.2, 8.7, 6.1}

for the second one. Perform classi�cation of the value y = [10.8, 6.3] using normal components

with Naive Bayes estimation.

First we estimate the components of individual variables. Gaussians are given by expectation

and variance. They can be estimated from the learning data

m1 = [2.25, 13.175, 7.875] , m2 = [12.625, 3.175, 7.875]

r1 = [1.56, 2.87, 1.04] , r2 = [1.05, 2.87, 2.31]

with f (c) being uniform.

Inserting the tested point y = [10.8, 6.3] into the component models Ny1
(
mi (j) , ri (j)

)
- i is

variable and j is component, we get

f (c|y1) ∝
[
2.2 · 10−14, 8.8 · 10−2, 6.4 · 10−3

]

f (c|y2) ∝
[
1.7 · 10−3, 6.2 · 10−5, 1.2 · 10−1

]
and for uniform f (c) the distribution f (c|y) ∝ f (y1|c)

(
y2|c
)

13

f (c|y) ∝
[
3.8 · 10−14, 5.5 · 10−6, 7.7 · 10−4

]
From the last distribution we see that the classi�cation for y is the third class. �

Remark: It is also possible to perform the estimation of the component parameters on-line. Then, for each

component j, de�ne zero initial statistics Sj (sum) and κj (count). Then with coming data yt from the ĵ-th

class, perform update of the ĵ-the statistics

Sĵ;t = Sĵ;t−1 + yt, κĵ;t = κĵ;t−1 + 1,

other statistics for j 6= ĵ do not change.

The estimate of expectations is m̂j = Sj;Nj/κj;Nj , where Nj is the number of data in the j-the component.

Variances can be set small and �xed.

Lecture 4

1.7 Mixture estimation

If we do not have a learning dataset (learning without teacher), we can use mixture estima-

tion. Under the Naive Bayes methodology, we can deal only with one classi�ed variable. For

multivariate one, the product of individual distributions is the solution.

The basic problem with mixture estimation without the knowledge of active components is that

we do not know which component is to be updated with the newly measured y. That is why,

after measuring y, we need �rst to make probabilistic classi�cation (to determine probabilities

that the y belongs to individual components) and then to update the components with the ratio

of y corresponding to the component probability.

That is, for the component

fj (y|c = j)

and the measured y = yt we compute weights

wj = f (c = j|yt) ∝ f (yt|c = j) f (yt) , j = 1, 2, · · · , nc

Then we can update the statistics (for constant normal components with statistics S (sum) and

κ (count))

Sj;t = Sj;t−1 + wjyt

κj;t = κj;t−1 + wj

for all components j.

Finally, the estimates are

m̂j;t = Sj;t/κj;t, ∀j.

14

The classi�cation is given as argument minima weights w

cp = arg minw

Example program

// Scalar mixture estimation

// - aL is not estimated

// - better weights under logarithm

// -------------------------------------

exec('SCIHOME/ScIntro.sce',-1); mode(0);

nd=200;

// Simulation

aLS=[.4 .3 .3]; // switching parameters

mS=[5 2 8]; // comp. expectations

sdS=[.6 .3 .8]; // comp. variances

nc=length(aLS); // number of components

for t=1:nd // loop for simulaion

c(t)=sum(cumsum(aLS)<rand(1,1,'u'))+1; // pointer

y(t)=mS(c(t))+sdS(c(t))*rand(1,1,'n'); // output

end

//Estimation

m=[7 -1 11]; // prior expectations

ka=[1 1 1]; // counter

S=m.*ka; // sum

for t=1:nd // loop for estimation

for j=1:nc

q(j)=GaussN(y(t),m(j),.1); // proximities

end

w=q/sum(q); // weihts

cp(t)=amax(w);

wt(:,t)=w;

for j=1:nc

S(j)=S(j)+w(j)*y(t); // statistics

ka(j)=ka(j)+w(j); // update

m(j)=S(j)/ka(j); // estimates

end

15

mt(:,t)=m;

end

// Results

mS,m // final estimates

Acc=acc(c,cp) // accuracy of classif.

set(scf(),'position',[200 300 400 300]) // evol. of parameters

plot(mt')

title('Evolution of estimated parameters','fontsize',4)

Evolution of estimated expectations

Lecture 5

2 Regression

Here, we will demonstrate the logistic and Poisson regression. They are both very similar:

1. They use nonlinear models with unknown parameters.

2. Their estimation is performed o�-line using numerical optimization. It has two phases:

learning and testing.

3. They need to cope with non-negativity of estimated parameters.

16

2.1 Logistic regression

Model for variable ct with Bernoulli distribution

f (ct|p) = pct (1− p)1−ct

with ct = 0, 1 is dichotomous model output p ∈ (0, 1) is the probabilistic parameter: p =

P (ct = 1).

The expectation of ct is

E [ct|p] = p

Now, we would like to extend this model so that its expectation will be modeled by regression

in the form

p→ x′b = b0 + b1x1 + · · ·+ bmxm

However, there are problems. p ∈ (0, 1), i.e. it is nonnegative and bounded from above.

1. The solution with respect to bounding is: instead of p to model p
1−p which is from the

interval (0,∞)

2. Nonnegativity of p
1−p can be solved by taking logarithm ln p

1−p . This variable is called

logit

logit (p) = ln

(
p

1− p

)
This logit will be modeled by regression

ln

(
p

1− p

)
= xtb

The �nal model f (ct|b) can be derived from the above expression and it has the form

f (ct|b) = p =

exp{xtb}

1+exp{xtb} for ct = 1

1
1+exp{xtb} for ct = 0

and using the fact that ct ∈ {0, 1} we can write the model as

f (ct|b) =
exp {ctxtb}

1 + exp {xtb}
.

Note, that both the mentioned demands are ful�lled - p ∈ (0, 1), and nonnegative, indeed.

17

For estimation of the parameter p we will construct the likelihood function

LN (p) =

N∏
t=1

exp {ctxtb}
1 + exp {xtb}

where we used a trick for writing the model in a uni�ed form. For ct = 1 the nominator in the

model will be exp {xtb} and for ct = 0 it will be 1.

The log-likelihood is

lnLN (p) =

N∑
t=1

[ctxtb− ln (1 + exp {xtb})]

As the �rst and second derivatives of this expression can be computed analytically, the Newton

method for numerical maximization is very suitable. It is quick and has fast convergence.

Program for experimentation in Scilab is DM_LogisReg.sce

2.2 Poisson regression

Model with Poisson distribution

f (ct|λ) = exp {−λ} λ
ct

ct!
(4)

with ct = 0, 1, 2, · · · ,∞, λ > 0 it the expectation (average number of events per time unit).

Again, the expectation should be expanded by regression. The condition of upper limit is nor

demanded, but the non-negativity remains and is solved in the same way as for logistic regression

- by expanding logarithm of λ instead of λ itself

ln (λ) = xtb = b0 + b1x1 + · · ·+ bmxm.

Thus, for λ we have

λ = exp {xtb} .

The �nal model f (ct|λ) will be (4) with the above substitution - for log-likelihood we express

directly its logarithm

ln {f (ct|b)} = − exp {xtb}+ ctxtb− ln (ct!)

Log-likelihood is

lnLN (b) =

N∑
t=1

[− exp {xtb}+ ctxtb− ln (ct!)]

and it is maximized numerically.

Program to the Poisson regression is here

18

Lecture 6

3 Classical clustering

The task of clustering consists in dividing the data space into several subspaces whose data are

somehow similar. Mostly the similarity is given by the distance of the points. We demand that

the points in a cluster are as close as possible and on the other hand the points between di�erent

clusters are as remote as possible. However, the sorting can be governed also by other rules as

e.g. color or shape of �data points�.

For us the clustering according to the distance will be decisive. The distance is mainly Euclidean

but it can also be some other, like Manhattan or Minkowski ones.

3.1 K-means algorithm

Let us have a data sample X = [x1, x2, · · · , xN] where individual entries are data records (point)

xt = [x1;t, x2;t, · · · , xn;t] , N is total number of data records and n is the number of variables

in the dataset. The algorithm of clustering is as follows

0. Determine the number of clusters ans set their initial centers.

1. Measure the distance from each data point to each cluster center and assign the point to

the nearest center. The points form clusters.

2. Compute the average of points in each cluster and set it as its new center.

3. Check, if the centers changed. If yes, go to 1. If not, the algorithm ends.

x1

x2

x3

x4

x5

C1

C2

x - points, C - centers

d1,1 < d1,2 → x1 belongs to C1

d1,1

d1,2

Program

// K means algorithm

// --

exec SCIHOME/ScIntro.sce, mode(0)

19

x=[1.2 2.5 6.5 7.8 9.3];

c=[5 7];

cOld=c;

printf('d = distance of points from clusters\n')

printf('C = occupancy of clusters\n\n')

for ite=1:10

printf('Iteration ---------- %d\n',ite)

for i=1:2

for j=1:5

d(i,j)=abs(c(i)-x(j));

end

end

d

C=list(); C(1)=[]; C(2)=[];

for j=1:5

[xx,k]=min(d(:,j));

C(k)=[C(k) x(j)];

end

printf('\n (centers: %5.2f %5.2f)\n',c)

C

c(1)=mean(C(1));

c(2)=mean(C(2));

if sum(abs(cOld-c))<.01

break

end

cOld=c;

end

Description of the program

De�nition of the distance

Simulation

Three centers m, standard deviation of data in clusters sd are set. Two dimensional data

generated in loop. In the i-th cluster n (i) data points are simulated.

Algorithm

20

Structure variable C is de�ned. It has items .c0 - initial centers, .c - new centers, .cs - centers

from previous step, .cd - points in a cluster. It runs according to the list above.

3.2 K-medoids algorithm

This algorithm is similar to k-means with the di�erence, that centers (medoids) are always data

points. The algorithm is:

0. Determinemd as the desired number of clusters. Randomly selectmd data points as initial

centers of medoids. The rest are non-medoids.

0. For all medoids and all non-medoids determine distances of points (non-medoids) and

medoids. Overall distance is the sum of all distances.

1. For all medoids and all non-medoids perform:

(a) Experimentally swap medoid and non-medoid and determine overall distance.

(b) For the attempt with minimal overall distance, de�nitely swap the medoid and non-

medoid and continue in the algoritm.

2. If the overall distance after swapping is smaller than the previous one, continue by 1. If

not, iterations end.

3. To each medoid �nd the points (non-medoids) that are closest to it. They will form the

�nal clusters corresponding to individual medoids.

3.3 Fuzzy clustering

C-means algorithm

In the c-means algorithm we minimize criterion

J =

N∑
i=1

C∑
j=1

umij‖xi − cj‖2, m ≥ 1

where uij is a degree of membership of the point xi to cluster cj and ‖ · ‖ is a norm.

The update of weights uij is performed as follows

- determine the centers (follows from minimization of the criterion)

cj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

21

- weights (are given as membership functions)

uij =
1∑C

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(5)

Remarks

1. The formula for cj follows from minimization the criterion J.

2. uij says hoe strongly the point xi belongs to the center cj

3.
‖xi−cj‖
‖xi−ck‖

is the distance of xi from cj relative to the distance of xi from some other center ck.

4.
∑C

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

is the share of the xi to cj distance in total distance of xi from all centers.

Algorithm

0. Set the initial matrix of membership U.

1. Compute the centers cj with existing matrix U.

2. Update the matrix U .

3. If ‖Unová − Ustará‖ < ε, END otherwise go to 1.

Program

// C means algorithm

// --

exec SCIHOME/ScIntro.sce, mode(0)

m=2; // fuzzy coefficient

x=[1.2 2.5 6.5 7.8 9.3] // data

u=[2 2 2 1 1

1 1 1 2 2]; // initial weights

for ite=1:50 // loop of iterations

printf('Iteration -- %d\n',ite)

// construction of centers

c=(u*x')./sum(u,2)

22

// recomputation of weights

uOld=u;

for i=1:2

for j=1:5

s=0;

for k=1:2

s=s+(abs(x(j)-c(i)))**(m/(m-1)); // membership function

end

u(i,j)=1/s;

end

end

u=u./(ones(2,1)*sum(u,1)); // normalization

if sum(abs(u-uOld))<.01 // test for end

break

end

end

printf('\n')

cFinal=c

Program description

Function de�nitions

- CMupdt computes distances of points from centers. First normalizes over clusters and then

over points. Finally creates clusters using the weights un.

- clusters constructs clusters according to the distances dm.

Simulation - standard

Initialization - updating of clusters (new centers)

Iterations - update of clusters (new clusters). Check for end of the algorithm.

Lecture 7

3.4 Density based clustering

Dbscan

We have a set of data X = {x1, x2, · · · , xN} , where xi ∈ Rm

We de�ne:

23

• Distance of two points x and y and denote it by d (x, y) .

• ε-neighborhood of point x

Oε (x) = {x ∈ X : d (x, y) < ε} .

• Inner point is such one that has in its neighborhood at least given number of points.

• A point y is accessible from the point x, if a sequence of inner points from x to y exists.

• A connection between points x a y exists, it both these points are accessible from some

inner point.

Algorithm of clustering

1. For each point from X �nd its ε-neighborhood.

2. De�ne variables �clus� (clusters) and �bu�� (bu�er) for storing points.

3. To �clus� put a single inner point and to �bu�� its neighborhood.

4. Select one point (e.g. the �rst one) from �bu��. Add it to �clus� and its neighborhood add

to �bu��.

5. From �bu�� remove all points that already have been used (those that are in some cluster).

6. Repeat from 4. until �bu�� is empty. Otherwise continue.

7. Remember the created cluster �clus� and empty the variable �clus� for continuation of the

algorithm.

8. If there exists another free inner point, put it to �clus� and go to 4. If not, stop the

algorithm.

Clusters are those remembered from �clus�.

Example 1

X = {1, 2, 3, 5, 6} ε = 1.1.

clus 1 1,2 1,2,3 5 5,6

bu� 2,3 1×,3 6

Clusters are {1, 2, 3} and {5, 6} . �

Example 2

Let us have 10 points as demonstrated in the picture

24

Points are circles and are plotted in a net with unit step. Parameter eps = 1.1, minimum number

of points is mp = 2. Then points

• 3, 4, 8, 9, 10 are inner points

• 2, 5, 6, 7 are border points

• 1 is noise points.

Cluster construction

If the points are two-dimensional, the best way is to draw them in a plane (as in the picture

above) and to select the clusters manually. Start with arbitrary free inner point and add to it

all connected points. Repeat until all points are classi�ed.

Here the result is:

Cluster1 = {2, 3, 4, 5} a Cluster2 = {6, 7, 8, 9, 10}.

The point 1 is noise.

Program for experimentation in Scilab is DM_dbscan.sce

Lecture 8

3.5 Hierarchical clustering

Agglomerative clustering

There is a lot of variations of this method. We will show here one of them which is very simple.

The algorithm is here:

1. All data points are denoted as clusters on the level 1 (with only one point).

25

2. Find two nearest clusters and join them together in one cluster. The level of the cluster

is equal to the number of its points.

3. The position of the new cluster lies between the covered clusters in the ratio of their levels.

The height is equal to the total distance of the covered points.

4. Remember the points (clusters) from which the new one has been created .

5. Repeat from 2 until only one cluster remains.

Example

Let us have points

X = {2.5, 0.9, 2.9, 1.2, 3.8}

i 1 2 3 4 5

xi 2.5 0.9 2.9 1.2 3.8

Perform hierarchical (agglomerative) clustering.

Step 1: Distances

pts 2 3 4 5

1 1.6 0.4 1.3 1.3

2 � 2 0.3 2.9

3 � � 1.7 0.9

4 � � � 2.6

Minimum is 2-4: 0.3; → new point 6={2, 4} weight = 2; position = 0.9+1.2
2 = 1.05

We have

i 1 x 3 x 5 6

xi 2.5 x 2.9 x 3.8 1.05

Step 2: Distances

pts 3 5 6

1 0.4 1.3 1.45

3 � 0.9 1.85

5 � � 2.75

Minimum is 1-3: 0.4; → new point 7={1, 3} weight = 2; position = 2.5+2.9
2 = 2.7

We have

26

i x x 3 x 5 6 7

xi x x x x 3.8 1.05 2.7

Step 3: Distances

pts 6 7

5 2.75 1.1

6 � 1.65

Minimum is 5-7: 1.1; → new point 8={5, 7} weight = 1+2=3; position = 3.8+2·2.7
3 = 3.067

Step 4: The last one: new point 9={6, 8} weight = 2+3 = 5; position = 2·1.05+5·3.067
7 = 2.491

The dendrogram is in the following picture

Remark: The height of the forks is equal to the total distance of th points in the cluster (i.e.

dissimilarity in the cluster). But the vertical distances are not so much important. What is

important is the hierarchy.

Program for experimentation in Scilab: DM_hierAgl.sce

Divisive clustering

In divisive clustering we proceed from top to bottom. We start with one cluster that contains all

data points and subsequently divide clusters so that there would be minimal point distances in

clusters and maximal distances between clusters. For a given de�nition of the distance D (x, y)

we introduce following notions

27

Big cluster CT - is a cluster to be divided.

Left and right cluster CL a CR - clusters created by division

Distance between clusters CL and CR denoted by ILR

Distance inside clusters - UL, UŔ

Distance of the divided cluster - UT = ILR + UL + UR (it is sum of distances from each point

from CL to each point from CR - it is independent on division)

Task: Find CL a CR so that

HLR = (1− α) ILR︸︷︷︸
H1

−α [UL + UR]︸ ︷︷ ︸
H2

→ min

This task is combinatorial and it is np-hard. For its approximative numerical solution we will

use the method called

Avalanche method.

We have a cluster CT (in the beginning the whole data sample), which is to be divided.

We introduce CL as an empty set and CR as the whole cluster CT .

1. In CR we �nd anti-medoid - i.e. the point which is maximally remote from all other points

in the cluster CR.

2. Shift anti-medoid into the cluster CL and compute the value of the criterion HLR.

3. Try to add another point that is closest to the previously added one.

4. If the value of the criterion increases we leave the point in CL and we go to the point 3.

If it dos not increase, the algorithm ends.

Program for experimentation in Scilab: DM_hierDiv.sce

Lecture 9

4 Classical classi�cation
By classi�cation we mean assignment of a data record (point) to some cluster or more clusters

each with its probability. Here, we mostly assume, that clusters have already been created by

some clustering method.

4.1 K-nearest neighbour

It is a basic form of classi�cation.

28

We have data X = {xi}Ni=1 with detected clusters. The task is: assign a newly measured data

point y to some cluster.

The procedure of classi�cation is the following:

1. Compute the distance of the point y from all points from xi ∈ X.

2. Determine k points xi, i = 1, 2, · · · , k nearest to y.

3. Assign y to the cluster to which majority of the k nearest points belongs.

Remark: If there are more than one such cluster, take the �rst of them.

Program for experiments in Scilab is DM_knearest.sce

4.2 Decision tree

Let us have discrete data records xt = [x1, x2, · · · , xn]t , t = 1, 2, · · · , N and a pointer variable

ct ∈ {1, 2, · · · ,m} which is a label of the class (cluster) to which the record xt belongs (learning

with the teacher).

The principle of tree construction is as follows:

We construct a matrix from the data records and add the pointer variable ct as its last column.

We have matrix N × (m+ 1)

X = [xti, ct] , t = 1 : N, i = 1 : m

We chose some variable xi and according to its values we sort the remaining parts of the matrix

into groups. Then, in each group we again select a variable and do the same. We repeat this

procedure until each group contains only the same value of the pointer. If some �nal group has

more than one pointer value, the decision is probabilistic.

It is clear that the subsequent choice of variables is very important for a success of the task.

However, the proper choice is a combinatorial task for which we need to use some heuristic

methods. One of them is illustrated in the following example.

Example

Let us have the following data

t x1 x2 c

1 1 1 1

2 1 2 1

3 2 1 2

4 2 2 2

29

where x1, x2 are data records and c is pointer variable.

It is evident, the variable x1 decides about the classi�cation (on the basis of only the variable x1

we can decide about classes of all records). The tree for the order of variables x1 - x2 is

If we swap the order of variables to x2 - x1 we get the tree longer and more complex

However, both the trees lead to deterministic decision making (the �nal percent are 100%).

If we supply the data by one more record (the last row of the table)

t x1 x2 c

1 1 1 1

2 1 2 1

3 2 1 2

4 2 2 2

5 2 2 1

30

which is in contradiction with the others, the thee will be like this

In the second layer, the decision is probabilistic.. �

Implementation of the task in KNIME

We take an example from web https://tanthiamhuat.�les.wordpress.com/2015/10/decision-tree-

tutorial-by-kardi-teknomo.pdf

Example

The data bring information about the ways in which people go to work.

(6)

31

sex has a car? fare income way

M 0 L N B

M 1 L S B

Z 1 L S V

Z 0 L N B

M 1 L S B

M 0 S S V

Z 1 S S V

Z 1 D V A

M 1 D S A

Z 1 D V A

where �sex�, �car�, �fare� and �income� data records and �way� is a value of the pointer variable.

The values of variables are:

sex: M = man, W = woman;

car: 0 - does not have, 1 - has

fare: L - low, M = medium, H - high;

income: L = low, M = medium, H = high;

way: B - bus, T - train, C - car.

The task is to decide about the way (B, T, C) on the basis of the values in data records.

We are going to show the solution in KNIME.

1. Data can be set into table e.g. in EXCEL and exported as csv table to disk.

2. In KNIME we open a New KNIME work�ow (icon new).

3. In KNIME in the left side there is a window Node Repository (here icons of various tasks

are found).

(a) In IO we �nd Read and File reader and drag it by mouse to the working area. An

icon of the Reader appears. We click on it by left mouse button (or twice by the

right) and we obtain menu Con�guration

32

Here (up) we can set the name of the data csv �le. Most of the rest is set automati-

cally.

But important !!!

• The pointer variable must be set as a string. The rest of variables can stay as

they are.

• Strings are sorted by values the other by intervals.

• The change of the variable type can be done in the menu which can be obtained

by clicking at the title of the variable in the data table below. After a click a

menu window appears in which the type can be selected.

• W click once again at the icon of the task and select Execute (or press F7).

(b) Next, in the window Node Repository open the folder Analytics and Mining and

select the tool Decision Tree Learner, drag it to working area and by mouse connect

it with the Reader (by the black small triangles).

Press F7.

(c) Further, we can choose the tool Decision Tree Prediction, and possibly Decision Tree

to Ruleset. The small triangles are always connected to Reader, small blue rectangles

subsequently with the new tool (they generate the model of the task).

4. The results can be stored by the tool IO/Write/CCVWriter or directly checked by clicking

by the left mouse and opening

in Learner the menu Decision tree view

in Prediction the menu Classi�ed Data

in Ruleset the menu Rules table

The overall view on the task in KNIME is following

33

Remark

If the tree ends prematurely, it is necessary to set Number of records per node = 1 in the menu

Con�gure in the tool Decision Tree Learner. It means that the decision rule can be derived from

only one data record.

The tree is here

34

Lecture 10

4.3 Support vector machines

In this task, we are going to �nd hyperplane in the data space that separates the space into two

sub-spaces, one with y = 1 and second with y = −1. If the points are linearly separable, the

result will be without errors. In addition, we demand so that the hyperplane would separate the

points optimally. It means that the points should lay as far as possible from the hyperplane.

Theory

We will demonstrate the task in a plane (with two variables). The data sample is X =

{x1, x2, · · · , xN} where xi = [x1, x2]i is i-th data record. In this case, the hyperplane will

be a line as indicated in the picture

B+

B−

x1

x2

x1
x3

x4

x5

Here we have a sample of �ve points x1, x2, x3, x4 and x5. The separating line is drawn dashed

and it separates the points whose attributes are �circles� (up the line) and �squares� (down the

line). The attributes can be expressed numerically by 1 and -1 as values of an introduced pointer

variable y

x x1 x2 x3 x4 x5

y 1 -1 1 1 -1

The points with y = 1 form the set B+, those with y = −1 the set B−. So, it is

B+ = {x1, x3, x4} , and B− = {x2, x5} .

The task is to �nd a line which separates the points and maximizes the distance of points from

itself.

Let us denote the separating line as α′x + β = 0. The parallel line above it is α′x + β + δ = 0

and below it α′x+ β − δ = 0 for any δ > 0. All these equations are over-parameterized, i.e. can

be divided by some nonzero number. We will divide them by δ and get

35

separating line

w′x+ b = 0

lines above and below

w′x+ b± 1 = 0

For all x1 above the above line we have the condition

w′x+ b+ 1 > 0

and below the below line the condition is

w′x+ b− 1 < 0.

The second condition can be multiplied by -1

− (w′x+ b) + 1 > 1

and using the fact that yi = −1 for all xi below and yi = 1 for xi above, we have

yi (w′xi + b) + 1 > 0

this single condition for all the points xi (compare the original condition above and the modi�ed

condition below). The equality holds for parallels as borders of the above and below area.

Now, we want the above and below lines would be as far as possible one from the other. The

distance of parallel lines is measured as a distance of intersections of the lines and a vertical to

them. Such a vertical has equation

x = m+ t
w

|w|

where m is a �xed point, x is arbitrary point on the vertical and t is a parameter. |w| is the
length of w and thus w

|w| is a unit vector. In this case the distance of the points x and m is

|x−m| = t
|w|
|w|

= t,

and it is directly equal to t. Now, we choose that x is a point on the parallel and m lies on the

separating line. Then x must ful�ll the equation for the parallel and m for the separating line.

Tu this end we multiply the previous equation by w′, add b to both sides and we obtain

| w′x+ b+ 1︸ ︷︷ ︸
=0 (parallel)

−1− w′m+ b︸ ︷︷ ︸
=0 (separ.)

| = +t
w′w

|w|

36

and the result is

1 = t
w′w

|w|
= t|w|

The distance is

t =
1

|w|

which is to be maximized. From it the task is

|w| → min

on condition that

yi (w′xi + b) + 1 > 0

As both w and b are to be optimized, the task is nonlinear and the solution rather complex.

Program KNIME

Is realized by the following program scheme

Block 1: Reading data.

Block 6: Division of data to learning and training parts.

Block 2: Estimation (learning).

Block 3: Prediction (classi�cation).

Block 15: Frequencies of classi�cation (table: from / to).

Block 16: Write results to disk.

Block in the yellow frame: Show graph of the found clusters .

Remarks

1. The results can be found in the menu which appears after clicking on the task icon.

37

2. The data �le used can be modi�ed directly on disk. If there are new variables (not only

values), it is necessary to perform new Con�guration of the data icon.

3. If the results are stored on disk, we have a possibility to investigate them in some other

program - probably in Excel. To this end it is necessary to:

(a) Set semicolon as data delimiter - in menu menu of the icon of CSV Writer, in the

item Con�gure / Advanced.

(b) In the menu Con�gure / Settings it is good to set Overwrite in the item If �le exists

...

Scatter plot

Table of classi�cations

38

5 Appendix

5.1 Programs in Scilab

Elementary Scilab programs

Contents

6 Simulation and estimation

6.1 Binary model

// model_1.sce

// Estimation of binary model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

p=.3; // model probability

y=(rand(1,nd,'u')>p)+1; // data

// estimation

n=zeros(1,2); // initial statistcs

for t=1:nd

n(y(t))=n(y(t))+1; // statistics update

end

pE=n(1)/sum(n) // point estimates

6.2 Categorical model

// model_2.sce

// Estimation of categorical model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

39

nd=200; // number of data

p=[.3 .1 .6]; // model parameters

for t=1:nd

y(t)=sum(cumsum(p)<rand(1,1,'u'))+1; // data

end

// estimation

n=zeros(1,length(p)); // initial statistics

for t=1:nd

n(y(t))=n(y(t))+1; // statistics update

end

pE=n/sum(n) // point estimates

6.3 Binomial model

// model_3.sce

// Estimation of binomial model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

p=.3; // model parameter

N=5; // maximum value of y

for t=1:nd

y(t)=sum(rand(1,N,'u')<p); // data

end

// estimation

S=0; // intial

ka=0; // statistics

for t=1:nd

S=S+y(t); // update of

ka=ka+1; // statistics

end

pE=S/(N*ka) // point estimates

6.4 Poisson model

// model_4.sce

40

// Esimation of Poisson model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

lam=3; // model parameter

N=100; // length of binomial experiment

p=lam/N; // for generation of Poisson

for t=1:nd

y(t)=sum(rand(1,N,'u')<p); // data

end

// estimation

S=0; // initial

ka=0; // statistics

for t=1:nd

S=S+y(t); // update of

ka=ka+1; // statistics

end

lamE=S/ka // point estimates

6.5 Constant regression model

// model_5.sce

// Estimaion of constant regression model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

m=5; // expectation

r=2; // variance

y=m+sqrt(r)*rand(1,nd,'n'); // data

// estimation

mE=mean(y) // point

rE=variance(y) // estimates

41

6.6 Explanatory regression model

// model_6.sce

// Esimation of explanatory regression model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

c1=2; c2=-3; // regression coefficients

r=.2; // variance

x1=5*rand(1,nd,'n'); // first explanatory variable

x2=ceil(3*rand(1,nd,'u')); // second explanatory variable

y=c1*x1+c2*x2+sqrt(r)*rand(1,nd,'n'); // output

// estimation

for t=2:nd

Y(t,1)=y(t); // computation of Y

X(t,:)=[x1(t) x2(t)]; // computation of X

end

cE=inv(X'*X)*X'*Y // esimate of parametrs

yp=X*cE; // prediction

ep=y'-yp; // prediction error

rE=variance(ep) // estimate of variance

6.7 Dynamic regression model

// model_7.sce

// Estimation of dynamic regression model

// -------------------------------------

clc,clear,close,mode(0)

//simulation

nd=200; // number of data

a1=.6; a2=-.3; b0=1; k=1; // regression coefficients

r=.2; // variance

u=5*sin(2*%pi*(1:nd)/nd)+1; // input

y(1)=2; y(2)=-1; // initial conditions

for t=3:nd

42

y(t)=a1*y(t-1)+a2*y(t-2)+b0*u(t)+k+sqrt(r)*rand(1,1,'n');

end // output

// estimation

V=zeros(5,5); // initial

ka=0 // statistics

for t=3:nd

Ps=[y(t) y(t-1) y(t-2) u(t) 1]'; // extended reg. vector

V=V+Ps*Ps'; //update of

ka=ka+1; // statistics

end

Vy=V(1,1);

Vyp=V(2:$,1);

Vp=V(2:$,2:$);

thE=inv(Vp)*Vyp // pont estimates of rerg. coef.

6.8 Exponential model

// model_8.sce

// Estimation of exponential model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

a=.3; // model parametr

for t=1:nd

y(t)=-log(rand(1,1,'u'))/a; // data

end

// estimation

aE=1/mean(y) // point estimates

6.9 Uniform model

// model_9.sce

// Estimation of uniform model

// -------------------------------------

clc,clear,close,mode(0)

43

// simulation

nd=200; // number of data

L=3; U=5; // parametrs

for t=1:nd

y(t)=L+(U-L)*rand(1,1,'u'); // data

end

// estimation

LE=%inf; // initial

UE=-%inf; // statistics (parameters)

for t=1:nd

if y(t)<LE, LE=y(t); end // statistics

if y(t)>UE, UE=y(t); end // update

end

LE,UE // parameter estimates

7 Initialization

7.1 Binary model

// init_1.sce

// Initialization of coin estimation

// -------------------------------------

clc, clear, close, mode(0);

// simulation

nd=500; // number of data

p=.7 // model parameter

y=(rand(1,nd,'u')>p)+1; // data

// initialization

ka=1; // strength of initialization (counter)

pE=.5; // initial parameter p=P(y=1)

S=ka*[pE 1-pE]; // statistics [numb. of 1, numb. of 2]

// estimation

for t=1:nd

S(y(t))=S(y(t))+1; // statistics

44

ka=ka+1; // update

pE=[pE S(1)/ka]; // estimates

end

// result

plot(0:nd,pE)

7.2 Categorical model

// init_2.sce

// Initialization of categorical model estimation

// - model f(y|x), y=1,2; x=1,2,3

// -------------------------------------

clc, clear, close, mode(0);

// simulation

nd=500; // number of data

px=[.3 .5 .2]; // parameter for x-model

py=[.2 .7 .4 // parameter for y-model

.8 .3 .6];

for t=1:nd

x(t)=sum(cumsum(px)<rand(1,1,'u'))+1; // var. x

y(t)=sum(cumsum(py(:,x(t)))<rand(1,1,'u'))+1; // var. y

end

// initialization

ka=1; // counter

pE=[.3 .7 .2 // initial parametr

.7 .3 .8];

V=pE*ka; // statistics

pEt=pE(1,1);

// estimation

for t=1:nd

V(y(t),x(t))=V(y(t),x(t))+1; // statistics

ka=ka+1; // update

for j=1:max(x)

pE(:,j)=V(:,j)/sum(V(:,j)); // estimates

end

pEt=[pEt pE(1,1)];

45

end

// result

set(scf(),'position',[500 200 500 400])

plot(0:nd,pEt)

disp('simulated parameters')

disp(py)

disp('estimated parameters')

disp(pE)

7.3 Regression model

// init_3.sce

// Initialization of regression model estimation

// - model y = c1.x1 + c2.x2 + c3.x3 + k + e

// - x = m + sd.v (v white noise)

// -------------------------------------

clc, clear, close, mode(0);

// simulation

nd=500; // number of data

m=[2 -1 3]'; // parameters for

sdx=[.5 .1 .3 // x-model

0 .2 .1

0 0 .8];

c=[4 -2 2]; // parameters for

k=5; // y-model

sdy=.7;

for t=1:nd

x(:,t)=m+sdx*rand(3,1,'n'); // data x

y(t)=c*x(:,t)+k+sdy*rand(1,1,'n'); // data y

end

// initialization

// | c |k|

thE=[5 0 1 3]'; // initial parametrs

ka=1; // initial counter

V=eye(5,5);

V(2:$,1)=thE;

46

V(1,2:$)=thE';

V=V*ka; // statistics (rank thE + 1)

tht=thE;

// estimation

for t=1:nd

Ps=[y(t) x(:,t)' 1]'; // extended reg. vector

V=V+Ps*Ps'; // statistics

ka=ka+1; // update

Vy=V(1,1);

Vyp=V(2:$,1);

Vp=V(2:$,2:$);

thE=inv(Vp)*Vyp; // estimates

tht=[tht thE];

end

// results

set(scf(),'position',[500 200 500 400])

plot(0:nd,tht)

title 'Evolution of the estimated parameters'

legend('c1','c2','c3','k');

disp('simulated parameters')

disp([c'; k])

disp('initial parameters')

disp(tht(:,1))

disp('estimated parameters')

disp(thE)

8 Prediction

8.1 Zero-step prediction

Regression model

// pred_1.sce

// Prediction with regression model

// -------------------------------------

clc,clear,close,mode(0)

47

// simulation

nd=200; // number of data

c=[5 3 -1]; // regression coefficients

sd=1.2; // standard deviation

x=[2;-1;3]*ones(1,nd)+.5*(rand(3,nd,'n')); // data x

y=c*x+sd*rand(1,nd,'n'); // data y

select 1 // SELECT type of prediction: 1-point, 2-simulated

case 1 // point prediction

for t=1:nd

yp(t)=c*x(:,t);

end

case 2 // simulated prediction

for t=1:nd

yp(t)=c*x(:,t)+sd*rand(1,1,'n');

end

end

// resulrs

set(scf(),'position',[500 200 500 400])

plot(1:nd,y,1:nd,yp)

legend('y','yp');

disp('Relative prediction error')

disp(variance(y-yp')/variance(y))

Categorical model

// pred_2.sce

// Prediction with categorical model

// -------------------------------------

clc,clear,close,mode(0)

// simulation

nd=200; // number of data

px=[.3 .2 .3 .2]; // pars for model x

py=[.8 .1 .1 .3 // pars for model y

.1 .8 .1 .5

.1 .1 .8 .2];

for t=1:nd

48

x(t)=sum(cumsum(px)<rand(1,1,'u'))+1; // data x

y(t)=sum(cumsum(py(:,x(t)))<rand(1,1,'u'))+1; // data y

end

select 2 // SELECT type of prediction

case 1 // point prediction

for t=1:nd

[nill,yp(t)]=max(py(:,x(t)));

end

case 2 // simulated prediction

for t=1:nd

yp(t)=sum(cumsum(py(:,x(t)))<rand(1,1,'u'))+1;

end

end

// results

set(scf(),'position',[500 200 500 400])

plot(1:nd,y,'o',1:nd,yp,'x')

legend('y','yp');

disp('Accuracy')

disp(sum(y==yp)/nd)

8.2 K-step prediction

Regression model with known parameters

// pred_3.sce

// NP-STEP PREDICTION WITH CONTINUOUS MODEL (KNOWN PARAMETERS)

// Experiments

// Change: - np = number of steps of prediction

// - r = noise variance

// - th = model parametrs

// - u = input signal

// ---

exec("ScIntro.sce",-1),mode(0)

nd=100; // number of data

np=5; // length of prediction (np>=1)

// b0 a1 b1 a2 b2 k

th=[1 .4 -.3 -.5 .1 1]'; // regression coefficients

49

r=.02; // noise variance

u=sin(4*%pi*(1:nd)/nd)+rand(1,nd,'norm'); // input

y(1)=1; y(2)=-1; // prior data

// TIME LOOP

for t=3:(nd-np) // time loop (on-line tasks)

// prediction

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // first reg. vec for prediction

yy=ps'*th; // zero prediction for time = t (np=0)

for j=1:np // loop of predictions for t+1,...,t+np

tj=t+j; // future times for prediction

ps=[u(tj); yy; ps(1:$-3); 1]; // reg.vecs with predicted outputs

yy=ps'*th; // new prediction (partial)

end

yp(t+np)=yy; // final prediction for time t+np

// simulation

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // regression vector for sim.

y(t)=ps'*th+sqrt(r)*rand(1,1,'norm'); // output generation

end

// Results

s=(np+3):(nd-np);

scf(1);

plot(s,y(s),'.:',s,yp(s),'rx')

set(gca(),"data_bounds",[1 nd -3 5])

legend('output','prediction');

title(string(np)+'-steps ahead prediction')

RPE=variance(y(s)-yp(s))/variance(y) // relative prediction error

Regression model with unknown parameters

// pred_4.sce

// N-STEP PREDICTION WITH CONTINUOUS MODEL (WITH ESTIMATION)

// Experiments

// Change: - np = number of steps of prediction

// - r = noise variance (effect on estimation)

// - th = model parametrs

50

// - u = input signal (effect on estimation)

// ---

exec("ScIntro.sce",-1),mode(0)

nd=100; // number of data

np=5; // length of prediction (np>=1)

nz=3; // starting time (ord+1)

// b0 a1 b1 a2 b2 k

th=[1 .4 -.3 -.5 .1 1]'; // regression coefficients

r=.2; // noise variance

u=sin(4*%pi*(1:nd)/nd)+rand(1,nd,'norm'); // input

y(1)=1; y(2)=-1; // prior data

Eth=rand(6,1,'n'); // prior parametrs

nu=zeros(4,2);

for t=nz:(nd-np) // time loop (on-line tasks)

// prediction

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // regression vector

yy=ps'*Eth; // first prediction at t+1

for j=1:np // loop of predictions for t+2,..,t+np

tj=t+j; // future times for prediction

ps=[u(tj); yy; ps(1:$-3); 1]; // reg.vecs with predicted outputs

yy=ps'*Eth; // new prediction (partial)

end

yp(t+np)=yy; // final prediction for time t+np

// simulation

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // regression vector for sim.

y(t)=ps'*th+sqrt(r)*rand(1,1,'norm'); // output generation

// estimation

Ps=[y(t) u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // reg.vect. for estim.

if t==nz, V=1e-8*eye(length(Ps)); end // initial information matrix

V=V+Ps*Ps'; // update of statistics

Vp=V(2:$,2:$);

Vyp=V(2:$,1);

Eth=inv(Vp+1e-8*eye(Vp))*Vyp; // point estimates

Et(:,t)=Eth(:,1); // stor est. parameters

end

51

// Results

disp(' Simulated parameters')

disp(th)

disp(' Estimated parameters')

disp(Eth)

set(scf(1),'position',[100 100 1200 400]);

subplot(121),plot(Et')

set(gca(),"data_bounds",[0 nd+1 -1 2])

title('Evolution of estimated parameters')

subplot(122)

s=(np+3):(nd-np);

plot(s,y(s),'.:',s,yp(s),'rx')

set(gca(),"data_bounds",[1 nd -3 5])

legend('output','prediction');

title([string(np),'-steps ahead prediction'])

Categorical model with known parameters

// pred_5.sce

// PREDICTION WITH DISCRETE MODEL (OFF-LINE)

// Experiments

// Change: - np = number of steps of prediction

// - th1 = model parametrs

// - u = input signal (effect on estimation)

// - uncertainty of the system (effect on estimation)

// ---

exec("ScIntro.sce",-1),mode(0)

nd=50; // length of data sample

np=0; // length of prediction (np>=1)

th1=[0.98 0.01 0.04 0.97]'; // parameters for simulation (for y=1)

th=[th1 1-th1]; // all parameters

u=(rand(1,nd)>.3)+1; // input

y(1)=1;

// SIMULATION

for t=2:nd

i=2*(u(t)-1)+y(t-1); // row of the table

y(t)=(rand(1,1,'u')>th(i,1))+1; // output generation

52

end

// PREDICTION

yy=ones(1,nd); // fictitious predicted output

for t=2:(nd-np)

i=2*(u(t)-1)+y(t-1); // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

for j=1:np

i=2*(u(t+j)-1)+yy; // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

end

yp(t+np)=yy; // np-step predction

end

// Results

disp(th,' Model parameters'), disp(' ')

s=(np+3):nd;

plot(s,y(s),'.:',s,yp(s),'rx')

set(gcf(),'position',[600 100 800 400])

set(gca(),"data_bounds",[0 nd+1 .9 2.1])

legend('output','prediction');

title(string(np)+'-steps ahead prediction')

Wrong=sum(y(:)~=yp(:)), From=nd

Categorical model with unknown parameters

// pred_6.sce

// PREDICTION WITH DISCRETE MODEL (ON-LINE)

// Change: - length of prediction

// - uncertainty of the simulated model

// - imput signal

// - study the beginning when estimation is not finished

// how can we secure quicker transient phase of estimation?

// Remark: another way og generation is

// y(t)=sum(rand(1,1,'u')>cumsum(th(i,:)))+1;

// ---

exec("ScIntro.sce",-1),mode(0)

53

nd=150; // number of data

np=2; // length of prediction

th1=[0.98 0.01 0.04 0.97]'; // parameters (for y=1)

th=[th1 1-th1]; // all parameters

u=(rand(1,nd+np,'u')>.3)+1; // input

y(1)=1;

// TIME LOOP

nu=1e-8*ones(4,2);

Et=zeros(4,nd-np);

for t=2:nd // time loop

// prediction

i=2*(u(t)-1)+y(t-1); // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

for j=1:np

i=2*(u(t+j)-1)+yy; // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

end

yp(t+np)=yy; // np-step predction

// simulation

i=2*(u(t)-1)+y(t-1);

y(t)=(rand(1,1,'u')>th(i,1))+1;

// estimation

i=2*(u(t)-1)+y(t-1); // row of model matrix

nu(i,y(t))=nu(i,y(t))+1; // statistics update

Eth=nu./(sum(nu,2)*ones(1,2)); // pt estimates

Et(:,t)=Eth(:,1);

end

// Results

disp(' Simulated parameters')

disp(th)

disp(' Estimated parameters')

disp(Eth)

s=np+2:np+51;

set(scf(),'position',[100 100 1000 400])

subplot(121),plot(Et')

54

title('Evolution of estimated parameters')

set(gca(),"data_bounds",[0 nd-np+1 -.1 1.1])

subplot(122),plot(s,y(s),s,yp(s),'.:')

title('First 50 outputs and their prediction')

set(gca(),"data_bounds",[s(1) s($) .9 2.1])

s=np+2:nd;

Wrong=sum(y(s)~=yp(s))

From=nd-np

9 Classi�cation

9.1 Known components

// class_1.sce

// Classification with regression components

// - known models of components

// -------------------------------------

clc,clear,close,getd(),mode(0)

// simulation

nd=2000; // number of data

p=[.2 .5 .3]; // pointer parametr

thS=[1 5 3 // model parametrs

1 2 8]; // three clusters: [1 1],[5 2],[3 8]

sd=1.2; // standard deviation

for t=1:nd

c(t)=sum(cumsum(p)<rand(1,1,'u'))+1; // pointer

x(:,t)=thS(:,c(t))+sd*eye(2,2)*rand(2,1,'n'); // data

end

nc=size(thS,2); // number of components

// classification

for t=1:nd

for j=1:nc

q(j)=Gauss(x(:,t),thS(:,j),sd^2*eye(2,2)); // proximity

end

fc=q/sum(q); // pointer distribution

[nill,cp(t)]=max(fc); // pointer value

55

wt(:,t)=fc;

end

// result

Accuracy=sum(c==cp)/nd

9.2 Teacher

// class_3.sce

// Classification in continuous data space

// - learning with a teacher

// - recursive

// -------------------------------------

clc,clear,close,getd(),mode(0)

getd c:\functions // library of functions

// simulation

nL=500; // number of data for learning

nT=200; // number of data for testing

p=[.2 .5 .3]; // pointer model parameters

thS=[1 5 3 // three clusters: [1 1],[5 2],[3 8]

1 2 8]; // two variables (comp. pars)

for t=1:(nL+nT)

y(t)=sum(cumsum(p)<rand(1,1,'u'))+1; // data y

x(:,t)=thS(:,y(t))+.8*eye(2,2)*rand(2,1,'n'); // data x

end

[nv,nc]=size(thS); // numb. of variables and components

// estimation

xL=x(:,1:nL); // data for

yT=y(1:nL); // learning

m=thS+.5*rand(nv,nc); // initial parameters

ka=1*ones(1,nc); // initial counter

S=m.*(ones(nv,1)*ka); // initial statistics

for t=1:nL

for j=1:nc

q(j)=GaussN(xL(:,t),m(:,j),.1); // proximity

end

w=q/sum(q); // weights

wt(:,t)=w;

56

for j=1:nc

S(:,j)=S(:,j)+w(j)*xL(:,t); // statistics

ka(j)=ka(j)+w(j); // update

m(:,j)=S(:,j)/ka(j); // parameter estimates

end

end

// classification

xT=x(:,nL+(1:nT)); // data for

yT=y(nL+(1:nT)); // testing

for t=1:nT

for j=1:nc

q(j)=GaussN(xT(:,t),m(:,j),.1); // proximity

end

fy=q/sum(q); // prediction of the pointer

[nill,yp(t)]=max(fy); // value of the pointer

wt(:,t)=fy;

end

// result

Accuracy=sum(yT==yp)/nT

9.3 Naive Bayes

// class_4.sce

// Classification in continuous data space

// - naive Bayes with teacher

// -------------------------------------

clc,clear,close,getd(),mode(0)

getd c:\functions

// simulation

nL=500; // number of data for learning

nT=200; // number of data for testing

p=[.2 .5 .3]; // parameters for pointer model

thS=[

1 5 3 // parameters for static Gaussian components

1 2 8 // - three clusters, five variables

2 9 5

8 1 3

57

1 9 4];

[nv,nc]=size(thS); // number of variables and comonents

for t=1:(nL+nT)

y(t)=sum(cumsum(p)<rand(1,1,'u'))+1; // target (pointer)

for i=1:nv

x(i,t)=thS(i,y(t))+.2*rand(1,1,'n'); // variables x

end

end

// estimation with teacher (known components)

xL=x(:,1:nL); // data for

yT=y(1:nL); // learning

S=.01*ones(nv,nc); // initial S

ka=.01*ones(nv,nc); // initial kappa

for t=1:nL

j=yT(t); // components from teacher

for i=1:nv

S(i,j)=S(i,j)+xL(i,t); // update of S (sum)

ka(i,j)=ka(i,j)+1; // of ka (count)

m(i,j)=S(i,j)/ka(i,j); // parameters

end

end

// classification

xT=x(:,nL+(1:nT)); // data for

yT=y(nL+(1:nT)); // testing

for t=1:nT

qi=1;

for i=1:nv

for j=1:nc

q(j)=GaussN(xT(i,t),m(i,j),.1); // prox. for i-th variable

end // - q propto f(xi|y)=[f1(xi|y),f2(xi|y)...]

qi=qi.*q; // product for variables

end // - fy propto Prod(f(xi|y))

fy=q/sum(q); // normalization

[nill,yp(t)]=max(fy); // argument maxima = classification

wt(:,t)=fy;

end

// result

58

Accuracy=sum(yT==yp)/nT // num.of positive/num.of all

9.4 Kernel estimation

// class_5b.sce

// Naive Bayes

// - kernel estimation

// - two dimensional normal y

// - comparison of various types of kernels

// -------------------------------------

exec('SCIHOME/ScIntro.sce',-1); mode(0);

// data

est=1; // <-- new estimation 1-yes, 0-no

ik=3; // <-- select type of kernel

if est

nd=200;

th=[2 8

5 1];

sd{1}=[1 .5

-.1 2];

sd{2}=[2 -.5

.2 1];

al=[.6 .4];

for t=1:nd

c(t)=sampCat(al);

y(:,t)=th(:,c(t))+uut(sd{c(t)})*randn(2,1);

end

save yy.dat y c nd

else

load yy.dat y c nd

nL=max(size(y));

end

// classification

select ik

case 0, kr='kerfx'; disp Gauss

case 1, kr='kerfx1'; disp Epanechnikov

case 2, kr='kerfx2'; disp Biweight

case 3, kr='kerfx3'; disp Triweight

59

end

y1=y(:,find(c==1)); // y in class 1

y2=y(:,find(c==2)); // y in class 2

fc(1)=length(y1)/nd; // f(c=1)

fc(2)=length(y2)/nd; // f(c=2)

for i=1:2

r1(i)=variance(y1(i,:)); // varince for kernel 1

r2(i)=variance(y2(i,:)); // varince for kernel 2

end

for t=1:nd // loop for class.

q=ones(2,1);

for i=1:2

execstr('q(1)=q(1)*'+kr+'(y1(i,:),y(i,t),r1(i));') // proximity f(c|y1)

execstr('q(2)=q(2)*'+kr+'(y2(i,:),y(i,t),r2(i));') // proximity f(c|y1)

end

wp=q.*fc;

w=wp/sum(wp); // weight

wt(:,t)=w;

cp(t)=amax(w,'r'); // classif.

end

// results

space

ACC=acc(c,cp)

set(scf(),'position',[500 200 800 300]);

// hist and ker of y1

[f,s]=histc(y1,20,'b',0);

g=s(2)-s(1);

p=f./(sum(f)*g);

subplot(121)

bar(s,p,'c')

[z,x]=kerf(y1,.1,ik);

plot(x,z)

// hist and ker of y2

[f,s]=histc(y2,20,'b',0);

g=s(2)-s(1);

60

p=f./(sum(f)*g);

subplot(122)

bar(s,p,'c')

[z,x]=kerf(y2,.1,ik);

plot(x,z)

9.5 Mixture estimation

// class_6a.sce

// Classification in continuous data space

// - naive Bayes without teacher (= mixture estimation)

// -------------------------------------

clc,clear,close,getd(),mode(0)

getd c:\functions

// simulation

nI=20; // number of initial data

nL=200; // number of data for learninf

nT=200; //number of data for testing

p=[.2 .5 .3]; // pointer parameters

thS=[// model parameters

1 5 3 // three clusters, five variables

1 2 8

2 9 5

8 1 3

1 9 4];

[nv,nc]=size(thS);

for t=1:(nI+nL+nT)

y(t)=sum(cumsum(p)<rand(1,1,'u'))+1; // targer data

for i=1:nv

x(i,t)=thS(i,y(t))+.2*rand(1,1,'n');// explanatory data

end

end

// initiation

xI=x(:,1:nI); // data for

yI=y(1:nI); // init.

ka=1*ones(nv,nc); // counter

for j=1:nc

s=find(yI==j);

61

for i=1:nv

m(i,j)=mean(xI(i,s)); // component expecatations

r(i,j)=variance(xI(i,s)); // component variances

S(i,j)=ka(i,j)*m(i,j); // statistics

end

end

// estimation

xL=x(:,nI+(1:nL)); // data for

yL=y(nI+(1:nL)); // learning

for t=1:nL

for i=1:nv

for j=1:nc

[nill,Lq(j)]=GaussN(xL(i,t),m(i,j),.1); // proximity

end // in logarithm

Lq=Lq-max(Lq); // pre-normaliazation

q=exp(Lq); // log --> value

w=q/sum(q); // weight

for j=1:nc

S(i,j)=S(i,j)+w(j)*xL(i,t); // statistic

ka(i,j)=ka(i,j)+w(j); // update

m(i,j)=S(i,j)/ka(i,j); // estimate

end

end

end

// classification

xT=x(:,nI+nL+(1:nT)); // data for

yT=y(nI+nL+(1:nT)); // classification

for t=1:nT

for i=1:nv

Lp=0;

for j=1:nc

[nill,Lq(j)]=GaussN(xT(i,t),m(i,j),.1); // proximity

end

Lq=Lq-max(Lq);

Lp=Lp+Lq; // sum in log = multiplication

end

62

q=exp(Lp);

fy=q/sum(q); // pointer prediction (= weights)

[nill,yp(t)]=max(fy); // pointe value

wt(:,t)=fy;

end

// result

Accuracy=sum(yT==yp)/nT

10 Functions

10.1 Gaussian pdf

function [p,Lp]=GaussN(x,m,R)

// [p Lp]=GaussN(x,m,R) value of multivariate Gaussian pdf

// p probability

// Lp logarithm of prob.

// x realization

// m expectation

// R covariance matrix

x=x(:); // column vector

m=m(:); // column vector

n=max(size(R));

Lp=-.5*(n*log(2*%pi)+log(det(R))); //pause

ex=(x-m)'*inv(R+1e-8*eye(n,n))*(x-m);

Lp=Lp-.5*ex;

p=exp(Lp);

// pause

endfunction

10.2 Histogram for continuous data

function [f,sm]=histc(x,n,c,r)

// histogram of x (continuous)

// x data

// n number of columns

63

// c color

// r \in (0,1) - width of the columns

if argn(2)<4, r=.8; end

if argn(2)<3, c='b'; end

if argn(2)<2, n=20; end

minx=min(x);

maxx=max(x);

h=(maxx-minx)/(n);

s=minx:h:maxx;

for i=1:n

f(i)=length(find((x>=s(i))&(x<s(i+1))));

end

k=find(x==s(n));

if ~isempty(k)

f(n)=f(n)+length(k);

end

for i=1:n

sm(i)=(s(i)+s(i+1))/2;

end

if r>0, bar(sm,f,r,c); end

endfunction

10.3 Histogram for discrete data

function v=histd(x,s,r)

// v histogram of x (discrete)

// with interupted values on x axis

// x data

// s all points on axis x (incl. zeros before and after)

// r \in (0,1) - width of the columns

if argn(2)<3, r=.8; end

if argn(2)<2

vx=vals(x);

s=vx(1,:);

end

minx=min(s);

maxx=max(s);

v=vals(x);

s=minx:maxx;

h=zeros(s);

64

h(v(1,:)-minx+1)=v(2,:);

bar(s,h,r)

endfunction

10.4 Kernel function

function [z,xx]=kerf(y,h,ik)

// Gaussian kernel density of data y

// r variance

// h step

if argn(2)<2, n=20; end

if argn(2)<3, ik=0; end

mi=min(y);

ma=max(y);

s=mi:h:ma;

xx=min(s):h:max(s);

r=variance(y);

k=0;

for x=xx

k=k+1;

z(k)=0;

select ik

case 0, z(k)=z(k)+kerfx(y,x,r);

case 1, z(k)=z(k)+kerfx1(y,x,r);

case 2, z(k)=z(k)+kerfx2(y,x,r);

case 3, z(k)=z(k)+kerfx3(y,x,r);

end

end

endfunction

10.5 Programs in KNIME

Elementary KNIME programs

65

Generation of data

KNIME: Task00_dataGenerator

66

Logistic regression

KNIME: Task01_Logistic_Regresion

67

11 Clustering

11.1 K-means clustering

KNIME: Task02_k-Means_Clustering

11.2 K-medoids clustering

KNIME: Task03_k-Medoids_clustering

68

11.3 C-means clustering

KNIME: Task04_c-Means_Clustering

69

11.4 DBSCAN - density based clustering

KNIME: Task05_Density_Clustering

70

11.5 Hierarchical clustering

KNIME: Task06_Hierarchical_Clustrig

71

12 Classi�cation

12.1 K-nearest neighbour classi�cation

KNIME: Task07_k-NearNeighb

72

12.2 Decision tree classi�cation

KNIME: Task08_Decision_Tree

12.3 Support vector machine classi�cation

KNIME: Task09_Support_Vec_Mach

73

	Naive Bayes classification
	Preliminaries
	Introduction
	Model generally
	Model for classification
	Classification
	Naive Bayes classification
	Mixture estimation

	Regression
	Logistic regression
	Poisson regression

	Classical clustering
	K-means algorithm
	K-medoids algorithm
	Fuzzy clustering
	Density based clustering
	Hierarchical clustering

	Classical classification
	K-nearest neighbour
	Decision tree
	Support vector machines

	Appendix
	Programs in Scilab

	Simulation and estimation
	Binary model
	Categorical model
	Binomial model
	Poisson model
	Constant regression model
	Explanatory regression model
	Dynamic regression model
	Exponential model
	Uniform model

	Initialization
	Binary model
	Categorical model
	Regression model

	Prediction
	Zero-step prediction
	K-step prediction

	Classification
	Known components
	Teacher
	Naive Bayes
	Kernel estimation
	Mixture estimation

	Functions
	Gaussian pdf
	Histogram for continuous data
	Histogram for discrete data
	Kernel function
	Programs in KNIME

	Clustering
	K-means clustering
	K-medoids clustering
	C-means clustering
	DBSCAN - density based clustering
	Hierarchical clustering

	Classification
	K-nearest neighbour classification
	Decision tree classification
	Support vector machine classification

