How to come from data to CI

Let us have data from $N_x(\mu, \sigma^2)$ where σ^2 is known, we want CI for μ with the sample of the length n.

We start with standard normal distribution of s - standard normal variable

To obtain our data with expectation μ and variance σ^2 we need to use transformation

$$x = \mu + \sigma s \rightarrow \mu = x - \sigma s$$

Then

$$z_{\frac{\alpha}{2}} \to x + \sigma z_{\frac{\alpha}{2}} \text{ and } z_{\frac{\alpha}{2}} \to x - \sigma z_{\frac{\alpha}{2}}$$

and the interval $I_s \to I_x$

$$I_x = \left(x - \sigma z_{\frac{\alpha}{2}}, \ x + \sigma z_{\frac{\alpha}{2}}\right).$$

However, we are not interested in interval for x but in interval for the **parameter** μ with the statistics \bar{x} . That is, we must work with the distribution of the statistics \bar{x} .

We know

$$E\left[\bar{x}\right] = \mu \text{ and } D\left[\bar{x}\right] = \frac{\sigma^2}{n},$$

i.e. we must replace $\sigma \to \frac{\sigma}{\sqrt{n}}$ (*n* is length of the sample). Then the interval I_x becomes the confidence interval $I_{\bar{x}}$

$$I_{\bar{x}} = \left(\bar{x} - \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, \ \bar{x} + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right).$$