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1 Population, sample realization and random sample

Population

By population we mean a source of data (data generator) with some speci�c properties which

are re�ected in the generated data. The properties are expressed in probabilities not values

themselves. E.g. �the probabilities of the generated values are equal on a certain interval�

(uniform distribution) or �the data are generated from a �xed value and are a�ected by many

small independent random errors� (normal distribution) or �only two values are generated with

probabilities p and 1− p� (Bernoulli distribution).

� The population properties are �xed and apply to all generated data.

� The characteristics of population are �xed and they are computed by means of the prob-

ability (density) function by integration or summation over all possible data.

Example

1. Speeds of cars measured in s speci�ed point of the communication.

2. Severity of tra�c accidents in a speci�ed tra�c region.

3. Queue lengths in the arms of a controlled crossroads.

Sample realization

Sample realization is the set of data measured in the generator. It is set of values (vectors).

Thus, the sample is �xed and also its characteristics (mean, variance etc.) are �xed.

� Sample realization is an ordinary dataset.

� Di�erent data samples have di�erent values, because the sampling is random.

Example

1. A set of 50 values of the car speeds measured in a speci�ed point.

2. A set of 25 records with severity of tra�c accidents in a speci�ed region. The severity is:

1 = light accident, 2 = serious accident, 3 = accident with injury or death.

3. A set of 100 vectors of the measured queue lengths in four arms of the crossroads.
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Random sample

Random sample is a vector of equally distributed and independent random variables. The

sample realizations are values of this random vector.

Explanation

The sample realization can theoretically be repeated (even if in practice only one sample realiza-

tion is always taken). When repeated, each sample realization di�ers from� the others (sampling

is random). So, if we take e.g. the �rst position of the sample realization, we obtain di�erent

values in each sample realization. But this variability after each measurement is the main char-

acteristics of a random variable. So, we can say, that in the �rst position of the random sample

is a random variable whose realizations are the �rst numbers in each sample realization. And

the same holds also for the remaining positions of the sample.

Condition �equally distributed� means, that all the measurements are taken always from the

same population (e.g. speed measurements are measured at the same point).

Condition �independent� means that there are no preferences in measurements (e.g. all cars are

measured not only Mercedes and Audi).

Consequence

Characteristics (mean, variance etc.) of random sample are random variables and as such they

have also their characteristics (sample average, sample variance etc.)

Example (turning cars in T-junction)

Situation: Monitoring cars in T-junction at given time with results direction of turning.

Population (random variable): two possible values: 1-turning left, 2-turning right. The proba-

bilities of turning are �xed and given by many circumstances, e.g. size of the regions in left /

right direction, density and composition of population in the areas, workplaces of people from

the regions and many others. These probabilities are not exactly known.

Random sample: measurement of n speeds of randomly chosen cars.

Sample realization: a set of n values taking by measuring the speeds of speci�c cars. Probabilities

can be guessed as fractions of the numbers of cars turning to the left / right divided by the number

of measurements n. They are not exactly the probabilities of the population but they are close to

them.
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2 Data ranks

Ranks of data are their orders in the sorted dataset.

We denote: x - data, s - sorted data, r - ranks.

For the data

x = [x1, x2, x3, x4] = [5.3, 2.8, 4.5, 1.7]

where

x1 = 5.3, x2 = 2.8, x3 = 4.5, x4 = 1.7

Sorted data are

s = [1.7, 2.8, 4.5, 5.3] = [x4, x2, x3, x1]

so the ranks (indexes of the sorted vector) are

r = [4, 2, 3, 1]

Repeated values

If the values of the data repeat, the rank is the average of the position of repeated values. E.g.

for

x = [3, 5, 2, 5, 2, 2]

the sorted data and their indexes i are

s =
[

2, 2, 2, 3, 5, 5
]

i = [1, 2, 3, 4, 5, 6]

So, 2 spread over indexes 1, 2, 3 with the average equal to 2. The value 3 has position 4 and

the average of indexes for 5 is 5.5. The ranks are

r = [2, 2, 2, 4, 5.5] .

Exercise

Determine ranks for

x = [3, 3, 2, 4, 3, 5, 1, 3, 2, 3]

Result

r = [6, 6, 2.5, 9, 6, 10, 1, 6, 2.5, 6]
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Consequence of ranking

1. Transformation of data to their ranks naturally suppresses outliers.

2. Ranks instead of data are frequently used in tests for data which do not come from normal

distribution (nonparametric tests).

Remark

The e�ect of ranking lies in this: A particular type of distribution is characterized by the fact

that its realizations are denser in some areas than in others. It means, that in denser areas

the data points are closer to one another than in others. This means that in more densely

populated areas, data points are closer together than in others. The ranking suppresses these

speci�c distances between data points, and therefore the developed methods are valid regardless

of the type of distribution.
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3 Moments

Moments are important characteristic of data as well as random variables. Moments of data

correspond to measured values which form a sample realization. Moments of random variable

relate to population.

In estimation theory and hypothesis testing, we use measured data to draw inferences about

population parameters. We de�ne statistics, a function of data, whose values point at the esti-

mated parameter. The basic parameters are population characteristics (expectation, variance,

proportion) and the statistics are the corresponding sample characteristics. That is why their

knowledge is very important.

Raw moments (of order r)

Data Continuous r. variable Discrete r. variable
1
n

∑n
i=1 x

r
i

�∞
−∞ xrf (x) dx

∑
xi∈X x

r
i f (xi)

Especially: �rst raw moment is

� sample average

x̄ =
1

n

n∑
i=1

xi

� expectation of continuous variable

E [X] =

� ∞
−∞

xf (x) dx

� expectation of discrete variable

(if xi ∈ {0, 1} we call it proportion)

E [X] =
∑
xi∈X

xif (xi)

Central moments (of order r)

Data Continuous r. variable Discrete r. variable
1
n

∑n
i=1 (xi − x̄)

r �∞
−∞ (x− E [X])

r
f (x) dx

∑
xi∈X (xi − E [X])

r
f (xi)

Especially: second central moment is

� second moment for data

s2 =
1

n

n∑
i=1

(xi − x̄)
2
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sample variance

s2 =
1

n− 1

n∑
i=1

(xi − x̄)
2

which is unbiased estimate of variance

� second moment of continuous variable

D [X] =

� ∞
−∞

(x− E [X])
2
f (x) dx

� second moment of discrete variable

D [X] =
∑
xi∈X

(xi − E [X])
2
f (xi)

Second mutual moment (covariance)

� data covariance
1

n− 1

n∑
i=1

(xi − x̄) (yi − ȳ)

� covariance of continuous variables

� ∞
−∞

� ∞
−∞

(x− E [X]) (y − E [Y ]) f (x, y) dxdy

� covariance of discrete variables∑
xi∈X

∑
yi∈Y

(xi − E [X]) (yi − E [Y ]) f (xi, yi)

Correlation coe�cient

covariance (x, y)√
variance (x) variance (y)

Use in estimation and testing

parameter statistics

expectation → sample average

variance → sample variance

proportion → sample proportion

independence → sample covariance
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4 The statistics for estimation

The �rst thing we need to realize is this:

We have some population described by density (probability) function f (x, θ) with an unknown

parameter θ. What does it mean?

We have some experiment (mostly monitoring some variable on a real system) from which we get

data. The experiment is random and the data are produced according to some inner rule which

is expressed by density (probability) function, speci�cally by the parameter θ. The distribution

is known to us up to the parameter θ - e.g. the distribution is normal with know variance but

the expectation (which is position) is unknown.

Example: We measure speeds of passing cars at a place with speed restricted to 80 km/h. If

we would be able to take into account all cars (in the past, present time and future) we could

construct the density function of the speeds and to determine the real expectation of the random

variable �speed of the passing cars�. But this is only a �ction. We will never be able to do such

monitoring.

So, we have to estimate!

As we have said, the form of th distribution is assumed known (it is the distribution of the

data), only the parameter is unknown and has to be estimated.

Let X be the random variable (experiment from which we get data) and f (x, θ) be its distri-

bution, with θ being an unknown parameter (e.g. expectation) which we want to estimate.

Example: Let the true distribution of the speeds has normal form with expectation µ = 79 and

the variance σ2 = 8. Let us suppose that the expectation can be considered known (it is given

by the restriction) but the variance (which speaks about general keeping the restricted speed) is

unknown and has to be estimated. So the population distribution is f (x, θ) = Nx
(
79, σ2

)
.

How to estimate?

Example: The random variable is just the generator of the data - here Nx (79, 8) . Notice: It is

constant - does not depend on sampling. From it we can take a sample realization: say x = 80,

79, 78, 77, 82. Notice: if we repeat sampling, we surely obtain di�erent sample realization1.

Now, important: The data themselves do not point at the estimated variance. To be able to get

information about the variance from the data, we need to transform them. This transformation

of the data sample gives a function whose values point at the estimated parameter is called

1However, in practice we take only one sample. If we want more data, we add them to the original one. The

repetitive sampling is only theoretical and it shows that the sample realization is only random and instead this

one another sample could have been chosen. That is why the information brought by a sample realization is not

precise.
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statistics. In our case the function will be the sample variance whose general form is

s2 =
1

n− 1

n∑
i=1

(xi − x̄)
2

So, the values of the statistics with the above sample will be

T (x) =
1

5− 1

[
(82− 79)

2
+ (77− 79)

2
+ · · ·+ (82− 79)

2
]

= 9.5,

where 79 is the average. We can see that the value of the statistics is near to the true values of

the population variance (that is 8), even if the values of x themselves are quite di�erent.

Now comes a very important piece of information !!!

As we have already said, if we measure new samples and calculate the sample variance from

each of them, we would get di�erent values of the statistics. And we also said that a variable

that gives di�erent values after each measurement is the random variable. So, in general, the

statistic is a random variable. Its values are its realizations. And because statistics is a random

variable, we can talk about its distribution.

Thus, we have a random variable X (population) from which we measure data xi that form

the sample realization x = [x1, x2, · · · .xn] . The sample is transformed to the statistics T whose

values point at the estimated parameter θ. The estimate of this parameter is simply given by

the statistics with the sample realization substituted θ̂ = T (x). Both, the data generator X

with values x and the statistics T with values t are random variables and have their distribution

f (x) and f (t) . Thus we can determine

� probability that data x are from an interval, say (a, b) is

� b

a

f(x)dx

where distribution of data f (x) is used

� probability that a parameter θ is from an interval, say (c, d) is

� d

c

f (t) dt

where the statistics T with the distribution f (t) is used.

Consequence

The con�dence intervals and tests of hypotheses deal with parameters. they are based on

intervals where the parameters occur with given probabilities. So, their derivations, concerning

critical region or p-value always deal with the distribution f (t) of the statistics T .
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5 Properties of the statistics

De�nition: Statistics is the function of random sample.

It means - statistics T for estimation of parameter θ is a formula which after inserting the sample

realization produces value which is near to the parameter θ.

It should have the following properties

1. Is unbiased

It holds

E (T ) = θ

e.g. for sample average T = x̄ and expectation θ = µ: the average from all possible sample

averages (made from all possible sample realizations) is exactly equal to µ.

2. Is consistent

For unbiased estimate Tn where n is the sample length it holds

lim
n→∞

D [Tn] = 0

i.e. for sample length n going to in�nity the estimate is precise.

For sample average:

lim
x→∞

D (x̄) = lim
x→∞

σ2

n
= 0

3. Is e�cient

For comparison of two unbiased statistics it holds: The statistics with smaller variance is

better (more e�cient).

For sample variance

D [X1] < D [X2]→ σ2

n1
<
σ2

n2

if n1 > n2.
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6 What is p-value

There are two basic ways how express results of testing. They are (i) critical region and realized

statistics and (ii) p-value. The letter is preferred as it expresses also the strength of rejection

(or not rejection).

Basic notions:

The distribution of data is f (x, θ) and point estimate of θ is T which is a function of the sample

x, i.e. x→ T (e.g. x̄ = 1
n

∑
i xi). When we apply this transformation on the data distribution

we get the distribution of the statistics T (which of course also depends on θ)

f (x, θ)→ f (T, θ)

Similarly as for data it holds

� b

a

f (x, θ) dx = P (x ∈ (a, b))

it also holds for the statistics

� d

c

f (T, θ) dT = P (T ∈ (c, d))

and as θ̂ = T the last probability holds also for the estimate θ̂. I.e. the parameter estimates are

located by the distribution of the statistics.

Critical region and realized statistics We construct a con�dence interval corresponding

to the task (parameter, side etc.). The critical region W is a complement of the con�dence

interval. The realized statistics Tr is the value of the statistics with the sample realization

inserted.

Then it holds, if Tr ∈W we reject H0. Otherwise, we do not reject.

Remark

In practice we formally operate with normalized statistics. I.e. for sample average x̄ and right

sided test and known variance we have: Critical region is W = (zα,∞) and the normalized

statistics is Tr = x̄−µ0

σ

√
n

p-value We will show the de�nition and meaning of the pvalue for right-sided test in the

following picture
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Tr

p-value

f(θ̂, θ|H0)

θ

As we have shown, the statistics distribution f (T, θ) depends on the value of the unknown

parameter θ. If we substitute for it the value θ0 according to H0, then the distribution describes

location of the parameter according to H0. The HA (for right-sided test) says that the parameter

is greater than H0 claims. It means, according to H0 the realizations of T , which are point

estimates θ̂ should mostly lie under the peak of the density or to the left. On the other hand, if

HA is valid, they should be somewhere more to the right. From the picture we can see that the

more to the right the statistics lies the smaller is the area under the density and to the right

from the realized statistic Tr.

The p-value is the area under the f (T, θ) from the realized statistics Tr to the right. Its

de�nition is

p-value = P (T > Tr|H0)

And it is clear, that the smaller the p-value is the more strictly we reject the H0.

The above de�nition holds for right-sided test. In the case of left-sided test, the de�nition is

symmetrical

p-value = P (T < Tr|H0)

The case of both-sided test is a bit more complicated. The HA says �is not equal� which mean

is greater or smaller. But our general assumption is that it can be both - sometimes greater and

sometimes smaller. What is re�ected in our sample is accidentally one of these cases. So we

have to compute both the p-values for α/2: right-sided p-valueR and left-sided p-valueL. We

take the smaller one and multiply by 2. So it is

p-value = (p-valueR + p-valueL) /2

If we want to use the con�dence level α we can do it as follows
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If p-value < α, reject H0

Otherwise, do not reject.

13



7 Side of interval or test

H0 always says θ = θ0 where θ0 is the value of the parameter according to H0.

Remark: sometimes we can say e.g. H0: the variance is less than θ0. However, we mean θ = θ0

and we want to stress, that the opposite should be HA: θ > θ0.

HA opposes H0.

The direction is always given by the HA

HA: θ 6= θ0 - both-sided

HA: θ > θ0 - right-sided

HA: θ < θ0 - left-sided.

The only di�culty can be if we test two expectations. Then we must say which sample is �rst

and which is second.

Example

Let A is �rst and B second. What we test is the di�erence between them A - B.

Now if H0 says A ≥ B, then A - B > 0.

HA then is (the opposite), i.e. A - B < 0 and less means left-sided test (see above).
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8 Chi-square test (and its variants)

For discrete or discretized variables.

Statistics

χ2 =
∑ (Oi − Ei)2

Ei
∼ χ2 (ν)

where Oi are observed and Ei are expected absolute frequencies.

p-value

χ2
r

If χ2 = 0, p-value= 1 - VE = 0 nothing is explained.

If χ2 →∞, p-value→ 0 - VU → 0 all is explained.

Use:

� test of variance

� test of independence

This test can be used in several situations:

Goodness of �t test

Here we have one sample from a population and we test if the distribution of the population is

that we assume.

Example for uniform distribution.

We have measured accident in weekdays, Saturday and Sunday. We obtained the following data

day weekdays Saturday Sunday

number of accidents 53 8 12

Test the assertion (H0) that the accidents occur uniformly (each day).

Solution
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The lengths of intervals are: 5, 1, 1. The total number of accidents is 53+8+12 = 63. Number

of days is 7. The number of accidents per 1 day is 63
7 = 9. So the expected (uniform) accidents

should be 5·9 = 45, 9 and 9.

χ2 =
(53− 45)

2

45
+

(8− 9)
2

9
+

(12− 9)
2

9
= 2.53

pv = P
(
χ2 > 2.53

)
= 0.28

We do not reject uniformity.

Test of homogeneity

We have two samples taken from two subgroups of the population. One sample yields O and

the second one E. H0 claims homogeneity of the whole population.

The test follows the previous case.

Test of independence

This test is based of the de�nition of independence

f (x, y) = f (x) · f (y)

Example

We asked people from the North (N) and South (S) about their monthly pay grouped into three

groups (I, II and III). We obtained data

residence/pay I II III

N 53 128 91

S 345 187 69

Test the independence of pays and place of living.

The table is O observed frequency table. The total number of observations is N = 873. The

table of relative frequencies (joint probability function) is

0.061 0.147 0.104

0.395 0.214 0.079
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Marginals (sums over rows and columns)

f (res.) =

[
0.312

0.688

]
and f (pay) = [0.456, 0.361, 0.183]

Their product forms joint probability for independent variables

fn =

[
0.312

0.688

]
[0.456, 0.361, 0.183] =

[
0.142, 0.113, 0.057

0.314, 0.248, 0.126

]

E = fnN =

[
124.00, 98.14, 49.85

273.99, 216.86, 110.15

]

Now, O and E (rearranged to a vector) can be inserted into the criterion and the statistics and

p-value computed.
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9 F test (and its use)

F test is used to compare ratio of two variances

DE

DU
∼ F

where DE is the explained variance and DU is the unexplained variance (the speci�c meaning

of these variance will be explained in the examples bellow).

The F distribution has the following form

p-value

critical F value

H0: nothing is explained. The test is right-sided. With growing explained variance the statistics

grows, too. If the p-value falls below α, H0 is rejected.

ANOVA I

We have data from several sources (populations). We test, if the expectations of the populations

are equal.

The data are x in the following table as absolute frequencies

X1 X2 X3

x x x

x x x

x x x

x̄1 x̄2 x̄3

s2
1 s2

2 s2
3
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We compute averages x̄ and variances D. Then:

� Average of variances s2
i correspond to unexplained variance DU - it describes the overall

variance in the data.

� Variance of the averages x̄i corresponds to explained variance DE - it expresses the

variance between classes.

If the explained variance DE is su�ciently larger with respect to the unexplained one DU then

we conclude that the classes are not equal.

Statistics: F = DE

DU
∼ F distribution (right-sided test)

H0: are equal.

HA: are not equal.

ANOVA II

X1 X2 X3

Y1 x x x ȳ1 s2
y1

Y2 x x x ȳ2 s2
y2

Y3 x x x ȳ3 s2
y3

Y4 x x x ȳ4 s2
y4

x̄1 x̄2 x̄3

s2
x1 s2

x2 s2
x3

Two tests - �rst for columns and second for rows.
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Regression

DU

DE

yi

x

y

ŷi

E[y]

Without the regression assumption, the data are distributed around their mean and their vari-

ance is calculated from that mean. Once the regression assumption is in place, the data should

lie on the regression line and the variation of the predictions on the line and the average value

is explained by the regression assumption. The deviation of the line from the mean constitutes

the explained variance. However, the data do not lie on the line. Their deviations from the line

are not explained and form the unexplained variance.

Statistics

F =
DE

DU

If the unexplained variance is great with respect to the explained one, the value of the statistics

is small and the regression is bad.

If all the variance is explained, i.e. the data lie right on the line, the statistics is small and the

regression is ideal.

Thus H0 says: the regression is bad. If the p-value is small, H0 is rejected and the regression is

good.
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10 Validation in regression analysis

Regression can be viewed as approximation of dependence of y on x from data sample by some

curve - linear, exponential, polynomial etc. However, not each data can be convenient for such

approximation. Here we will discuss this question.

1. Draw xy-graph: ideal, good, possible and no good approximation visually.

2. Pearson t-test of correlation coe�cient

For approximation of a relation between x and y there mus be any relation. Pearson test

can be used.

Pearson t-test has H0: ρ = 0 (no relation), HA: ρ 6= 0 (there is a relation); both sided test

with Student distribution.

For good regression, H0 must be rejected.

3. Fisher F -test of explained and unexplained variance

Regression has sense, it H0 is rejected.

4. Test of independence of residuals

Residuals are deviations of the data from regression line. For correct regression the resid-

uals should be independent. If not, the relations between them could be used to construct

better regression curve.

The test has the statistics

z =
2b− (n− 2)√

n− 1
∼ N (0, 1)

where b is number of sequences (deviations from median with the same sign). H0: is

independence (for z = 0).

5. Test for auto-correlation of residuals

It is a similar test to the previous one. We test if a current residuum ei can be estimated

from the previous one ei−1. We estimate the dynamical regression

ei = aei−1 + b+ εi

If |a| < 0.3 and k → 0, the regression is OK.

6. Standard error of residuals SE

Residuals ei = yi − ŷi are errors of approximation of data with regression curve. The

standard error is de�ned as

SE =
var (e)

var (y)
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which is variance of prediction error ei relative to variance of dependent variable yi.

The smaller the errors are, the better approximation. At least it should be smaller than

1.

22


	Population, sample realization and random sample
	Data ranks
	Moments
	The statistics for estimation
	Properties of the statistics
	What is p-value
	Side of interval or test
	Chi-square test (and its variants)
	F test (and its use)
	Validation in regression analysis

