STATISTICS: HOME-TEST TO EXAM

1 Data

1. The data have been measured

$$
\{4,3,2,3,4,2,3,3,1,3,4,3,5,2,4,4,3,2,1,5,3,2,3,5,2,1,3,2,3,2\}
$$

a) Write them in the form of different values and frequencies.
b) Compute: average, variance, mode and median
$\left[\begin{array}{|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 & 5 \\ \hline 3 & 8 & 11 & 5 & 3 \\ \hline\end{array}, \bar{x}=2.6, s^{2}=1.223, \hat{x}=3, \tilde{x}=3\right]$
2. For data

$$
\{50,13,21,77,49,4,22,15,31,63\}
$$

determine ranks.
[sorted: $4,13,15,21,22,31,49,50,63,77$, ranks: $8,2,4,10,7,1,53,6,9$]
3. Draw scatter plot for the data

$$
\begin{array}{l|lllll}
x & 5 & 3 & 2 & 3 & 1 \\
\hline y & 3 & 1 & 2 & 5 & 4
\end{array}
$$

and guess, if they are suitable for liner regression.

2 Probability

1. What is the sample space for experiment "flipping two coins" with head $=1$ and tail $=$ 0 if a) we distinguish the coins and b) we do not distinguish the coins and c) determine probabilities of the results.
$\left[\{[0,0],[0,1],[1,0],[1,1]\} ;\{[0,0],[0,1],[1,1]\} ; \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} ; \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right]$
2. Determine conditional probability $f(A \mid B)$ for the experiment throwing a dice, if A is "even number" and B is a) "greater than 3 ", b) "less then 4 ", c) "less or equal to 4 ". Explain the difference.

$\left[\frac{2}{3}, \frac{1}{3}, \frac{1}{2}\right]$

3. Probability $P(A \mid B)$ is equal to 0.8 and $P(B)$ is 0.3 . What is the probability $P(A, B)$? [0.24]

3 Random variable

1. The random variable X has distribution function

$$
F(x)=k \cdot x, x \in(0,10)
$$

a) Determine the constant k.
b) Calculate the probability $P(x \leq 3)$.
[$k=\frac{1}{10}, P=\frac{3}{10}$
2. Given the density function

$$
f(x)=\frac{1}{\delta} \exp \left(-\frac{x}{\delta}\right), x \in(0, \infty)
$$

and δ is non-negative constant. Determine:
a) Distribution function,
b) expectation
c) median,
d) probability $P(x>5)$.
$\left[F=1-\exp \left(-\frac{x}{\delta}\right), E[X]=\delta\right.$, median $\left.=-\delta \exp (0.5), P=1-\exp \left(-\frac{5}{\delta}\right)\right]$
3. For discrete random variables $X \in\{1,2\}$ and $Y \in\{1,2\}$ for which

$$
\begin{aligned}
& P(X=1, Y=1)=0.3, P(X=1, Y=2)=0.1 \\
& P(X=2, Y=1)=0.2, P(X=2, Y=2)=0.4
\end{aligned}
$$

determine $f(x \mid y)$.
$\left[f(x \mid y)=\left[\begin{array}{ll}0.6 & 0.2 \\ 0.4 & 0.8\end{array}\right]\right]$

4 Distributions

1. Write probability function of random variable X with Poisson distribution with parameter λ and for $\lambda=4$ determine probability $P(X>3)$.
$\left[f(x)=\exp (-\lambda) \frac{\lambda^{x}}{x!} ; P=1-0.433=0.567\right]$
2. Write density function of standard normal distribution and determine its expectation, variance and standard deviation.
$\left[f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right), \mu=0, \sigma^{2}=1\right]$

5 Statistical inference

1. Write formulas for expectation of sample average and variance. Explain their meaning. [$E[\bar{X}]=\mu, D[\bar{X}]=\frac{\sigma^{2}}{n}$] for n growing grows accuracy of estimation]
2. A population has normal distribution with expectation 120 and variance 16. a) Write distribution of sample average with sample length equal to 100 .
b) What can you say about this distribution if the distribution of the population is not normal?
[$f(\bar{x})=\frac{1}{\sqrt{2 \pi \cdot 0.16}} \exp \left(-\frac{1}{2} \frac{(x-120)^{2}}{0.16}\right)$, it will be normal as $n=100$ is sufficiently large]
3. Write statistics for point estimate of exponential distribution.
$\left[\bar{\delta}=\bar{x}\right.$ or $\left.\bar{a}=\frac{1}{\bar{x}}\right]$
4. a) Write definition of unbiased point estimate.
b) Show that sample average is unbiased point estimate of expectation.
$[E[T]=\theta, E[\bar{X}]=\mu]$

6 Confidence intervals

1. Flour is sold in kilogram packs. Inspectors checked their weight each day for one year. From the measurements they calculated average 1.05 kg and variance $0.03 \mathrm{~kg}^{2}$. Determine the weight interval in which a newly purchased package of flour will lie with a probability of 10%.
$[I=(1.035,1.065)]$
2. From normal distribution the following set of data has been measured
$\{5.2,7.7,3.6,6.8,7.2,4.3,5.1,7.8\}$

Determine confidence interval for 5%
[$I=(4.61,7.31)]$

$7 \quad$ Statistical testing

1. In two classes, A and B, a mathematics test was written. Tests were scored (more points, better score). The scores obtained are in the following table

$$
\begin{array}{ccccccccccccc}
\mathrm{A} & 8 & 9 & 8 & 8 & 9 & 5 & 10 & 9 & 7 & 6 & 6 & 9 \\
\mathrm{~B} & 5 & 9 & 10 & 10 & 10 & 8 & 9 & 8 & 8 & 9 & &
\end{array}
$$

At the level 5% test zero hypothesis H0: The results in math are better in the class A. [left, pv=0.126, do not reject]
2. One class took an English test at half-term and the same pupils took a similar test at the end of the year. The scores (more is better) for the students who were just shy are in the table below

Pupil	1	2	3	4	5	6	7	8	9	10	11	12
Half-term	6	9	8	7	9	5	4	6	5	7	7	6
End	6	8	9	9	7	6	4	5	6	8	6	7

At the level 5% test zero hypothesis H0: Pupils improved towards the end of the year. Test it under assumption:
a) The data come from the normal distribution.
b) Normal distribution cannot be assumed.
[a) left, $\mathrm{pv}=0.319 ;$ b) $\mathrm{pv}=0.323$]
3. One class took an English test and then the students took an intensive course in English. After that, a new test was written by the same pupils. In the tests, the pupils either succeeded (1) or failed (0). The results are in the table below

Pupil	1	2	3	4	5	6	7	8	9	10	11	12
1st test	1	1	0	1	1	0	0	1	0	1	1	0
2nd test	1	1	1	0	0	0	1	1	0	1	1	1

At the level 5% test zero hypothesis H 0 : Intensive course had an effect. [make contingency table, $\mathrm{pv}=0.655$]
4. In four periods: in winter - 2 weeks, in spring - 5 weeks, in summer - 3 weeks and in autumn -6 weeks, traffic violations were recorded at a certain location. The measured values are shown in the table below

winter	spring	summer	autumn
8	35	9	31

At the level 5% test zero hypothesis H 0 : The violations occur uniformly.
[$E=10.375,25.9375,15.5625,31.125 ; \mathrm{pv}=0.09]$
5. Five racing motorcycles were tested on the track. Each motorcycle was driven around the track five times and timed. The results are in the table

bike	1	2	3	4	5
time 1	128	112	135	108	122
time 2	122	120	124	109	120
time 3	125	111	131	112	125
time 4	131	115	130	105	121
time 5	124	118	137	119	117

At the level 10% test H 0 : the performance of the racing motorcycles is the same:
a) assuming normality,
b) not assuming normality.
[anova, $\mathrm{pv}=0.973$; kruskal-wallis, $\mathrm{pv}=0.986$]
6. The profits of a particular firm in a given years were

year	2005	2010	2012	2015	2018	2021	2022	2023
profit [thous. \$]	510	540	520	560	570	560	590	630

a) Perform (i) linear, (ii) exponential, (iii) quadratic regression and write p-values.
b) Decide which regression is best.
c) Determine trend of the profits (rising or falling).
$\left[\mathrm{pv} 1=0.004, \mathrm{pv} 2=0.0032, \mathrm{pv} 3=0.0166 ;\right.$ second is best; rising $\left.b_{1}>0\right]$

