Guide for MMA (STS) - Winter 2020

1. Introduction

- (a) Basic information about the subject
- (b) Probability notions

Random variable, vector; Distribution (joint, marginal, conditional); Independence; Basic characteristics; Random process; Categorical, normal distribution

- (c) System model
- (d) Differential equations

First and second order equation; Solution; Discretization

2. Model

(a) Regression model

Equation; Normal regression model

- (b) Regression model in a state form
- (c) Discrete model

Definition; Model matrix; Examples of discrete model; Generation in Scilab

(d) Logistic model

Definition; Logistic function

3. Estimation (I)

(a) Bayes rule

Basic notions; Types of distributions (prior, posterior, model)

(b) Application of Bayes rule

Remarks to estimation: Natural conditions of control; Batch estimation; Self-reproducing prior; Results of estimation

4. Estimation (II)

(a) Regression model

Model; Prior pdf; Posterior; Statistics; Recursion for statistics; Results of estimation

(b) Batch estimation of regression model

5. Estimation (III)

(a) Categorical (discrete) model

Model; Prior pdf; Posterior; Statistics; Recursion for statistics; Results of estimation

(b) Logistic regression

Model; Likelihood

6. Prediction (I)

(a) Definition of k-step prediction

(b) Prediction with regression model

Zero step prediction

Predictive pdf; Point prediction

One step prediction

Predictive pdf - construction

7. Prediction (II)

Multi step point prediction

Full prediction with normal regression model

(a) Prediction with discrete model

Zero step prediction

Multi step prediction for model with square matrix

8. State estimation (I)

(a) State-space model

Model in pdf; Model equations

(b) State estimation in pdf

State description; Evolution of state description

(c) Kalman filter

9. State estimation (II)

(a) Nonlinear state-space model

Linearization; Parameter matrices of linearized model

(b) Model with unknown parameter

10. Control (I)

- (a) Control interval
- (b) Criterion on control interval

Penalization of y^2 , only; One step control; Penalization $y_t^2 + \omega u_t^2$ or $y_t^2 + \lambda (u_t - u_{t-1})^2$; Multi step control

(c) Bellman equations

11. Control (II)

- (a) Control algorithm for regression model
- (b) Control with categorical model

12. Adaptive control

Optimality; Receding horizon