
A Short Introduction to Scilab

Terence Leung, Tsing Nam Kiu

26 August 2006

1 About Scilab

Scilab is a freely distributed open source scientific
software package, first developed by researchers from
INRIA and ENPC, and is now developed by the
Scilab Consortium. It is similar to Matlab, which
is a commercial product. Yet it is almost as powerful
as Matlab. Scilab consists of three main components:

• an interpreter,

• libraries of functions (Scilab procedures),

• libraries of Fortran and C routines.

Scilab is specialized in handling matrices (basic
matrix manipulation, concatenation, transpose, in-
verse, etc.) and numerical computations. Also it has
an open programming environment that allows users
to create their own functions and libraries.

For more information and documentation, you may
visit the Scilab homepage:

http://www.scilab.org

2 Installation and Execution of
Scilab

First, you must have the software. To obtain one,
go to the download section in the Scilab homepage.
Find a right version for your operating system (plat-
form) and then click to download. Please download
the installer for binary version. Then double click the
downloaded file and follow the instructions to com-
plete the installation.

To execute Scilab, type scilex in the command
prompt in the folder bin under the installation di-
rectory or click the shortcut in the start menu if you
use Windows. Type exit or close the window of the
main program to exit.

3 Documentation and Help

To find the usage of any function, type help func-
tion name, for example: help sum. If you want
to find functions that you do not know, you can just

type help and search for the keywords of the func-
tions. Finally, if you want more information, you can
visit the Scilab homepage. There is a section called
documentation. It is very resourceful.

4 Scilab Basics

4.1 Common Operators

Here is a list of common operators in Scilab:

+ Addition
− Subtraction
∗ Multiplication
/ Division
ˆ Power
’ Complex conjugate transpose

4.2 Common Functions

Some common functions in Scilab are: sin, cos, tan,
asin, acos, atan, abs, min, max, sqrt, sum. E.g., when
we enter:

sin(0.5)
then it displays:
ans: =

0.4794255
Another example:
max(2, 3, abs(-5), sin(1))
ans: =

5.

4.3 Special Constants

We may wish to enter some special constants like, i (
sqrt(−1)) and e. It is done by entering %pi, %i and
%e respectively. There are also constants %t (true)
and %f (false) which are Boolean variables. Boolean
variables would be introduced later.

4.4 Data Structures

Scilab supports many data structures. Examples
are: usual (real or complex matrices), polyno-
mial, Boolean, string, function, list, tlist, sparse,
library. Please read Scilab documentation for de-
tails. To query for the type of an object, type:
typeof(object).

1

4.5 Strings

To enter strings, enclose the string with either sin-
gle or double quotations. For example: ‘ This is a
string’ or “this is also a string”.

To concatenate strings, use the operator + :
“Welcome ” + “to ” + “Scilab!”
ans: =

Welcome to Scilab!
There are some basic string handling functions

such as strindex, strsplit, strsubst and part.
Please refer to Scilab’s documentation for details.

4.6 Saving and Loading Variables

To save and load variables, we use save and load func-
tions:

save(‘file name’, var1, var2, . . .);
load(‘file name’, ‘var1’, ‘var2’, . . .);
where file name is the name of the file to be saved

or loaded, and var1, var2, . . . are names of variable.
Notice that the variable name must match the

name when it is to be saved. Here are some illus-
trations.

a = 3; b = %f; s = ‘scilab’;
save(‘save.dat’, a, b, s);
clear a; // delete the variable a
clear b;
clear s;
load(‘save.dat’, ‘a’, ‘b’, ‘s’);
// load all the saved variables

load(‘save.dat’,‘b’);
// It loads only variable b, but not
// variable a in the name of b

load(‘save.dat’,‘d’);
// It will not show any error messages.
// Variable d is undefined, not empty.

listvarinfile(“save.dat”);
// list variables in a file saved by
// the function save
Name Type Size Bytes
a constant 1 by 1 24
b boolean 1 by 1 20
s string 1 by 1 44

5 Dealing with Matrices

5.1 Entering Matrices

There are many ways to enter a matrix. Here is the
simplest method:

1. separate each elements in a row using a blank
space or a comma;

2. separate each row of elements with a semi-colon;

3. put the whole list of elements in a pair of square
brackets.

For example, we wish to enter a 3 × 3 magic square
and assign to the variable M .

M = [8 1 6; 3 5 7; 4 9 2]
M =

8. 1. 6.
3. 5. 7.
4. 9. 2.

5.2 Calculating Sums

For a magic square, we wish to check for its column
sums and row sums and the sum of diagonals. This
is done by entering:

sum(M,‘c’)
ans: =

15.
15.
15.

sum(M,‘r’)
ans: =

15. 15. 15.
The sum of the main diagonal is easily done with

the help of the function diag.
diag(M)
ans: =

8.
5.
2.

5.3 Subscripts

It is a bit more difficult to find the sum of the other
diagonal. We will show two ways to accomplish it.
One method is to find the sum manually, i.e., to read
the appropriate elements and then to sum them up.

M(1,3) + M(2,2) + M(3,1)
ans: =

15.
It is possible to access elements in a matrix us-

ing a single index. This by treating a matrix as a
long vector formed by stacking up the columns of the
matrix. E.g.: M(1) = 8, M(2) = 3, M(3) = 4,
M(4) = 1, M(5) = 5,

Accessing out-of-bound elements will result in an
error, like entering:

M(3,4)
!–error 21

invalid index
A smarter way to get the sum of the other diagonal

is to use the function mtlb fliplr, where mtlbstands
for Matlab. It is to flip a matrix left-to-right (lr):

2

mtlb fliplr(M)
ans: =

6. 1. 8.
7. 5. 3.
2. 9. 4.

The desired result would be obtained by typing:
sum(diag(mtlb fliplr(M))).

5.4 The Colon Operator

The colon operator is one of the most important op-
erators in Scilab. The expression 1:10 results in a
row operator with elements 1, 2, . . . , 10, i.e.

1:10
ans: =

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
To have non-unit spacing we specify the increment:

10 : -2 : 2
ans: =

10. 8. 6. 4. 2
Notice that expressions like 10:-2:1, 10:-2:0.3

would produce the same result while 11:-2:2 would
not.

Subscript expressions involving colons refer to
parts of a matrix. M(i:j, k) shows the i-th row to
j-th row of column k. Similarly,

M(3,2:3)
ans: =

9. 2.
Some more examples:

M(3,[3,2])
ans: =

2. 9.

M([2,1], 3:-1:1)
ans: =

7. 5. 3.
6. 1. 8.

The operator $, which gives the largest value of an
index, is handy for getting the last entry of a vector
or matrix. For example, to access all elements except
the last of the last column, we type:

M(1:$-1, $)
We sometimes want a whole row or a column. For

example we want all the elements of the second row
of M. We enter:

M(2,:)
ans: =

3. 5. 7.
Now we have a new way to perform operations like

mtlb fliplr(M). It is done by entering M(:, $:-1:1).
However the function mtlb fliplr(M) would obtain
result faster (in computation time) than using the
subscript expression.

5.5 Simple Matrix Generation

Some basic matrices can be generated with a single
command:

zeros all zeros
ones all ones
eye identity matrix (having 1 in the

main diagonal and 0 elsewhere)
rand random elements (follows either

normal or uniform distribution)

Some illustrations:
zeros(2,3)
ans: =

0. 0. 0.
0. 0. 0.

8 * ones(2,2)
ans: =

8. 8.
8. 8.

eye(2,3)
ans: =

1. 0. 0.
0. 1. 0.

rand(1,3,‘uniform’) // same as rand(1,3)
ans: =

0.2113249 0.7560439 0.0002211

5.6 Concatenation

Concatenation is the process of joining smaller size
matrices to form bigger ones. This is done by putting
matrices as elements in the bigger matrix:

a = [1 2 3]; b = [4 5 6]; c = [7 8 9];
d = [a b c]
d =

1. 2. 3. 4. 5. 6. 7. 8. 9.

e = [a; b; c]
e =

1. 2. 3.
4. 5. 6.
7. 8. 9.

Concatenation must be row/column consistent:
x = [1 2]; y = [1 2 3];
z = [x; y]

!–error 6
inconsistent row/column dimensions
We can also concatenate with block matrices, e.g.:
[eye(2,2) 5*ones(2,3); zeros(1,3) rand(1,2)]
ans: =

1. 0. 5. 5. 5.
0. 1. 5. 5. 5.
0. 0. 0. 0.6525135 0.3076091

Remember that it is an error to access out-of-
bound element of a matrix. However, it is okay to
assign values to out-of-bound elements:

3

M = matrix(1:6, 2, 3); M(3,1) = 10
M =

1. 3. 5.
2. 4. 6.
10. 0. 0.

It is remarked that this method is slow. If the size
of the matrix is known beforehand, we should use
pre-allocation:

M = zeros(3,3); // pre-allocation
M([1 2], :) = matrix(1:6, 2, 3);
M(3,1) = 10;

5.7 Deleting Rows and Columns

A pair of square brackets with nothing in between
represents the empty matrix. This can be used to
delete rows or columns of a matrix. To delete the 1st
and the 3rd rows of a 4x4 identity matrix, we type:

A = eye(4,4);
A([1 3],:) = []
A =

0. 1. 0. 0.
0. 0. 0. 1.

If we delete a single element from a matrix, it results
in an error, e.g.:

A(1,2) = []
!–error 15

submatrix incorrectly defined
If we delete elements using single index expression,
the result would be a column vector:

B=[1 2 3; 4 5 6];
B(1:2:5)=[]
B =

4.
5.
6.

5.8 Matrix Inverse and
Solving Linear Systems

The command inv(M) gives the inverse of a matrix
M. If the matrix is badly scaled or nearly singular, a
warning message will be displayed:

inv([1 2;2 4.0000001])
warning
matrix is close to singular or badly scaled.
rcond = 2.7778D-09
ans: =

40000001. - 20000000.
- 20000000. 10000000.

inv([1 2;2 4])
!–error 19

Problem is singular
Solving a system of linear equations Ax = b, i.e.,

to find x that satisfies the equation, when A is a
square, invertible matrix and b is a vector, is done in
Scilab by entering A \ b :

A = rand(3,3), b = rand(3,1)
A =

0.2113249 0.3303271 0.8497452
0.7560439 0.6653811 0.6857310
0.0002211 0.6283918 0.8782165

b =
0.0683740
0.5608486
0.6623569

x = A \ b
x =

- 0.3561912
1.7908789

- 0.5271342
Another method is to type inv(A) * b. Although

it gives the same result, it is slower than A \ b be-
cause the first method mainly uses Gaussian Elimi-
nation which saves some computation effort. Please
read the Scilab help file for more details about the
slash operator when A is non-square.

A / b solves for x in the equation: xb = A.

5.9 More on Handling Matrices

To add 4 to each entry of a matrix M, using M + 4
* ones(M) is correct but troublesome. Indeed this
can be done easily by M + 4. Subtraction of a scalar
from a matrix entry-wise is done similarly.

Multiplying 2 to the second column and 3 to the
third column of M can be achieved by using the entry-
wise multiplication operator .* : M .* [1:3; 1:3].

Entry-wise arithmetic operations for arrays are:

+ Addition
− Subtraction
.∗ Multiplication
.̂ Power
. / Right division
. \ Left division

To enter the matrix M = [1 2 3 4 5; 6 7 8 9 10],
one may use:

M = zeros(2,5);
M(:) = 1:10
Yet an almost effortless method is to use the func-

tion matrix, which reshapes a matrix to a desired
size.

M = matrix(1:10,2,5)
How to enter N = [1 2; 3 4; 5 6; 7 8; 9 10] eas-

ily? Hint: think of some simple operations on a ma-
trix.

A handy function in Scilab called size returns the
dimensions of the matrix in query:

size(M)
ans: =

2. 5.

4

while size(M,1) and size(M,2) return 2 (number
of rows) and 5 (number of columns) respectively.

6 More About Command Line

Entering a semi-colon at the end of a command line
suppresses showing the result (the answer of the ex-
pression). One example was from the section on Con-
catenation:

a = [1 2 3]; b = [4 5 6]; c = [7 8 9];
It suppresses the showing of variables a, b and c.

A long command instruction can be broken with
line-wraps by using the ellipsis (. . .) at the end of
each line to indicate that the command actually con-
tinues on the next line:

s = 1 -1/2 + 1/3 -1/4 + 1/5 - 1/6 + 1/7 ...
- 1/8 + 1/9 - 1/10 + 1/11 - 1/12;

Are there any ways to calculate the above expres-
sion more easily? A solution is:

s = sum((1:2:12) .\ 1) - sum((2:2:12) .\ 1)
s = sum(1 ./ (1:2:12)) - sum(1 ./ (2:2:12))
Note that 1./1:2:12 is interpreted as

(1.)/(1:2:12). Similarly, 1:2:12.\1 is interpreted as
1:2:(12.)\1.

Using the up and down arrow in the command line
can recall previous commands.

7 The Programming Environ-
ment

7.1 Creating Functions

Scilab has an open programming environment that
enables users to make their own functions and li-
braries. It is done by using the built-in editor called
SciPad. To call the editor, type scipad() or edi-
tor(), or click Editor at the menu bar.

The file extensions used by scilab are sce and sci.
To save a file, click for the menu File and choose Save.
To load a file, choose Load under the same menu. To
execute a file, type exec(‘function file name’); in
the command line or click for load into Scilab under
the menu Execute.
To begin writing a function, we type:

function[out1 out2,. . .]=name(in1 in2,. . .)
where function is a keyword that indicates the start of
a function, out1, out2,. . . and in1, in2,. . . are vari-
ables that are output and input of the function re-
spectively, the variables can be Boolean, numbers,
matrices, etc, and name is the name of the function.
Then we can enter the body of the function. At the
end, type

endfunction
to indicate the end of the function. Comment lines
begin with //. A sample function is given as below:

function [d] = distance(x, y)
// this function computes the distance
// between the origin and the point (x, y)

d = sqrt(xˆ2 + yˆ2);

endfunction
Unlike Matlab, Scilab allows multiple function dec-

laration (with different function names) within a sin-
gle file. Also Scilab allows overloading (it is not rec-
ommended for beginners). Please refer to the chapter
overloading in its help file for details.

7.2 Flow Control

A table of logical expressions is given below:

== equal
∼= not equal
>= greater than or equal to
<= less than or equal to
> greater than
< less than
∼ not

If a logical expression is true, it returns a Boolean
variable T (true), otherwise F (false).
The if statement: It has the basic structure:

if condition
body

end
The body will be executed only when the condition
statement is true. Nested if statements have the
structure:

if condition1
body1

elseif condition2
body2

elseif conditon3
body3

elseif . . .
end

For example,
s = input(’please input a number’)
// ask for a number and store in s
if s > 0

disp(‘It is positive.’);
elseif s < 0

disp(‘It is negative.’);
else

disp(‘It is not a positive...
or negative number.’);

end
The for loop: It has the basic structure:

for variable = i : step : j
body
end

5

The loop will be executed a fixed number of times
specified by the number of elements in the array vari-
able. A slightly modified version is:

str = ‘abcdr’;
s = ‘’; // an empty string
for i = [1 2 1 3 1 4 1 2 5 1]

s = s + part(str, i);
end
disp(s); // s = abacadabra

The while loop: It has the basic structure:
while condition
body

end

The loop will go on as long as the condition state-
ment is true. Here we give an example of the Eu-
clidean Algorithm.

function [n1] = hcf(n1, n2)
// n1 and n2 are positive integers

if n2 > n1
tem = n2; n2 = n1; n1 = tem;
// to ensure n1>=n2

end

r = pmodulo(n1, n2);
// remainder when n2 divides n1

n1 = n2; n2 = r;

while r ∼= 0
r = pmodulo(n1, n2);
n1 = n2; n2 = r;

end

endfunction

The break and the continue commands: To end
a loop and to immediately start the next iteration,
respectively. For example:

// user has to input 10 numbers and for
// those which are integers are summed up,
// the program ends prematurely once a
// negative number is entered
result = 0;
for i = 1:10
tem = input(’please input a number’);
if tem < 0
break;

end
if tem ∼= int(tem) //integral part
continue;

end
result = result + tem;

end
disp(result);
// It is not well written, just to
// illustrate the use of the two commands

7.3 Some Programming Tips

The concept of Boolean vectors and matrices is im-
portant. The function find is useful too. It reports
the indices of true Boolean vectors or matrices. For
example:

M = [-1 2; 4 9]; M > 0
ans: =

F T
T T

M(M>0)’
ans: =

4. 2. 9.
In contrast,

find(M>0)
ans: =

2. 3. 4.
M(find(M>0))’
ans: =

4. 2. 9.
We remark that M(M>0) is quicker than

M(find(M>0)) because the find function is unnec-
essary in this case.

It is important to distinguish & and and, | and or.
The first one of each pair is entry-wise operation and
the other one reports truth value based on all entries
of a Boolean matrix.

M = [0 -2; 1 0]; M==0 | M == 1
ans: =

T F
T T

and(M>=0) // true iff all entries are true
ans: =

F

or(M == -2) // false iff all entries are false
ans: =

T

7.4 Debugging

The most tedious work in programming is to debug.
It can be done in two ways: using Scilab’s built-in
debugger, or modifying the program so that it serves
the same purpose as the debugger. The debugger
is similar to those debuggers in other programming
languages and is simple to use. We present the sec-
ond method to offer programmers greater flexibilities
when debugging.

To insert breakpoints we use pause. To end pause
we use abort. To set the output of the function
we may use return. To display variables we use
disp(variable name). For details please read the
Scilab documentation.

6

8 Plotting Graphs

8.1 Plotting 2D Graphs

The plot function has different forms, depending on
the input arguments. If y is a vector, plot(y) pro-
duces a piecewise linear graph of the elements of y
versus the index of the elements of y. If you spec-
ify two vectors as arguments, plot(x,y) produces a
graph of y versus x. To plot the value of the sine
function from zero to 2:

t = (0:1/100:2) * %pi;
y = sin(t);
plot(t,y);

8.2 Plotting 3D Surfaces

The command plot3d(x,y,z) plots 3D surfaces. Here
x and y (x-axis and y-axis coordinates) are row vec-
tors of sizes n1 and n2 and the coordinates must be
monotone, and z is a matrix of size (n1,n2) with z(i,j)
being the value of the surface at the point (x(i),y(j)).

// simple plot using z=f(x,y)
t=[0:0.3:2*%pi]’;
z=sin(t)*cos(t’);
plot3d(t,t,z)

9 Scilab versus Matlab

This section is based on some user comments found
in the internet, thus not necessarily all true. It is
intended to give readers a general image about their
differences besides those in syntax.

• Matlab has a thorough documentation; the one
in Scilab is brief.

• Matlab has a lot of optimization on computation,
thus it is faster than Scilab.

• Matlab has a very powerful simulation compo-
nent called Simulink. Scilab has Scicos that
serves the same purpose but it is weaker.

• Matlab has a much better integration with other
programming languages and programs such as C,
C++ and Excel.

• The graphics component of Scilab is weak (has
fewer functions).

• Most importantly, Scilab is FREE. It certainly
outweighs its deficiencies. It is remarked that
Scilab is more than enough for casual and edu-
cational uses.

References

[1] Scilab help file (its own documentation)

[2] Scilab for dummies:
http://www–irma.u–strasbg.fr/∼sonnen/
SCILAB HELP/scilab for dummies.htm

[3] Matlab primer:
http://ise.stanford.edu/Matlab/
matlab–primer.pdf

7

