System |



Process - System - Model

e Process - part of reality we are interested in.
e System - variables with their relations.

e Model - mathematical relation of the monitored variable and other explanatory variables.

Remark

If some delayed monitored variables are among the explanatory variables, the system is dynamic.

Otherwise it is static.



Variables in the system

e; . noise

imput (control)

—»
w

disturbance

R
vy

SYSTEM

state Tt

Output: Monitored variable.

Input: Manipulated variable - control.

Disturbance: Can be measured, cannot be manipulated.

State: Cannot be measured, is estimated from data.

Noise: Neither can be measured nor predicted.

output
Yt
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Model |



Bayesian view on model

Conditional probability density function (pdf)

/
7 (wlvi.®©)
/ .
wt = [uta Yt—1,Ut—1, " 3 Yt—n, Ut—n, 1] - regression VeCtor;
! . . . .
©={0,r}; 0 =[by,a1,b1, -+ ,an,by, k], 0 - regression coefficients, r - noise variance.

It is a stochastic dependence of ¥y, on ¢, with relations expressed by probability density function
(pdf).
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Regression model

The variables are continuous, 1 can have also some discrete ones.

The above pdf expression can be generated by the stochastic equation
Yr = bour + arys—1 + brug1 + -+ @nYip + bpUp o + ke =

= 2/1;94—615

where e; (noise) is i.i.d. (independent, identically distributed) random variable with zero expectation

and variance r.
E [ye|ir, O] = bour + a1ys—1 + brug—1 + - - - + @Yt + bps—p, + k,
Dly] = Dle] =7

Program: T11simCont.sce (page 83)
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Discrete model

All variables are discrete (finite number of values)
[ (yelr, ©) = Oy,

[us,yea] | ye =1 yr =2
L1 O O
L, 2 O112 Oz
2,1 O1p1  Ogp1
2,2 O122 Oz

Z?Zl ©;;x = 1 - conditional probabilities.

For given [u;, y;—1] the output y; is generated with the pdf [O1}u, 4, O2ju i 1] -

Program: T13simDisc.sce (page 86)
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Model of logistic regression

The output is discrete (0 or 1) and it depends on continuous variables.

exp (yi2t)
@)= It
f (yt|¢t ) 1 + exp (Zt)
where
2 = PO + ¢

The model has the following form - transformation from z to p = f (y; = 1|z)

Py = 1|2)
A
1

/
_
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State-space model

Describes the state variable x;

— state model (state prediction)

vy = Mz + Nug_y + wy

— output model (state filtration)
yr = Az + Buy + v

M, N, A, B are known matrices,

wy, v;  are noises with zero expectations and known covariances R,,, R,
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State form of regression model

For 2" order regression model

Y = bout + A1Yt—1 + blut,l -+ a2Yyr—2 + bgutfz + k + e

the state form is

Yt ar b
Uy 0 0
Yt—1 | = 10
Up_1 0 1
1] | 0 0

Program: T15simState.sce (page 88)

o O o O

o O O O

_ o O O -

Yt—1
Ut—1
Yt—2
Ut—2

o O O =

ut—l-

o O O O
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Estimation



Bayesian estimation

Notation: d; data at ¢, d (t) = {do,d;,--- ,d;} data up to t, dy prior.

f(©ld(t—1)), f(O©]d(t)) description of parameters (prior, posterior)

Bayes rule
F(O1d(t)) oc f (yeltr, ©) f(Old(t — 1))

posterior model prior

— Natural conditions of control f(O|u;,d(t—1)) = f(O|d(t —1))

— Batch estimation

f(eld(t) [Hf (y-[¢-© ]f(@|d(0))

Likelihood L(©)

— Self reproducing prior f (©]d(t — 1)) — f(O]|d(t)) - the same form.
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Results of estimation

e Posterior pdf f(©]d(t)) probabilities of parameter values

e Point estimate of parameter (expectation)
o0

6, = E[0ld (1) = / of (0]d (1)) O

—00
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Estimation of regression model

Application of Bayes rule with regression model and prior/posterior in the form of Gauss-inverse-

Wishart distribution
-1
F(1d(0) o 7% exp {[—1, o | ] }

Statistics update

Vi=Viai+ Dy

Kt = Ki—1 + 1

Yt

t

where D, =

/ . . . . . . .
] [yt, wt] is data matrix, V; is information matrix and «; is counter.

Programs: T22estCont B.sce; T22estCont B2.sce; T22estCont B3.sce; (page 93 and fur-
ther)

T22estCont B4.sce (data from Strahov are on our web)
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Point estimates of parameters

— division of information matrix

Vo,

‘/t p—
Vyw Vw

— estimates of regression coefficients

b= VJl%w

— estimate of noise variance ) )
V= Vi Vi

Tt

R
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Batch estimation
For 2" order regression model

Yr = bour + aryp—1 + b1up—1 + agyy—o + boup_o + k + ¢4

Counstruct

[y ] [ w oy Ug y1  u_y 1]

Y2 Uz Y1 Uy Yo Up 1

Y = Ys , X = us Y2 Uz Y1 Uy 1
| YN | | uN YnN-1 UN-—1 YN—2 Un—2 1 |

Regression coefficients are 0y = (X’X)_1 X'Y  in the order in which the rows of X are constructed.

Program: T2lestCont LS.sce (page 90)
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Estimation of categorical model

The pdf of parameter has the Dirichlet form

F@ld () o [T
yly

with the statistics update
Vyelpet = Vyelwpet—1 T 1
The update runs as follows:

v is a matrix with columns denoted by values of 4, and rows corresponding to configurations of values

of ¢, (the same as in model).

In the update we find the entry denoted by 1; and the row corresponding to the configuration of 1

and we increase it by one.

Point estimate of the parameter is given by v normalized so that the sums of rows are equal to one.

Program: T23estDisc.sce (page 101)
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Estimation of logistic model

It is not recursive - we must construct likelihood (for all measured data) and maximize it numerically.

Tikelihood
Ht exp {y-2r}
Lt = e ]

- 1+exp{z}

t

InL, = Z [yrzr —In (1 4+ exp {z})]

T=1

ét = arg mgn In L,
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Prediction



Definition

Predictive pdf (k-step ahead)

fWenly (= 1), u(t+ k) = f (yrrly (= 1))

Point prediction
U= Elyly(t—1)] = / yof (yely (6 — 1)) dy

Yy



Zero step prediction

uy given for all ¢ needed.
Model  f (wly(t—1),6)

Predictive density
fyly (t=1)) = A f (e Oly (t — 1)) dO=

= | fly(t-1).0) fO(-1) dO—

@*

~~

model posterior from ¢—1

= > Fluly(t=1),6) f (6:ily (t 1))

0,€0

- average (expectation) of all possible models weighted by their probabilities.
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One step prediction

uy given for all ¢ needed.

Model  f (yly (t —1),0)

Predictive density

Fnalyt =10 = [ [ F G ly (= 1)) dya® -
= //f(ym\y(t)7@)f(yt\y(t— 1),0) f(Oly (t — 1)) dy,d® = (%)

// (model (y¢41)) (model (y;)) (posterior (t — 1)) dy,d©



point estimates of parameters --- f(O|y(t —1)) =6 <@, é)t_1>

()= [ [ 1l (®.0) 7 il (¢ - 1).0)5 (6,611 dudo =
= /f (yt+l|y (1), ét—l) f (yt\y (t—1), é)t_l) dy; = (xx)

point estimates of outputs --- f <yt|y (t—1), ét—l) =9 (ys, Ut)

() = /f <yt+1‘y (t) >ét71> 6 (Ye, 1) dy
=f (yt+1|?)t, y(t—1), ét—l)

Point prediction
U1 = Eyena|y (t = 1)] = /yt—i-lf (Yerrly (t = 1)) dyeya

- expectation conditioned by y (t — 1) .
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Prediction with regression model

Point prediction - repetitive substitution of model.

Example for model

Ye = ayi—1 + bu, + e

Prediction

Yt
Ue1

Yt+2

ayi—1 + bu,
ayy + buyq

a1 + bugso

Programs: T31preCont.sce; T32preCont Adapt.sce; T32preCont_ Adapt2.sce; (page 104)
T32preCont Adapt3.sce (with the data on web)

page 43



Full prediction for normal model

Y = ayi—1 +bu+ e
Yir1 = Yy +bupp + e =
= a(ay,_1 +buy +e) + bugq + e =
= a’y_q + abu, + buri1 + aey + €41
Yerr = Ypy1 + buppo + €40 =
= agyt_l + a’bu; + abugy + bugio + a’e; + aepi1 + €rio

and predictive pdf is N,

yers ([, 7) Where
fi = E [yryaly (t = 1)] = a’yr1 + a®bu; + abugyy + bugro

P = D[ysaly (t —1)] = D[a’e; + aesy1 + ern] = (a* +a®> + 1) 7
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Prediction with discrete model

Predictive pdf is a row of the model matrix. Point prediction is generated from the predictive pdf.

Example: Model f (ye|us, yi-1); ve € {1,2,3}, up € {1,2}

U Y1 |y =1 =2 y=3
1,1 0.2 0.5 0.3
1,2 0.1 0.3 0.6
1,3 0.7 0.2 0.1
2,1 0.3 0.3 0.4
2,2 0.5 0.2 0.3
2,3 0.6 0.1 0.3

For measured u; = 1 and y;_; = 3 the predictive pdf is

fyluy=1y-1=3) —
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Generation a prediction with discrete model
It is generated as a value from categorical distribution with the predictive pdf. The generation in
Scilab can be done in the following way:

— model matrix
0.2 0.5 0.3
0.1 0.3 0.6
6 =

0.6 0.1 0.3

— find row r corresponding to w, yi—1 (u¢/ye—1 have n,/n, values)

r=ny*(u—1) + Y

— generate from this row

¥ = (sum (rand(1,1,’u’) > cumsum (O (r,:))) + 1

Programs: T33preCat Off.sce; T34preCat OffEst.sce; T35preCat OnEst.sce (page 114
and further) page 48



Filtration



State-space model

— state model (state prediction)

ry =Mz, + Nup_q +wy

— output model (state filtration)
Y = Axy + Buy + vy

M, N, A, B are known matrices,

wy, v;  are noises with zero expectations and known covariances R,,, R,



Filtration

State evolution: prediction — filtration

Floald(t-1) = f@ldt-1) = f@ld)

prediction filtration

Prediction

flald(t—-1) = / f@e|wer, wer) f@a|d (¢ = 1)) dwey

Filtration

f \{t/d(t)) o< f (Yelwe, we) f \:c/t/]d(t— 1))

© model ©
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Kalman filter

For normal model and initial conditions we get Kalman filter
[xt,Rx,yp|=Kalman(xt,yt,ut,M,N,F.A B,G,Rw,Rv,Rx)

Xt - state estimate (expectation)

Rx - state covariance matrix

yp - output prediction

yt, ut - output, input

M, N, F, A, B, G - state model parameters (F,G - constants)

Rw, Rv - model noise covariances

Program: T46statEst KF.sce; T47statEst Noise.sce (page 122 and further)
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Nonlinear state estimation

Model

= g (Te—1,u) + wy

Y = h (ﬂft,Ut) + V¢

Model linearization (Taylor expansion)
g (@, u) = g (Te-1,u) + g (T, ur) (T — 1)

h (SE, 'U/t> =h (C&t, Ut) + h/ (C&t, Ut) (.I' — i't)

where z is the last point estimate.



Result

where

Ty = MﬁL‘t_1+F+wt
y = Ax,+ G+

M = 9/ (i't—la Ut) ) F=g (@—1, Ut) - gl (it—h Ut) Ty_1,

A="hn ('%t; Ut) y G=h (j?t, ut) — N (it,ut) fﬁt.
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Control
Criterion: E |, J,|d (0)] where
Jo=yi +wui or (e — s0)* +wuf + Ay — upy)’

Criterion can be minimized sequentially from the end. The recursion (Bellman equations) are

‘P}k\f-s-l =0

fort=N,N—1,--- 1
v = E [@],1 + JiJuy, d(t —1)]  expectation

¢y = minp; minimization
ut

u; = argmin ¢, control

end
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Control for regression model

It is performed for state form of the model.

RNH:O

fort=N, N—-1,---,1
U=Ri1+0
A=NUN
B=NUM
C=MUM
S, =A"'B
R, = C—S;ASt

end

Here, the vectors S; are computed and then they are use for control application (in time direction)

fort =1,2,--- N, uy = uy = —Six4—1; Y = gener(u,); end

Program: T53ctrlX.sce; T54ctrlXEst.sce (page 128 and further)
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Remarks

1. If in criterion (y;, — st)2 is used the output follows the setpoint s;
2. If J, = 42 + X (uy — us_1)? is used, steady-state deviation is avoided.
3. If the model parameters are not known, we must use sub-optimal control with receding horizon:

(a) for existing parameter estimated design the control and use only the first step,
(b) apply the computed control,
(

(c
d

(e

)

)

) measure new output;

) with new data recompute parameter estimates
)

go to (a).
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Control with discrete model

It is performed exactly in the same way as continuous with the discrete model. However, the opera-

tions with tables are somewhat unusual. You can look at them into the text.

Program: T52ctrlDisc.sce (page 135)
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