
L’Hospital’s Rule was first published in 1696 in the Marquis de l’Hospital’s calculus textbook
Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician
John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a
curious business arrangement whereby the Marquis de l’Hospital bought the rights to Bernoulli’s
mathematical discoveries. The details, including a translation of l’Hospital’s letter to Bernoulli
proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of l’Hospital’s Rule. Start by pro-
viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good
source) and outline the business deal between them. Then give l’Hospital’s statement of his rule,
which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice that
l’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of dif-
ferentials. Compare their statement with the version of l’Hospital’s Rule given in Section 4.4 and
show that the two statements are essentially the same.
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SUMMARY OF CURVE SKETCHING

So far we have been concerned with some particular aspects of curve sketching: domain,
range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriva-
tives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and
decrease, concavity, points of inflection, and l’Hospital’s Rule in this chapter. It is now
time to put all of this information together to sketch graphs that reveal the important fea-
tures of functions.

You might ask: Why don’t we just use a graphing calculator or computer to graph a
curve? Why do we need to use calculus?

It’s true that modern technology is capable of producing very accurate graphs. But even
the best graphing devices have to be used intelligently. We saw in Section 1.4 that it is
extremely important to choose an appropriate viewing rectangle to avoid getting a mis-
leading graph. (See especially Examples 1, 3, 4, and 5 in that section.) The use of calculus
enables us to discover the most interesting aspects of graphs and in many cases to calcu-
late maximum and minimum points and inflection points exactly instead of approximately.

For instance, Figure 1 shows the graph of . At first
glance it seems reasonable: It has the same shape as cubic curves like , and it
appears to have no maximum or minimum point. But if you compute the derivative, you
will see that there is a maximum when and a minimum when . Indeed, if
we zoom in to this portion of the graph, we see that behavior exhibited in Figure 2. Without
calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus
and graphing devices. In this section we draw graphs by first considering the following 
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information. We don’t assume that you have a graphing device, but if you do have one you
should use it as a check on your work.

GUIDELINES FOR SKETCHING A CURVE

The following checklist is intended as a guide to sketching a curve by hand. Not
every item is relevant to every function. (For instance, a given curve might not have an
asymptote or possess symmetry.) But the guidelines provide all the information you need
to make a sketch that displays the most important aspects of the function.

A. Domain It’s often useful to start by determining the domain of , that is, the set of
values of for which is defined.

B. Intercepts The -intercept is and this tells us where the curve intersects the -axis.
To find the -intercepts, we set and solve for . (You can omit this step if the
equation is difficult to solve.)

C. Symmetry

(i) If for all in , that is, the equation of the curve is unchanged
when is replaced by , then is an even function and the curve is symmetric about
the -axis. This means that our work is cut in half. If we know what the curve looks like
for , then we need only reflect about the -axis to obtain the complete curve [see
Figure 3(a)]. Here are some examples: , and .

(ii) If for all in , then is an odd function and the curve is
symmetric about the origin. Again we can obtain the complete curve if we know what
it looks like for . [Rotate 180° about the origin; see Figure 3(b).] Some simple
examples of odd functions are , and .

(iii) If for all in , where is a positive constant, then is called
a periodic function and the smallest such number is called the period. For instance,

has period and has period . If we know what the graph looks
like in an interval of length , then we can use translation to sketch the entire graph (see
Figure 4).

D. Asymptotes

(i) Horizontal Asymptotes. Recall from Section 2.6 that if either 
or , then the line is a horizontal asymptote of the curve .
If it turns out that (or ), then we do not have an asymptote to the
right, but that is still useful information for sketching the curve.

(ii) Vertical Asymptotes. Recall from Section 2.2 that the line is a vertical
asymptote if at least one of the following statements is true:
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(For rational functions you can locate the vertical asymptotes by equating the denomi-
nator to 0 after canceling any common factors. But for other functions this method does
not apply.) Furthermore, in sketching the curve it is very useful to know exactly which
of the statements in (1) is true. If is not defined but is an endpoint of the domain
of , then you should compute or , whether or not this limit is
infinite.

(iii) Slant Asymptotes. These are discussed at the end of this section.
E. Intervals of Increase or Decrease Use the I /D Test. Compute and find the intervals 

on which is positive ( is increasing) and the intervals on which is negative
( is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of [the numbers 
where or does not exist]. Then use the First Derivative Test. If 
changes from positive to negative at a critical number , then is a local maximum.
If changes from negative to positive at , then is a local minimum. Although it
is usually preferable to use the First Derivative Test, you can use the Second Derivative
Test if and . Then implies that is a local minimum,
whereas implies that is a local maximum.

G. Concavity and Points of Inflection Compute and use the Concavity Test. The curve
is concave upward where and concave downward where . Inflec-
tion points occur where the direction of concavity changes.

H. Sketch the Curve Using the information in items A–G, draw the graph. Sketch the
asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and
inflection points. Then make the curve pass through these points, rising and falling
according to E, with concavity according to G, and approaching the asymptotes. If addi-
tional accuracy is desired near any point, you can compute the value of the derivative
there. The tangent indicates the direction in which the curve proceeds.

EXAMPLE 1 Use the guidelines to sketch the curve .

A. The domain is

B. The - and -intercepts are both 0.
C. Since , the function is even. The curve is symmetric about the -axis.

D.

Therefore the line is a horizontal asymptote. 
Since the denominator is 0 when , we compute the following limits:

Therefore the lines and are vertical asymptotes. This information
about limits and asymptotes enables us to draw the preliminary sketch in Figure 5,
showing the parts of the curve near the asymptotes.
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FIGURE 5  
Preliminary sketch
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E.

Since when and when , is
increasing on and and decreasing on and .

F. The only critical number is . Since changes from positive to negative at 0,
is a local maximum by the First Derivative Test.

G.

Since for all , we have

and . Thus the curve is concave upward on the intervals
and and concave downward on . It has no point of inflection

since 1 and are not in the domain of .
H. Using the information in E–G, we finish the sketch in Figure 6. M

EXAMPLE 2 Sketch the graph of .

A. Domain
B. The - and -intercepts are both 0.
C. Symmetry: None
D. Since

there is no horizontal asymptote. Since as and is always
positive, we have

and so the line is a vertical asymptote.

E.

We see that when (notice that is not in the domain of ), so the
only critical number is 0. Since when and when

, is decreasing on and increasing on .
F. Since and changes from negative to positive at 0, is a local

(and absolute) minimum by the First Derivative Test.

G.

Note that the denominator is always positive. The numerator is the quadratic
, which is always positive because its discriminant is ,

which is negative, and the coefficient of is positive. Thus for all in the
domain of , which means that is concave upward on and there is no point
of inflection.

H. The curve is sketched in Figure 7. M
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EXAMPLE 3 Sketch the graph of .

A. The domain is .
B. The x- and -intercepts are both 0.
C. Symmetry: None
D. Because both x and become large as , we have . As ,

however, and so we have an indeterminate product that requires the use of
l’Hospital’s Rule:

Thus the x-axis is a horizontal asymptote.

E.

Since is always positive, we see that when , and when
. So f is increasing on and decreasing on .

F. Because and changes from negative to positive at ,
is a local (and absolute) minimum.

G.

Since if and if , is concave upward on 
and concave downward on . The inflection point is .

H. We use this information to sketch the curve in Figure 8. M

EXAMPLE 4 Sketch the graph of .

A. The domain is .
B. The -intercept is . The -intercepts occur when , that is,

, where is an integer.
C. is neither even nor odd, but for all and so is periodic and

has period . Thus, in what follows, we need to consider only and then
extend the curve by translation in part H.

D. Asymptotes: None

E.

Thus when 
. So is increasing on and decreasing on 

and .
F. From part E and the First Derivative Test, we see that the local minimum value 

is and the local maximum value is .
G. If we use the Quotient Rule again and simplify, we get

Because and for all , we know that when
, that is, . So is concave upward on and

concave downward on and . The inflection points are 
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H. The graph of the function restricted to is shown in Figure 9. Then we
extend it, using periodicity, to the complete graph in Figure 10.

M

EXAMPLE 5 Sketch the graph of .

A. The domain is

B. The -intercept is . To find the -intercept we set

We know that , so we have and therefore the 
-intercepts are .

C. Since , is even and the curve is symmetric about the -axis.
D. We look for vertical asymptotes at the endpoints of the domain. Since as

and also as , we have

Thus the lines and are vertical asymptotes.

E.

Since when and when , is increasing 
on and decreasing on .

F. The only critical number is . Since changes from positive to negative at ,
is a local maximum by the First Derivative Test.

G.

Since for all , the curve is concave downward on and has no
inflection point.

H. Using this information, we sketch the curve in Figure 11. M

SLANT ASYMPTOTES

Some curves have asymptotes that are oblique, that is, neither horizontal nor vertical. If

then the line is called a slant asymptote because the vertical distance y ! mx % b
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between the curve and the line approaches 0, as in Figure 12. (A
similar situation exists if we let .) For rational functions, slant asymptotes occur
when the degree of the numerator is one more than the degree of the denominator. In such
a case the equation of the slant asymptote can be found by long division as in the follow-
ing example.

EXAMPLE 6 Sketch the graph of .

A. The domain is .
B. The - and -intercepts are both 0.
C. Since , is odd and its graph is symmetric about the origin.
D. Since is never 0, there is no vertical asymptote. Since as and

as , there is no horizontal asymptote. But long division gives

as

So the line is a slant asymptote.

E.

Since for all (except 0), is increasing on .
F. Although , does not change sign at 0, so there is no local maximum or

minimum.

G.

Since when or , we set up the following chart:

The points of inflection are , and .
H. The graph of is sketched in Figure 13. Mf
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51. 52.

53. In the theory of relativity,  the mass of a particle is

where is the rest mass of the particle, is the mass when
the particle moves with speed relative to the observer, and 
is the speed of light. Sketch the graph of as a function of .

54. In the theory of relativity, the energy of a particle is

where is the rest mass of the particle, is its wave length,
and is Planck’s constant. Sketch the graph of as a function
of . What does the graph say about the energy?

55. The figure shows a beam of length embedded in concrete
walls. If a constant load is distributed evenly along its
length, the beam takes the shape of the deflection curve

where and are positive constants. ( is Young’s modulus of
elasticity and is the moment of inertia of a cross-section of
the beam.) Sketch the graph of the deflection curve.

56. Coulomb’s Law states that the force of attraction between two
charged particles is directly proportional to the product of the
charges and inversely proportional to the square of the distance
between them. The figure shows particles with charge 1 located
at positions 0 and 2 on a coordinate line and a particle with
charge at a position between them. It follows from Cou-
lomb’s Law that the net force acting on the middle particle is

where is a positive constant. Sketch the graph of the net force
function. What does the graph say about the force?
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1–52 Use the guidelines of this section to sketch the curve.
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