Discrete Time Markov Chain (DTMC)

I. Introduction
II. 1D Random walk
III. The Concept of a Markov Chain
IV. The Chutes and Ladders Transition Matrix
V. Simulation Techniques
VI. Repeated Play
VII. Conclusion

Fair play – tossing a coin

Fair coin is tossed repeatedly.
Gambler bets on result “head” one euro. (win with probability $p = 1/2$).
Let us denote the state of this stochastic process by gamblers amount of money. Than state space S is countable set. $S = \{\ldots, -1, -2, 0, 1, 2, \ldots\}$.
Discretization of a time: 1 step = 1 game
Simulation of 100 games:

```matlab
steps=100;  
S=zeros(steps,1)  
for i =1:steps-1  
    if rand>0.5  
        S(i+1)=S(i)+1  
    else  
        S(i+1)=S(i)-1  
    end  
end  
plot(1:steps,S,'*m--')
```
Simulation – repeated play

Repeat the experiment for 1000 gamblers, determine the distribution of final win.

```
function [win] = game(steps,p)
    % [S(i)]=game(steps,p)%No steps, probability of success
    S = zeros(steps,1);
    for i = 1:steps-1
        if rand < p
            S(i+1) = S(i) + 1;
        else
            S(i+1) = S(i) - 1;
        end
    end
    win = S(end);
end
```

```
[h,p] = chi2gof(P)
```

Tossing a coin - Finite Game

```
% S = [-2,1,0,1,2]
function [vyhra,S] = game2(steps,p)
    % [S(i)]=game2(steps,p)%No steps, prob. Of success
    S(1) = 0;
    for i = 1:steps-1
        if rand < p
            S(i+1) = S(i) + 1;
        else
            S(i+1) = S(i) - 1;
        end
        if S(i+1) == 2 || S(i+1) == -2, break
    end
end
win = S(length(S));
end
```
Game as 1D random walk

Tossing a coin is an example of random walk: If we picture all states arranged on line, we move from one state to one of its neighbours.

- How process evolves depends on the probability of moving from one state to another.
- The transition matrix P is a matrix whose (i,j)th entry is transition probabilities p_{ij} from ith state to jth state.

$$p_{i, i+1} = p$$
$$p_{i+1, i} = 1 - p$$

Finite game

Modification: The chain will terminate at states -2 or 2– first player or the second player wins.

$$P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
1 - p & 0 & p & 0 & 0 \\
0 & 1 - p & 0 & p & 0 \\
0 & 0 & 1 - p & 0 & p \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
Tossing coin as a Markov chain

Memoryless property
The outcome of the nth toss is independent of the results of tosses 1,..., $n-1$.
If we know what happened at time $n-1$, then any other information about the past does not affect the probability distribution for time n.

In general, a Markov chain is given by
- A state space S – a countable set of states
- Transition probabilities p_{ij}
- Initial distribution $\alpha(0)$

Finite game

$$\begin{pmatrix}
-2 & -1 & 0 & 1 & 2 \\
1 & 0 & 0 & 0 & 0 \\
1 - p & 0 & p & 0 & 0 \\
0 & 1 - p & 0 & p & 0 \\
0 & 0 & 1 - p & 0 & p
\end{pmatrix}$$

Initial distribution $\alpha(0) = (0,0,1,0,0)$
Prob. distribution after 1 game: $\alpha(1) = (0,1-p,0,p,0) = \alpha(0)P$
Prob. distribution after 2 games: $\alpha(2) = \alpha(1)P = \alpha(0)P^2$

...
Prob. distribution after n games: $\alpha(n) = \alpha(n - 1)P = \alpha(0)P^n$

Probability distribution vector $\alpha(n)$ denotes the probabilities that the system is in each state at time n. Probability distribution vector $\alpha(n)$ depends upon the initial state of the system $\alpha(0)$ and transition matrix P.
Transition matrix

Square matrix P, p_{ij} means probability of transition from place P_i to place P_j.

$$P = \begin{bmatrix}
0 & 0.5 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 \\
0.5 & 0 & 0 & 0 & 0.5 \\
0.5 & 0.5 & 0 & 0 & 0
\end{bmatrix}$$

$a(1) = a(0)P$

$a(2) = a(1)P$

\vdots

$a(n+1) = a(n)P$

$$\lim_{n \to \infty} a(n+1) = \lim_{n \to \infty} a(n) = a = aP$$

\[
a = aP
\]

\[
a(P - E) = 0
\]

\[
a \left\{ P - E \right\} = (0, \ldots, 0, 1)
\]

```
clear;
P=[0,0.5,0.5,0;0,0,0.5,0.5,0;0,0,0,0.5,...
       0.5;0.5,0,0,0.5;0.5,0.5,0,0,0]
P^20
A=([P-eye(5));[1;1;1;1;1]); %normalization
a=[0,0,0,0,1]/A % A.a=[0,0,0,1]
```
Example – Stochastic Petri Net

- **State space** = \{P_1, P_2, P_3\}
- **Transition matrix** \(P \)
 - square matrix \(P \), \(p_{ij} \) means probability of transition from place \(P_i \) to place \(P_j \).
 - Initial distribution \(a(0) \) and transition matrix \(P \) uniquely determine the distribution \(a(n) \) after \(n \) steps.

\[
P = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 2 \\
1 & 0 & 0
\end{pmatrix}
\]

\[
a(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
\]

\[
a(1) \cdot P = a(0)
\]

Markov Chains

- A Markov Chain is a weighted digraph representing a discrete-time system that can be in any number of discrete states.
- The transition matrix \(P \) for a Markov chain is matrix of probabilities of moving from one state to another.
- \(p_{ij} \) = probability of moving from state \(i \) to \(j \) is **independent of what happened before** moving to state \(j \) and how one got to state \(i \) (Markov assumption).
- Sum of probabilities \(\alpha(n) \) for each time \(n \) must be one.

\[
\alpha(n) = \alpha(n - 1)P = \alpha(0)P^n
\]
Birth-death chain

Example 12.8. Birth-death chain. This is a general model in which a population may change by at most 1 at each time step. Assume the size of a population is \(x \). The birth probability \(p_x \) is the transition probability to \(x + 1 \), the death probability \(q_x \) is the transition to \(x - 1 \), and \(r_x = 1 - p_x - q_x \) is the transition to \(x \). Clearly, \(q_0 = 0 \). The transition matrix is now

\[
\begin{bmatrix}
 r_0 & p_0 & 0 & 0 & 0 & \cdots \\
 q_1 & r_1 & p_1 & 0 & 0 & \cdots \\
 0 & q_2 & r_2 & p_2 & 0 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix}
\]

Stable (regular) process

- A common question arising in Markov-chain models is, what is the long-term probability that the system will be in each state?
- The vector containing these long-term probabilities is called the steady-state vector of the Markov chain

- Stable process – \(\alpha(n) \) tends to a limit \(\alpha \) as \(n \to \infty \), this steady state limit does not depend on the initial state.
- Key to the study of Markov chains is the study of powers of transition matrix \(P \).
- Any nonnegative vector which satisfies \(\alpha = \alpha P \) and whose components sum to one is called a stationary probability distribution of the Markov Chain.
11.4.2016

How the Game is Played

• Chutes and Ladders is a board game where players spin a pointer to determine how they will advance
• The board consists of 100 numbered squares
• The objective is to land on square 100
• However, the board is filled with chutes and ladders, which move a player backward or forward if landed on.

Simulation

• Objectives:
 – Find frequencies for being at each position
 – Find mean number of moves to win
 – Find standard deviation
 – Simulate a large number of games
Results of Transition Matrix

- After 1000 moves, the probability vector reached a limit of \(\{0,0,\ldots,1\} \).
- This means that after 1000 moves, the game is expected to be won!!!

Results of simulation

- We ran 250,000 games
- Mean is approximately 39.65 moves to reach square 100.
- The standard deviation is approximately 24.00

DTMC simulation

DTMC with 3 states is given by transition matrix \(P \) and initial state \(\alpha(1) = (1,0,0) \).
1. Simulate one run with 100 steps. (resp. 500, 1000 steps)
2. Estimate the steady-state distribution

\[
P = \begin{pmatrix}
0.2 & 0.3 & 0.5 \\
0.1 & 0.1 & 0.8 \\
0.4 & 0.3 & 0.3
\end{pmatrix}
\]

```matlab
P=[0.2,0.3,0.5;0.1,0.1,0.8;0.4,0.3,0.3];
steps=100;
states=zeros(steps,1)
states(1)=1% start,
for i=1:steps-1
    states(i+1)=find(rand<cumsum(P(states(i,:)),1),1)
end
%steady-state distribution
freq=hist(states,1:3);
a_est=freq/steps
```

DTMC.m
DTMC analytical solution

DTMC with 3 states is given by transition matrix P and initial state $\alpha(1) = (1,0,0)$.

1. Determine P^n
2. Determine the steady-state distribution

```matlab
% Steady-state distribution 
lim a(n) = a(0) P^n ever since P^8 
% a = (0.2708, 0.2500, 0.4792) 
lim P = P^10 
A = [(P-eye(length(P)))'; [1,1,1]] 
a = A \{0;0;1\} % aa=[0,0,1]' together with normalize
```

Bernoulli trials as Markov chain

There are only two possible outcomes for each trial, often designated success or failure. The probability of success, p, is the same for every trial.

State space = (S, F)

$$P = \begin{pmatrix}
p & 1-p \\
p & 1-p
\end{pmatrix}$$

Probability vector $a(n)$ - probability of states S or F after n trials.

$$(a_S(1), a_F(1)) = (p a_S(0) + a_F(0), (1-p)(a_S(0) + a_F(0))) = (p, 1-p)$$

$$a = aP$$

$$(a_s, a_f) = (p(a_s + a_f), (1-p)(a_s + a_f))$$

$$(a_s, a_f) = (p, 1-p)$$

Bernoulli.m
Geometric distribution as absorbing Markov chain

The geometric distribution is the only discrete memoryless random distribution. It is a discrete analog of the exponential distribution.

The probability distribution of the number X of Bernoulli trials needed to get one success

$$P = \begin{pmatrix} 1 & 0 \\ p & 1-p \end{pmatrix}; \quad a(0) = (0.1)$$

An absorbing state is a state that, once entered, cannot be left.

$$a = aP$$

$$(a_s, a_f) = (a_s + pa_f, (1-p)a_f)$$

$$(a_s, a_f) = (1.0)$$

Geometric distribution (control and security measures)

Example: Functioning of some device is inspected once a day – at 6p.m. Probability p of defect (success) is same for the whole of observed time: $p = 0.1$.

Estimate the probability that errorless period is longer then 5 days.

Estimate the average errorless period.

$$a(0) = (0.1)$$

$$a(n) = (1-(1-p)^n, (1-p)^n)$$

$$p = 0.1$$

$$a(6) = (1-0.9^6; 0.9^6)$$

$$1 - cdf(6) = (1-p)^6 = 0.53$$

$$E[X] = \frac{1-p}{p} = 9(days)$$