Discrete Time Markov Chain (DTMC)

Fair play - tossing a coin

Fair coin is tossed repeatedly.
Gambler bets on result "head" one euro. (win with probability $p=1 / 2$).
Let us denote the state of this stochastic process by gamblers amount of money. Than state space S is countable set. $S=\{\ldots,-1,-2,0,1,2, \ldots\}$.
Discretization of a time: 1 step $=1$ game
Simulation of 100 games:

```
steps=100;
S=zeros(steps,1)
for i =1:steps-1
    if rand>0.5
    S(i+1)=S(i)+1
    else
        S(i+1)=S(i) -1
    end
end
plot(1:steps,S,'*m--')
```


Simulation - repeated play

Repeat the experiment for 1000 gamblers, determine the distribution of final win.

```
function[win]=game(steps,p)
% [S(i)]=game(steps,p)%No steps, probability of success
S=zeros(steps,1);
for i =1:steps-1
    if rand<p
    S(i+1)=S(i)+1;
    else
        S(i+1)=S(i)-1;
    end
end
win=S(i);
end
```


Tossing a coin - Finite Game

```
% S = {-2,-1,0,1,2}
function[vyhra,S]=game2 (steps,p)
% [S(i)]=game2(steps,p)%No steps, prob. Of success
S (1) =0;
for i =1:steps-1
    if rand<p
    S(i+1)=S (i) +1;
    else
        S(i+1)=S(i)-1;
    end
    if S(i+1)== 2 || S(i+1)== -2, break
    end
end
win=S(length(S));
end
```


Game as 1D random walk

Tossing a coin is an example of random walk: If we picture all states arranged on line, we move from one state to one of its neighbours.

- How process evolves depends on the probability of moving from one state to another.
- The transition matrix P is a matrix whose (i, j) th entry is transition probabilites p_{ij} from i th state to j th state.

$$
\begin{gathered}
p_{i, i+1}=p \\
p_{i+1, i}=1-p
\end{gathered}
$$

Finite game

Modification: The chain will terminate at states -2 or 2- first player or the second player wins.

$$
P=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1-p & 0 & p & 0 & 0 \\
0 & 1-p & 0 & p & 0 \\
0 & 0 & 1-p & 0 & p \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Tossing coin as a Markov chain

Memoryless property

The outcome of the nth toss is independent of the results of tosses $1, \ldots, n-1$. If we know what happened at time $n-1$, then any other information about the past does not affect the probability distribution for time n.

In general, a Markov chain is given by

- A state space S - a countable set of states
- Transition probabilities p_{ij}
- Initial distribution $\alpha(0)$

Finite game

states

$$
P=\left(\begin{array}{ccccc}
S=\{-2 & -1 & 0 & 1 & 2\} \\
1 & 0 & 0 & 0 & 0 \\
1-p & 0 & p & 0 & 0 \\
0 & 1-p & 0 & p & 0 \\
0 & 0 & 1-p & 0 & p \\
n & n & n & n & 1
\end{array}\right)
$$

Initial distribution $\alpha(0)=(0,0,1,0,0)$
Prob. distribution after 1 game: $\alpha(1)=(0,1-p, 0, p, 0)=\alpha(0) \mathrm{P}$
Prob. distribution after 2 games: $\alpha(2)=\alpha(1) \mathrm{P}=\alpha(0) P^{2}$

Prob. distribution after n games: $\alpha(n)=\alpha(n-1) \mathrm{P}=\alpha(0) P^{n}$

Probability distribution vector $\alpha(n)$ denotes the probabilities that the system is in each state at time n. Probability distribution vector $\alpha(n)$ depends upon the initial state of the system $\alpha(0)$ and transition matrix P.

Transition matrix

square matric $P, p_{i j}$ means probability of transition form place $\mathrm{P} i$ to place $\mathrm{P} j$.

$$
\begin{aligned}
& P=\left(\begin{array}{ccccc}
0 & 0,5 & 0,5 & 0 & 0 \\
0 & 0 & 0,5 & 0,5 & 0 \\
0 & 0 & 0 & 0,5 & 0,5 \\
0,5 & 0 & 0 & 0 & 0,5 \\
0,5 & 0,5 & 0 & 0 & 0
\end{array}\right) \\
& a(1)=a(0) P \\
& a(2)=a(1) P \\
& \vdots \\
& a(n+1)=a(n) P
\end{aligned}
$$

$$
\begin{aligned}
& P=\left(\begin{array}{ccccc}
0 & 0,5 & 0,5 & 0 & 0 \\
0 & 0 & 0,5 & 0,5 & 0 \\
0 & 0 & 0 & 0,5 & 0,5 \\
0,5 & 0 & 0 & 0 & 0,5 \\
0,5 & 0,5 & 0 & 0 & 0
\end{array}\right) \\
& a(n+1)=a(n) P \\
& \lim _{n \rightarrow \infty} a(n+1)=\lim _{n \rightarrow \infty} a(n)=a \\
& a=a P
\end{aligned}
$$

Example - Stochastic Petri Net

- State space $=\{P 1, P 2, P 3\}$
- Transition matrix P
- square matric $P, p_{i j}$ means probability of transition form place Pi to place Pj.
- Initial distribution $a(0)$ and transition matrix P uniquely determine the distribution $a(n)$ after n steps.

$$
\begin{aligned}
& P=\left(\begin{array}{lll}
0 & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) ; \\
& a(0)=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) ; \\
& a(1) \cdot P=a(0)
\end{aligned}
$$

Markov Chains

- A Markov Chain is a weighted digraph representing a discrete-time system that can be in any number of discrete states
- The transition matrix P for a Markov chain is matrix of probabilities of moving from one state to another
- $p_{\mathrm{ij}}=$ probability of moving from state i to j is independent of what happened before moving to state j and how one got to state i (Markov assumption)
- Sum of probabilities $\alpha(n)$ for each time n must be one.

$$
\alpha(n)=\alpha(n-1) \mathrm{P}=\alpha(0) P^{n}
$$

Birth-death chain

Example 12.8. Birth-death chain. This is a general model in which a population may change by at most 1 at each time step. Assume the size of a population is x. The birth probability p_{x} is the transition probability to $x+1$, the death probability q_{x} is the transition to $x-1$. and $r_{x}=1-p_{x}-q_{x}$ is the transition to x. Clearly, $q_{0}=0$. The transition matrix is now

$$
\left[\begin{array}{cccccc}
r_{0} & p_{0} & 0 & 0 & 0 & \ldots \\
q_{1} & r_{1} & p_{1} & 0 & 0 & \ldots \\
0 & q_{2} & r_{2} & p_{2} & 0 & \ldots \\
& & & & & \ddots
\end{array}\right]
$$

Stable (regular) process

- A common question arising in Markov-chain models is, what is the longterm probability that the system will be in each state?
- The vector containing these long-term probabilities is called the steadystate vector of the Markov chain
- Stable process $-\alpha(n)$ tends to a limit α as $n \rightarrow \infty$, this steady state limit does not depend on the initial state.
- Key to the study of Markov chains is the study of powers of transition matrix P.
- Any nonnegative vector which satisfies $\alpha=\alpha \mathrm{P}$ and whose components sum to one is called a stationary probability distribution of the Markov Chain.

- Chutes and Ladders is a board game where players spin a pointer to determine how they will advance
- The board consists of 100 numbered squares
- The objective is to land on square 100
- However, the board is filled with chutes and ladders, which move a player backward or forward if landed on.

Simulation

- Objectives:
- Find frequencies for being at each position
- Find mean number of moves to win
- Find standard deviation
- Simulate a large number of games

Results of Transition Matrix

- After 1000 moves, the probability vector reached a limit of $\{0,0, \ldots 1$
- This means that after 1000 moves, the game is expected to be won!!!

Results of simulation

- We ran 250,000 games
- Mean is approximately 39.65 moves to reach square 100 .
- The standard deviation is approximately 24.00

DTMC simulation

DTMC with 3 states is given by transition matrix P and initial state $\alpha(1)=(1,0,0)$.

1. Simulate one run with 100 steps. (resp. 500,1000 steps)
2. Estimate the steady-state distribution
```
P}=[0.2,0.3,0.5;0.1,0.1,0.8;0.4,0.3,0.3]
steps=100;
states=zeros(steps,1)
states(1)=1% start,
for i=1:steps-1
    states(i+1)=find(rand<cumsum(P(states(i),:)),1)
end
%steady-state distribution
freq=hist(states,1:3);
a_est=freq/steps

\section*{DTMC analytical solution}

DTMC with 3 states is given by transition matrix \(P\) and initial state \(\alpha(1)=(1,0,0)\).
1. Determine \(\mathrm{P}^{\mathrm{n}}\)
2. Determine the steady-state distribution
```

%Steade-state distribution lim a(n)=a(0) P^n ever since P^8
%a=(0.2708,0.2500,0.4792)
limP=P^10
A=[(P-eye(length(P)))';[1,1,1]]

a=A\[0;0;0;1] % Aa=[0,0,0,1]' together with normalize

```

\section*{Bernoulli trials as Markov chain}

There are only two possible outcomes for each trial, often designated success or failure.
The probability of success, \(p\), is the same for every trial.
State space \(=(S, F)\)


Probability vector \(a(n)\) - probability of states \(S\) or \(F\) after \(n\) trials.
\(\left(a_{S}(1), a_{F}(1)\right)=\left(p\left(a_{S}(0)+a_{F}(0)\right),(1-p)\left(a_{S}(0)+a_{F}(0)\right)\right)=(p, 1-p)\)
\[
\begin{aligned}
& a=a P \\
& \left(a_{S}, a_{F}\right)=\left(p\left(a_{S}+a_{F}\right),(1-p)\left(a_{S}+a_{F}\right)\right) \\
& \left(a_{S}, a_{F}\right)=(p, 1-p)
\end{aligned}
\]

\section*{Geometric distribution as absorbing Markov chain}

The geometric distribution is the only discrete memoryless random distribution. It is a discrete analog of the exponential distribution. The probability distribution of the number X of Bernoulli trials needed to get one success
```

%an2 = an(2) Probability of failure
state after n steps
for n = 1:15;
an=a0* P^n
an2(n)=an(2)
end
plot(1:15,an2,'-*')

$$
\begin{aligned}
& P=\left(\begin{array}{cc}
1 & 0 \\
p & 1-p
\end{array}\right) ; a(0)=(0,1) \\
& a(1)=(p, 1-p) \\
& a(2)=\left(2 p-p^{2},(1-p)^{2}\right) \\
& a(n)=\left(1-(1-p)^{n},(1-p)^{n}\right)
\end{aligned}
$$

```

An absorbing state is a state that, once entered, cannot be left.

\[
\begin{aligned}
& a=a P \\
& \left(a_{S}, a_{F}\right)=\left(a_{S}+p a_{F},(1-p) a_{F}\right) \\
& \left(a_{S}, a_{F}\right)=(1,0)
\end{aligned}
\]

\section*{Geometric distribution (control and security measures)}

Example: Functioning of some device is inspected once a day - at 6p.m.
Probablity \(p\) of defect (success!) is same for the whole of observed time: \(p=0.1\).
Estimate the probabilty that errorless period is longer then 5 days.
Estimate the average errorless period.
```

p=0.1;n=500;
days=zeros(n,1);
for i = 1:n
while rand > p %failure (OK)
days(i)=days(i)+1;
end
end
mean(days))
sum(days>5)/n

```
\[
\begin{gathered}
P=\left(\begin{array}{cc}
1 & 0 \\
p & 1-p
\end{array}\right) ; a(0)=(0,1) \\
a(n)=\left(1-(1-p)^{n},(1-p)^{n}\right) \\
p=0.1 \\
a(6)=\left(1-0.9^{6} ; 0.9^{6}\right) \\
1-c d f(6)=(1-p)^{6}=0.53 \\
E[X]=\frac{1-p}{p}=9(\text { days })
\end{gathered}
\]```

