Discrete Time Markov Chain (DTMC)

- I. Introduction
- II. 1D Random walk
- III. The Concept of a Markov Chain
- IV. The Chutes and Ladders Transition Matrix
- V. Simulation Techniques
- VI. Repeated Play
- VII. Conclusion

Fair play – tossing a coin

Fair coin is tossed repeatedly.

Gambler bets on result "head" one euro. (win with probability p = 1/2). Let us denote the state of this stochastic process by gamblers amount of money. Than state space S is countable set. $S = \{..., -1, -2, 0, 1, 2, ...\}$. Discretization of a time: 1 step = 1 game

Simulation of 100 games:

```
steps=100;
S=zeros(steps,1)
for i =1:steps-1
    if rand>0.5
    S(i+1)=S(i)+1
    else
        S(i+1)=S(i)-1
    end
end
plot(1:steps,S,'*m--')
```


Simulation - repeated play

Repeat the experiment for 1000 gamblers, determine the distribution of final win.

Tossing a coin - Finite Game

```
% S = {-2,-1,0,1,2}
function[vyhra,S]=game2(steps,p)
% [S(i)]=game2(steps,p)%No steps, prob. Of success
S(1)=0;
for i =1:steps-1
    if rand
```

Game as 1D random walk

Tossing a coin is an example of random walk: If we picture all states arranged on line, we move from one state to one of its neighbours.

- How process evolves depends on the probability of moving from one state to another.
- The transition matrix *P* is a matrix whose (i,j)th entry is transition probabilites p_{ij} from *i*th state to *j*th state.

$$p_{i,i+1} = p$$
$$p_{i+1,i} = 1 - p$$

Tossing coin as a Markov chain

Memoryless property

The outcome of the *n*th toss is independent of the results of tosses 1, ..., n - 1. If we know what happened at time *n*-1, then any other information about the past does not affect the probability distribution for time n.

In general, a Markov chain is given by

- A state space S a countable set of states
- Transition probabilities p_{ii}
- Initial distribution $\alpha(0)$

Finite game

states

. . .

-	S={-2	-1	0	1	2}
	/ 1	0	0	0	0
	1-p	0	p	0	0
P =	0	1-p	0	p	0
	0	0	1 - p	0	p
		0	0	0	- 1 /

Initial distribution $\alpha(0) = (0,0,1,0,0)$ Prob. distribution after 1 game: $\alpha(1) = (0,1-p,0,p,0) = \alpha(0)P$ Prob. distribution after 2 games: $\alpha(2) = \alpha(1)P = \alpha(0)P^2$

Prob. distribution after *n* games: $\alpha(n) = \alpha(n-1)P = \alpha(0)P^n$

Probability distribution vector $\alpha(n)$ denotes the probabilities that the system is in each state at time *n*. Probability distribution vector $\alpha(n)$ depends upon the initial state of the system $\alpha(0)$ and transition matrix *P*.

Example – Stochastic Petri Net

- State space = {P1, P2, P3}
- Transition matrix P
 - square matric *P*, p_{ij} means probability of transition form place P*i* to place P*j*.
 - Initial distribution a(0) and transition matrix P uniquely determine the distribution a(n) after n steps.

Markov Chains

- A Markov Chain is a weighted digraph representing a discrete-time system that can be in any number of discrete states
- The transition matrix *P* for a Markov chain is matrix of probabilities of moving from one state to another
- p_{ij} = probability of moving from state i to j **is independent of what happened before** moving to state j and how one got to state i (Markov assumption)
- Sum of probabilities $\alpha(n)$ for each time *n* must be one.

$$\alpha(n) = \alpha(n-1)\mathbf{P} = \alpha(0)P^n$$

Birth-death chain

Example 12.8. Birth-death chain. This is a general model in which a population may change by at most 1 at each time step. Assume the size of a population is x. The birth probability p_x is the transition probability to x + 1, the death probability q_x is the transition to x - 1. and $r_x = 1 - p_x - q_x$ is the transition to x. Clearly, $q_0 = 0$. The transition matrix is now

ſ	r_0	p_0	0	0	0	
	q_1	r_1	p_1	0	0	
	0	q_2	r_2	p_2	0	
						γ_{i_1}

Stable (regular) process

- A common question arising in Markov-chain models is, what is the long-term probability that the system will be in each state?
- The vector containing these long-term probabilities is called the **steadystate vector** of the Markov chain
- Stable process $-\alpha(n)$ tends to a limit α as $n \to \infty$, this steady state limit does not depend on the initial state.
- Key to the study of Markov chains is the study of powers of transition matrix *P*.
- Any nonnegative vector which satisfies $\alpha = \alpha$ P and whose components sum to one is called a **stationary** probability distribution of the Markov Chain.

How the Game is Played

- Chutes and Ladders is a board game where players spin a pointer to determine how they will advance
- The board consists of 100 numbered squares
- The objective is to land on square 100
- However, the board is filled with chutes and ladders, which move a player backward or forward if landed on.

Simulation

- Objectives:
 - Find frequencies for being at each position
 - Find mean number of moves to win
 - Find standard deviation
 - Simulate a large number of games

Results of Transition Matrix

- After 1000 moves, the probability vector reached a limit of {0,0,...1}
- This means that after 1000 moves, the game is expected to be won!!!

Results of simulation

- We ran 250,000 games
- Mean is approximately 39.65 moves to reach square 100.
- The standard deviation is approximately 24.00

DTMC simulation

DT stat 1. 2.	MC with 3 states is given by transition matrix P and initial e $\alpha(1) = (1,0,0)$. Simulate one run with 100 steps. (resp. 500, 1000 steps) Estimate the steady-state distribution	$P = \begin{pmatrix} 0, 2\\ 0, 1\\ 0, 4 \end{pmatrix}$	0,3 0,1 0,3	$ \begin{array}{c} 0,5\\ 0,8\\ 0,3 \end{array} \right) $
	<pre>P=[0.2,0.3,0.5;0.1,0.1,0.8;0.4,0.3,0.3]; steps=100; states=zeros(steps,1) states(1)=1% start</pre>			
	<pre>for i=1:steps-1 states(i+1)=find(rand<cumsum(p(states(i),: end<="" pre=""></cumsum(p(states(i),:></pre>)),1)		
	<pre>%steady-state distribution freq=hist(states,1:3); a est=freq/steps</pre>		DT	MC.m

DTMC analytical solution

DTMC with 3 states is given by transition matrix P and initial			0,3	0,5
state $\alpha(1) = (1,0,0)$.		0,1	0,1	0,8
1. Determine P ⁿ		0.4	03	03
2. Determine the steady-state distribution	`	(0, 4	0,5	0,5)

```
%Steade-state distribution lim a(n)=a(0)P^n ever since P^8
% a = (0.2708, 0.2500, 0.4792)
limP=P^10
A=[(P-eye(length(P)))';[1,1,1]]
a=A\[0;0;0;1] % Aa=[0,0,0,1]' together with normalize
```

Bernoulli trials as Markov chain

There are only **two possible outcomes** for each trial, often designated success or failure.

The probability of success, p, is the same for every trial.

State space = (S, F)

Probability vector a(n) - probability of states S or F after n trials.

 $(a_{s}(1), a_{F}(1)) = (p(a_{s}(0) + a_{F}(0)), (1 - p)(a_{s}(0) + a_{F}(0))) = (p, 1 - p)$

$$a = aP$$

 $(a_s, a_F) = (p(a_s + a_F), (1 - p)(a_s + a_F))$
 $(a_s, a_F) = (p, 1 - p)$

Bernoulli.m

Geometric distribution as absorbing Markov chain

The geometric distribution is the only discrete **memoryless** random distribution. It is a discrete analog of the exponential distribution.

The probability distribution of the number X of Bernoulli trials needed to get one success

```
%an2 = an(2) Probability of failure
state after n steps
for n = 1:15;
an=a0*P^n
an2(n)=an(2)
end
plot(1:15,an2,'-*')
```

```
P = \begin{pmatrix} 1 & 0 \\ p & 1-p \end{pmatrix}; \ a(0) = (0,1)a(1) = (p,1-p)a(2) = (2p - p^2, (1-p)^2)a(n) = (1 - (1-p)^n, (1-p)^n)
```

An absorbing state is a state that, once entered, cannot be left.

Geometric distribution (control and security measures)

Example: Functioning of some device is inspected once a day – at 6p.m. Probablity p of defect (success!) is same for the whole of observed time: p = 0.1.

Estimate the probability that errorless period is longer then 5 days. Estimate the average errorless period.

```
p=0.1;n=500;
days=zeros(n,1);
for i = 1:n
    while rand > p %failure (OK)
    days(i)=days(i)+1;
    end
end
mean(days))
sum(days>5)/n
```

$$P = \begin{pmatrix} 1 & 0 \\ p & 1-p \end{pmatrix}; \ a(0) = (0,1)$$
$$a(n) = (1 - (1-p)^n, (1-p)^n)$$

p = 0.1 $a(6) = (1 - 0.9^{6}; 0.9^{6})$ $1 - cdf(6) = (1 - p)^{6} = 0.53$ $E[X] = \frac{1 - p}{p} = 9(days)$