Hidden Markov Model

- The simplest dynamic Bayesian nework
- Application in speech recognition, handwriting, gesture recognition...

Hidden Markov Model

- In a room that is not visible to an observer there is a genie. The room contains urns $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots$ each of which contains a known mix of balls, each ball labeled $\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \ldots$. The genie chooses an urn in that room and randomly draws a ball from that urn.

Observer can observe the sequence of the balls but not the sequence of urns from which they were drawn.

States $=\{\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3\}$
Observations $=\{\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \mathrm{y} 4\}$

Transition probabilities $\mathbf{a i j}=\mathrm{P}(\mathrm{Xi}->\mathrm{Xj})$
Emission probabilities $\quad \mathbf{b i j}=P(X i->y j)$

Hidden Markov Model

Hidden state sequence $x(\mathrm{t}-1), x(\mathrm{t}), x(\mathrm{t}+1)$. Markov process which is hidden behind a green screen is determined by the current state and transition matrix \mathbf{P}. We are only able to observe the $y(\mathrm{t})$ which are related to the hidden states by emission matrix \mathbf{E}.

States $=\{\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3\}$
Observations $=\{\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \mathrm{y} 4\}$
Transition probabilities $\mathrm{P}_{\mathrm{ij}}=\mathrm{P}(\mathrm{Xi}->\mathrm{Xj})$
Emission probabilities $\quad \mathbf{E}_{\mathrm{ij}}=\mathrm{P}(\mathrm{Xi}->\mathrm{yj})$

Example: The dishonest casino

A casino has two dice:

- Fair die
$\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)=\mathrm{P}(6)=1 / 6$
- Loaded die
$\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)=1 / 10$ $P(6)=1 / 2$
Casino player switches between fair and loaded die with probability $1 / 20$ at each turn

Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$

Question \# 1 - Decoding

GIVEN

A sequence of rolls by the casino player
$O=455264621461461361366616646616366163661636165156151151461235623$

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

Given $H M M=(P, E, p 0)$ and observation O.
Find optimal state sequence X for the underlying Markov process.

Question \# 2 - Evaluation

GIVEN

A sequence of rolls by the casino player
$O=4552646214614613613666166466163661636616361651561511514612356234$

$$
\text { Prob }=1.3 \times 10^{-35}
$$

QUESTION

How likely is this sequence, given our model of how the casino works?

$$
\begin{aligned}
& H M M=(P, E, p 0) \\
& P(O / H M M)=?
\end{aligned}
$$

Question \# 3 - Training

GIVEN

A sequence of rolls by the casino player

45526462146146136136661664661636616366163616515615115146123

$$
\operatorname{Prob}(6)=64 \%
$$

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

Given O and number states.

$$
H M M=(P, E, p 0)=?
$$

$$
P={ }_{L}\left(\begin{array}{ll}
0.95 & 0.05 \\
0.05 & 0.95
\end{array}\right)
$$

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

$$
E=F\left(\begin{array}{cccccc}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
.1 & .1 & .1 & .1 & .1 & .5
\end{array}\right)
$$

Question \# 2 - Evaluation

Initial distribution $\mathrm{p} 0=(1,0)-$ we start with fair dice

Consider observation sequence $O=4552$
and state sequence $X=\{F, F, L, L\}$

```
P(4552\capFFLL) =
=p0(F)*E(F4)*P(FF)*E(F5)*P(FL)*E(L5)*P(LL)*E(L2)=
=1 }\frac{1}{6}\cdot0.95\cdot\frac{1}{6}\cdot0.05\frac{1}{10}0.95\cdot\frac{1}{10}=1.25\cdot1\mp@subsup{0}{}{-5
P(4552\capFFFL)
all16 variation
```

By summing over all possible state sequence we obtain $\mathrm{P}(\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4)$

Question \# 2 - Evaluation forward algorithm

Given: HMM: p0 - Initial distribution
P - Transition matrix (nxn) $\quad \mathrm{P}(\mathrm{i}, \mathrm{j})=\mathrm{P}($ state $i->$ state j)
$\mathrm{E}-$ Emission matrix (nxm) $\quad \mathrm{E}(\mathrm{i}, \mathrm{j})=\mathrm{P}($ state $i->\mathrm{O} j)$
sequence of observation $\mathrm{O}=(\mathrm{O} 1, \mathrm{O} 2, \ldots, \mathrm{OT})$
Find $\mathrm{P}(\mathrm{O} 1, \mathrm{O} 2, \ldots, \mathrm{OT})$
For $\mathrm{t}=1,2, \ldots \mathrm{~T}$ define vector $\alpha(\mathrm{t})$, where $\alpha_{\mathrm{i}}(\mathrm{t})=\mathrm{P}(\mathrm{O} 1, \ldots \mathrm{Ot}$, i state $)$

$$
\begin{aligned}
& \alpha(1)=\left(p 0_{1} \cdot E(1, O 1), p 0_{2} \cdot E(2, O 1), \ldots, p 0_{n} \cdot E(n, O 1)\right)=p 0 . * E(:, O 1) \\
& \alpha_{j}(t)=E(j, O t) \cdot \sum_{i=1 . . n} \alpha_{i}(t-1) * P(i, j) \\
& \alpha(t)=E(:, O t) . * \alpha(t-1) \cdot P \\
& P(O 1, O 2, \ldots O T)=\sum_{i=1 . . n} \alpha_{i}(T)
\end{aligned}
$$

Question \# 2 - Evaluation forward algorithm

$$
\begin{aligned}
& \alpha(1)=\left(p 0_{1} \cdot E(1, O 1), p 0_{2} \cdot E(2, O 1), \ldots, p 0_{n} \cdot E(n, O 1)\right)=p 0 . * E(:, O 1) \\
& \alpha(t)=E(:, O t) .{ }^{*} \alpha(t-1) \cdot P \\
& P={ }_{L}^{F}\left(\begin{array}{ll}
0.95 & 0.05 \\
0.05 & 0.95
\end{array}\right) \\
& \text { sum(alpha(:,T)) } \\
& \alpha=\left(\begin{array}{lllll}
\frac{1}{6} & \ldots & \ldots & \alpha_{F}(T) \\
0 & \ldots & \ldots & \alpha_{L}(T)
\end{array}\right)
\end{aligned}
$$

Question \# 1 - Decoding

Initial state $\mathrm{p} 0=(1,0)-$ we start with fair dice

Given $H M M=(P, E, p 0)$ and observation O.
Find optimal state sequence X for the underlying Markov process.

```
P}=[0.95,0.05;0.05,0.95]
E=[1/6,1/6,1/6,1/6,1/6,1/6;1/10,1/10,1/10,1/1
0,1/10,1/2];
observ=[4,5,1,2,6,6,6];
pStates = hmmdecode(observ,P,E); % P (X/O)
estStates= hmmviterbi(observ,P,E);
```

	F	0,95	0,89	0,79	0,62	0,33	0,24
pStates $=$	L	0,04	0,11	0,21	0,38	0,67	0,76
estStates $=$	1	1	1	1	2	0,22	

Hidden Markov Model - example

- States $=\{$ 'OK';'defect';'serious defect' $\}$
- Observations $=\{1,2,3,4\}$

$$
P=\left(\begin{array}{ccc}
0.9 & 0.1 & 0.1 \\
0 & 0.9 & 0.1 \\
0 & 0 & 1
\end{array}\right)
$$

a) Transition probabilities $\mathrm{Pij}=\mathrm{P}(\mathrm{Xi}->\mathrm{Xj})$
b) Emission probabilities $E i j=P(X i->y j)$

$$
E=\begin{gathered}
O K \\
\text { defect } \\
\text { ser.def } f
\end{gathered}\left(\begin{array}{cccc}
0.9 & 0.1 & 0 & 0 \\
0.5 & 0.2 & 0.2 & 0.1 \\
0 & 0.1 & 0.1 & 0.8
\end{array}\right)
$$

```
%generovani skryte posloupnosti states a pozorovane
posloupnosti observ
[observ,states] = hmmgenerate(100,P,E)
[estimateP,estimateE] = hmmestimate(observ,states);
```

