IV. DETERMINANTS

Martina Bečvářová

Winter semester 2023/2024
Faculty of Transportation Sciences, CTU in Prague

Definition

If A is an $n \times n$ matrix

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots \ldots & \ldots & \ldots \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)
$$

then the determinant of A, denoted $\operatorname{det} A$, is defined by

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} \operatorname{sgn} \pi \cdot a_{1 \pi(1)} \cdot a_{2 \pi(2)} \cdot \ldots \cdot a_{n \pi(n)} .
$$

Notes for better understanding

1. Here π is the symbol for a permutation of the indices of matrix columns. A permutation of $(1,2, \ldots, n)$ is an n-tuple $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ that contains each of the numbers $1, \ldots, n$ exactly once. The set of all permutations of $(1,2, \ldots, n)$ is denoted S_{n}. For example, if $S=\{1,2,3\}$, then the set S_{3} consists of six permutations $\left(S_{3}=\{(1,2,3),(1,3,2),,(2,1,3),,(2,3,1),(3,1,2),(3,2,1)\}\right)$. We know that S_{n} has n ! elements $(n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1)$.
2. The symbol $\operatorname{sgn} \pi$ is called the sign of permutation $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$. The sign of permutation π is defined to be 1 if there is an even number of pairs of integers (j, k) with $1 \leq j<k \leq n$ such that $m_{j}>m_{k}$ and -1 if there is an odd number of such pairs. In other words, the sign of a permutation equals -1 if the natural order has been reversed odd number times. For example the permutations $(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)$ have their signs $1,-1,-1,1$, -1 and 1 .
3. We will denote the determinant of the matrix A by the symbol

$$
\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right|, \quad \text { or } \operatorname{det} A, \quad \text { or }|A| \text {. }
$$

4. In some texts, the determinant is defined as a function on the square matrices that is linear as a function of each row and that it changes the sign when two rows are interchanged, so that the determinant is a multilinear and alternating function on the square matrices. To prove that such a function exists and that it is unique is a non-trivial task.
5. Sometimes we will speak about the „rows or columns of a determinant" instead of a more precise expression „rows or columns of a matrix from which we calculate the determinant".

How to calculate determinant of square matrices of „small" row ranks

1. If A is 1×1 matrix, $A=\left(a_{11}\right)$, then $\operatorname{det} A=a_{11}$.
2. If A is 2×2 matrix

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

then

$$
\operatorname{det} A=a_{11} a_{22}-a_{12} a_{21}
$$

Example

We have

$$
\left|\begin{array}{rr}
2 & 3 \\
-1 & 5
\end{array}\right|=2 \cdot 5-(-1) \cdot 3=10+3=13
$$

3. If A is a 3×3 matrix

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right),
$$

then

$$
\operatorname{det} A=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}
$$

The above described „algorithm" is called Sarrus' rule.

Example

We have

$$
\begin{gathered}
\left|\begin{array}{rrr}
2 & 3 & 0 \\
-1 & 5 & 1 \\
0 & 2 & 1
\end{array}\right|=2 \cdot 5 \cdot 1+3 \cdot 1 \cdot 0+(-1) \cdot 2 \cdot 0-0 \cdot 5 \cdot 0-2 \cdot 2 \cdot 1-(-1) \cdot 3 \cdot 1= \\
=10+0+0-0-4+3=9
\end{gathered}
$$

For practical caluculations, the definition of the determinants is not, in general, suitable because n ! grows large very rapidly as n increases. For example,

$$
\begin{array}{ll}
n=2 & S_{2}=2!=2 \\
n=3 & S_{3}=3!=6 \\
n=4 & S_{4}=4!=24 \\
n=5 & S_{5}=5!=120
\end{array}
$$

We wish to find a more effective method for our computation.

General theorems

1. If A is a square matrix with one zero row, then $\operatorname{det} A=0$.
2. If A is a square matrix with two equal rows, then $\operatorname{det} A=0$.
3. Suppose that A is a square matrix. If B is the matrix obtained from A by interchanging two rows, then $\operatorname{det} B=-\operatorname{det} A$.
4. For every a square matrix $A, \operatorname{det} A=\operatorname{det} A^{t}$.
5. Suppose that A is a square matrix. If B is the matrix obtained from A by multiplying a row by a scalar λ, then $\operatorname{det} B=\lambda \cdot \operatorname{det} A$.
6. Suppose that A is a square matrix. If B is the matrix obtained from A by multiplying it by a scalar λ, then $\operatorname{det} B=\lambda^{n} \cdot \operatorname{det} A$.
7. Suppose that A is a square matrix. If B is the matrix obtained from A by adding, say, λ-times the i-th row to the j-th row then, $\operatorname{det} B=\operatorname{det} A$.
8. The determinant of every upper-triangualar (or lower-triangular) matrix is equal to the product of all diagonal entries, thus $\operatorname{det} A=a_{11} \cdot a_{22} \cdot a_{33} \cdot \ldots \cdot a_{n n}$.
9. The determinant of every diagonal matrix is equal to the product of the diagonal entries, so that $\operatorname{det} A=a_{11} \cdot a_{22} \cdot a_{33} \cdot \ldots \cdot a_{n n}$.

Try to prove these theorems using only the definition of the determinant of a matrix.

Theorem

If A and B are square matrices of the same size, then

$$
\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B
$$

The following result shows how we can calculate determinant of $n \times n$ matrix from determinants of $(n-1) \times(n-1)$ matrices.

Definition

Let A be a matrix of size $n \times n$. By the symbol $A_{i j}$ we mean the matrix of size $(n-1) \times(n-1)$ obtained from the matrix A by omitting its i-th row and j-th column. The determinant of matrix $A_{i j}$ is called the subdeterminant of matrix A which corresponds to the entry $a_{i j}$.

Theorem - Laplace expansion along the i-th row (along the j-th column)

Let A be a matrix of size $n \times n$. Then

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j}
$$

which is called the Laplace expansion along the i-th row. Alternatively

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} A_{i j},
$$

which is called the Laplace expansion along the j-th column.
Note the independence on the row (column) chosen. Note also that on the left hand side, there is just determinant of matrix A of size $n \times n$, on the right hand side there is n determinants of matrices of size $(n-1) \times(n-1)$ which come from the matrix A .

Example

Calculate the determinant of a matrix A, where

$$
A=\left|\begin{array}{llll}
1 & 1 & 3 & 4 \\
0 & 1 & 1 & 1 \\
0 & 1 & 4 & 0 \\
0 & 1 & 0 & 3
\end{array}\right|
$$

The matrix A is of size 4×4, so that for its calculation it is impossible to use Sarrus' algorithm. We use preferably Laplace expansion along the 1 -th column because it contains many zero entries.

$$
\begin{gathered}
\left|\begin{array}{cccc}
1 & 1 & 3 & 4 \\
0 & 1 & 1 & 1 \\
0 & 1 & 4 & 0 \\
0 & 1 & 0 & 3
\end{array}\right|= \\
=(-1)^{1+1} \cdot 1 \cdot\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 4 & 0 \\
1 & 0 & 3
\end{array}\right|+(-1)^{2+1} \cdot 0 \cdot\left|\begin{array}{ccc}
1 & 3 & 4 \\
1 & 4 & 0 \\
1 & 0 & 3
\end{array}\right|+(-1)^{3+1} \cdot 0 \cdot\left|\begin{array}{ccc}
1 & 3 & 4 \\
1 & 1 & 1 \\
1 & 0 & 3
\end{array}\right|+(-1)^{4+1} \cdot 0 \cdot\left|\begin{array}{ccc}
1 & 3 & 4 \\
1 & 1 & 1 \\
1 & 4 & 0
\end{array}\right|= \\
=1 \cdot\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 4 & 0 \\
1 & 0 & 3
\end{array}\right|+0+0+0=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 4 & 0 \\
1 & 0 & 3
\end{array}\right|=12+0+0-4-0-3=5 .
\end{gathered}
$$

Applications of determinants

In what follows, we will offer the most important applications of determinants.

- The algorithm for calculation of an inverse matrix

Definition

Let A be a matrix of size $n \times n$. We define the adjugate matrix of A to be the $n \times n$ matrix adj A given by

$$
(\operatorname{adj} A)_{i j}=(-1)^{i+j} \operatorname{det} A_{j i}
$$

It is very important to note the interchange of the indices in the above definition. The adjugate matrix has the following useful property.

Theorem

Let A be matrix of size $n \times n$, adj A its adjugate matrix, then

$$
A \cdot \operatorname{adj} A=(\operatorname{det} A) \cdot E_{n \times n} .
$$

The matrix $(\operatorname{det} A) \cdot E_{n \times n}$ is a diagonal matrix in which every entry on the diagonal is the scalar $(\operatorname{det} A)$. We can use the above result to obtain a convenient way of determinig whether or not a given matrix is invertible, and a new way of computing inverses.

Theorem

A square matrix A is invertible, if and only if $\operatorname{det} A \neq 0$, in which case the inverse is given by

$$
A^{-1}=\frac{1}{\operatorname{det} A} \cdot \operatorname{adj} A
$$

Note

The above result provides a new way how to compute inverse matices.

In particular, one should note the factor $(-1)^{i+j}= \pm 1$. The sign is given according to the scheme

$$
\begin{array}{ccccc}
+ & - & + & - & \ldots \\
- & + & - & + & \ldots \\
+ & - & + & - & \ldots \\
- & + & - & + & \ldots
\end{array}
$$

Example

Let be A

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
0 & 5 & 7 \\
3 & 2 & 1
\end{array}\right)
$$

Calculate A^{-1} (if exists).

$$
\operatorname{det} A=\left|\begin{array}{ccc}
1 & -1 & 0 \\
0 & 5 & 7 \\
3 & 2 & 1
\end{array}\right|=5+0-21-0-0-14=-30 \neq 0
$$

Now we know that the matrix A^{-1} exists. We will calculate the adjugate matrix of A.

$$
\begin{aligned}
& \operatorname{det} A_{11}=\left|\begin{array}{ll}
5 & 7 \\
2 & 1
\end{array}\right|=-9 \quad \operatorname{det} A_{21}=\left|\begin{array}{rr}
-1 & 0 \\
2 & 1
\end{array}\right|=-1 \quad \operatorname{det} A_{31}=\left|\begin{array}{rr}
-1 & 0 \\
5 & 7
\end{array}\right|=-7 \\
& \operatorname{det} A_{12}=\left|\begin{array}{ll}
0 & 7 \\
3 & 1
\end{array}\right|=-21 \quad \operatorname{det} A_{22}=\left|\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right|=1 \quad \operatorname{det} A_{32}=\left|\begin{array}{ll}
1 & 0 \\
0 & 7
\end{array}\right|=7 \\
& \operatorname{det} A_{13}=\left|\begin{array}{ll}
0 & 5 \\
3 & 2
\end{array}\right|=-15 \quad \operatorname{det} A_{23}=\left|\begin{array}{rr}
1 & -1 \\
3 & 2
\end{array}\right|=5 \quad \operatorname{det} A_{33}=\left|\begin{array}{rr}
1 & -1 \\
0 & 5
\end{array}\right|=5
\end{aligned}
$$

So adj A is

$$
\operatorname{adj} A=\left(\begin{array}{rrr}
-9 & 1 & -7 \\
21 & 1 & -7 \\
-15 & -5 & 5
\end{array}\right)
$$

The inverse matrix of A is

$$
A^{-1}=-\frac{1}{30} \cdot\left(\begin{array}{rrr}
-9 & 1 & -7 \\
21 & 1 & -7 \\
-15 & -5 & 5
\end{array}\right)
$$

In order to calculate the inverse matrix of matrix A of size 3 we had to compute one determinant of a matrix A and 9 determinants of adjugate matrices of matrix A.

- The algorithm for solving system of linear equations with a regular matrix

Theorem (so called Cramer's rule)

Let be $A x^{t}=b^{t}$ non-homogeneous system of linear equations where A is a matrix $n \times n$ of rank n (so that A is a regular matrix), $b \neq o$. Then the system has only one solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ given by

$$
x_{i}=\frac{\operatorname{det} A_{i}}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

where A_{i} is a matrix which formed from the matrix A by exchanging the i-th column of matrix A by the column b^{t}.

Example

Solve the following system of linear equations

$$
\begin{array}{r}
x+y+z=1, \\
x-y=2, \\
x-z=0 .
\end{array}
$$

We will use Cramer's rule.

$$
\begin{gathered}
\operatorname{det} A=\left|\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right|=3, \\
\operatorname{det} A_{x}=\left|\begin{array}{rrr}
1 & 1 & 1 \\
2 & -1 & 0 \\
0 & 0 & -1
\end{array}\right|=3, \quad \operatorname{det} A_{y}=\left|\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 0 & -1
\end{array}\right|=-3, \quad \operatorname{det} A_{z}=\left|\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 2 \\
1 & 0 & 0
\end{array}\right|=3 . \\
x=\frac{\operatorname{det} A_{x}}{\operatorname{det} A}=\frac{3}{3}=1, \quad y=\frac{\operatorname{det} A_{y}}{\operatorname{det} A},=\frac{-3}{3}=-1, \quad z=\frac{\operatorname{det} A_{z}}{\operatorname{det} A},=\frac{3}{3}=1 .
\end{gathered}
$$

So the solution of our system of linear equations is $[1,-1,1]$.

Some geometrical applications of vector spaces, matrices and determinants

- Dot product

To motivate the concept of inner product, let us consider vectors in \mathbb{R}^{2} and \mathbb{R}^{3} as arrows with initial point at the origin. The length of a vector $x \in \mathbb{R}^{2}$ or \mathbb{R}^{3} is called the norm of x, denoted $\|x\|$. Thus for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

Similarly, for $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$,

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
$$

The generalization to \mathbb{R}^{n} is obvious.

Definition

We define the norm of a vector $x, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, by

$$
\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Definition

For all $x, y \in \mathbb{R}^{n}$ we define the dot product of x and y, denoted $x \cdot y$, by

$$
x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$.

Notes

1. Note that the dot product of two vectors in \mathbb{R}^{n} is a number, not a vector.
2. Obviously $x \cdot x=\|x\|^{2}$ for all $x \in \mathbb{R}^{n}$.
3. In particular, $x \cdot x \geq 0$ for all $x \in \mathbb{R}^{n}$, with equality if and only if $x=0$.
4. Also, if $y \in \mathbb{R}^{n}$ is fixed, then clearly the map from \mathbb{R}^{n} to \mathbb{R} sending $x \in \mathbb{R}^{n}$ to $x \cdot y$ is linear.
5. Furthermore, $x \cdot y=y \cdot x$ for all $x, y \in \mathbb{R}^{n}$.

- Inner product

The notion of inner product is a generalization of the dot product.

Definition

An inner product on a vector space V is a function that maps each ordered pair (u, v) of elements of V to a number $\langle u, v\rangle \in F$ and has the following properties:

1. positivity: $\langle v, v\rangle \geq 0$ for all $v \in V$;
2. definiteness: $\langle v, v\rangle=0$ if and only if $v=0$;
3. additivity in the first variable: $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$ for all $u, v, w \in V$;
4. homogenity in the first variable: $\langle a v, w\rangle=a\langle v, w\rangle$ for all $a \in F$ and all $v, w \in V$;
5. conjugate transpose: $\langle v, w\rangle=\overline{\langle w, v\rangle}$ for all $v, w \in V$.

Recall that every real number equals its complex conjugate. Thus if we are dealing with a real vector space, then in the last condition we can simply state that $\langle v, w\rangle=\langle w, v\rangle$ for all $v, w \in V$.

Note

Note in for \mathbb{R}^{n}, the dot product is an inner product.

Definition

An inner product space is a vector space V equipped with an inner product on V.

Definition

Two vectors $u, v \in V$ are said to be orthogonal, if $\langle u, v\rangle=0$.

Note that the order of the vectors does not matter because $\langle u, v\rangle=0$, if and only if $\langle v, u\rangle=0$. Instead of saying that u and v are orthogonal, sometimes we say that u is orthogonal to v. Clearly o is orthogonal to every vector. Futhermore, o is the only vector that is orthogonal to itself.

- Some known theorems

Pythagorean theorem

If u, v are orthogonal vectors in V, then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

v

Cauchy-Schwarz inequality

If u, v are vectors in V, then

$$
|\langle u, v\rangle| \leq\|u\| \cdot\|v\| .
$$

The equality holds if and only if one of u, v is a scalar multiple of the other.

Triangle inequality

If u, v are vectors in V, then

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

The equality holds if and only, if one of u, v is a nonnegative multiple of the other.

$$
\vec{w}=\vec{u}+\vec{v}
$$

Parallelogram equality

If u, v are vectors in V, then

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

$$
\overrightarrow{w_{1}}=\vec{u}+\vec{v}, \quad \overrightarrow{w_{2}}=\vec{u}-\vec{v}
$$

Definition

If u, v are vectors in $V, u \neq o$ and $v \neq o$, then we define the angle φ between vectors u and v as

$$
\cos \varphi=\frac{\langle u, v\rangle}{\|u\| \cdot\|v\|},
$$

where $\varphi \in\langle 0, \pi\rangle$.

Definition

A set of vectors is called orthonormal if the vectors are pairwise orthogonal and each vector has norm 1. An orthonormal basis of V is an orthonormal set of vectors in V that is also a basis of V.

Example

A standard orthonormal basis of the vector space \mathbb{R}^{n} is

$$
B=\{(1,0,0, \ldots, 0),(0,1,0, \ldots, 0),(0,0,1, \ldots, 0), \ldots,(0,0,0, \ldots, 1)\}
$$

Gram-Schmidt theorem

If $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ is a linearly independent set of vectors in V, then there exists an orthonormal set $\left\{e_{1}, \ldots, e_{m}\right\}$ of vectors in V such that

$$
\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}=\operatorname{span}\left\{e_{1}, \ldots, e_{j}\right\}
$$

for $j=1, \ldots, m$.

- Vector product in \mathbb{R}^{3}

Definition

Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$. By the vector product of u and v we mean the vector $w \in \mathbb{R}^{3}$ given by

$$
u \times v=\left(u_{1}, u_{2}, u_{3}\right) \times\left(v_{1}, v_{2}, v_{3}\right)=\left(u_{2} v_{3}-u_{3} v_{2}, u_{3} v_{1}-u_{1} v_{3}, u_{1} v_{2}-u_{2} v_{1}\right)
$$

Note that the vector $u \times v$ is orthogonal to both vectors u and v.

Note that the norm of the vector $u \times v$, that is $\|u \times v\|$, is equal to the area of parallelogram $A B C D$ given by vectors u and v.

- Some applications of determinants in analytic geometry

Plane

1. Let $A=\left[x_{1}, y_{1}\right], B=\left[x_{2}, y_{2}\right]$ and $C=\left[x_{3}, y_{3}\right]$ be three points in the plane V. Decide whether A, B and C lie on a single straight-line.

Calculate the determinant

$$
\operatorname{det} A=\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

If $\operatorname{det} A=0$, then the points A, B and C lie on a single straight-line. If $\operatorname{det} A \neq 0$, then the points A, B and C do not lie on any straight-line.
2. Let $A=\left[x_{1}, y_{1}\right]$ and $B=\left[x_{2}, y_{2}\right]$ be two points in the plane V. Write an analytic equation (so called general equation) of the straight-line $A B$.

Calculate the following determinant to obtain the analytic equation of the straight-line $A B$

$$
\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x & y & 1
\end{array}\right|=\left(y_{1}-y_{2}\right) x+\left(x_{1}-x_{2}\right) y+x_{1} y_{2}-x_{2} y_{1}=0
$$

3. Let $A=\left[x_{1}, y_{1}\right], B=\left[x_{2}, y_{2}\right]$ and $C=\left[x_{3}, y_{3}\right]$ be three points in the plane V. Calculate the area of the triangle $A B C$.

Calculate the following determinant to obtain the area of the triangle $A B C$:

$$
S=\frac{1}{2}| | \begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}| |
$$

Note

From the secondary school we know that the area of the triangle $A B C$ can be calculated as

$$
S=\frac{1}{2} c \cdot v_{c}=\frac{1}{2} b \cdot c \cdot \sin \alpha=\frac{1}{2}\|(|\overrightarrow{A B}| \times|\overrightarrow{A C}|)\| .
$$

Space

1. Let $A=\left[x_{1}, y_{1}, z_{1}\right], B=\left[x_{2}, y_{2}, z_{2}\right], C=\left[x_{3}, y_{3}, z_{3}\right], D=\left[x_{4}, y_{4}, z_{4}\right]$ be four points in \mathbb{R}^{3}. Decide whether A, B, C and D lie on a single plane.

Calculate the determinant

$$
\operatorname{det} A=\left|\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right|
$$

If $\operatorname{det} A=0$, then the points A, B, C and D lie on a single plane. If $\operatorname{det} A \neq 0$, then the points A, B, C and D do not lie on any plane.
2. Let $A=\left[x_{1}, y_{1}, z_{1}\right], B=\left[x_{2}, y_{2}, z_{2}\right]$ and $C=\left[x_{3}, y_{3}, z_{3}\right]$ be three points in \mathbb{R}^{3} (not belonging to a single straight-line). Write the analytic equation (so called general equation) of the plane $A B C$.

Calculate the following determinant to obtain the analytic equation of the plane $A B C$

$$
\operatorname{det} A=\left|\begin{array}{cccc}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x & y & z & 1
\end{array}\right|=0
$$

3. Let $A=\left[x_{1}, y_{1}, z_{1}\right], B=\left[x_{2}, y_{2}, z_{2}\right], C=\left[x_{3}, y_{3}, z_{3}\right]$ and $D=\left[x_{4}, y_{4}, z_{4}\right]$ be four points in \mathbb{R}^{3}. Calculate the volume of the tetrahedron $A B C D$.

Calculate the following determinant to obtain the volume of the tetrahedron $A B C D$

$$
V=\frac{1}{6}| | \begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}| |
$$

Note

From the secondary school we know that the volume of the tetrahedron $A B C D$ can be calculated as

$$
\left.\left.V=\frac{1}{3} S_{A B C} \cdot v=\frac{1}{6}|(|\overrightarrow{A B}| \times|\overrightarrow{A C}|) \cdot| \overrightarrow{A D} \right\rvert\,\right) \mid
$$

where v is the distance of the point D from the plane $A B C$ and $S_{A B C}$ is the area of the triangle $A B C$.

Exercises

1. Calculate the following determinants
a)

$$
\left|\begin{array}{rr}
2 & 5 \\
-2 & 3
\end{array}\right| .
$$

b)

$$
\left|\begin{array}{rr}
1 & -3 \\
-4 & 6
\end{array}\right| .
$$

c)

$$
\left|\begin{array}{ll}
3 & 2 \\
1 & 4
\end{array}\right| .
$$

d)

$$
\left|\begin{array}{ll}
-1 & 1 \\
-3 & 2
\end{array}\right| .
$$

e)

$$
\left|\begin{array}{rr}
1 & 0 \\
a & -2
\end{array}\right| .
$$

f)

$$
\left|\begin{array}{rr}
\sin x & -\cos x \\
\cos x & \sin x
\end{array}\right| .
$$

g)

$$
\left|\begin{array}{rr}
\sin x & -\sin y \\
\cos x & \cos y
\end{array}\right| .
$$

h)

$$
\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & \sin x
\end{array}\right|
$$

i)

$$
\left|\begin{array}{rr}
\tan x & -1 \\
1 & \tan x
\end{array}\right| .
$$

j)

$$
\left|\begin{array}{rr}
2 & 3 \\
-4 & 5
\end{array}\right| .
$$

2. Calculate the following determinants
a)

$$
\left|\begin{array}{rrr}
3 & -2 & 1 \\
-5 & 3 & 4 \\
2 & 1 & 3
\end{array}\right|
$$

b)

$$
\left|\begin{array}{rrr}
4 & 10 & 1 \\
0 & 2 & 0 \\
1 & -3 & 7
\end{array}\right| .
$$

c)

$$
\left|\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 3 \\
0 & 1 & 1
\end{array}\right|
$$

d)

$$
\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right| .
$$

e)

$$
\left|\begin{array}{rrr}
4 & 2 & 1 \\
3 & -2 & -2 \\
1 & 0 & 5
\end{array}\right| .
$$

f)

$$
\left|\begin{array}{rrr}
5 & 0 & -1 \\
2 & 4 & 0 \\
-3 & 6 & 1
\end{array}\right|
$$

g)

$$
\left|\begin{array}{rrr}
1 & 5 & -2 \\
0 & 2 & -1 \\
-3 & 1 & 1
\end{array}\right| .
$$

h)

$$
\left|\begin{array}{rrr}
-1 & 1 & 1 \\
2 & 3 & 1 \\
-2 & 4 & 1
\end{array}\right| .
$$

i)

$$
\left|\begin{array}{rrr}
2 & 1 & 0 \\
1 & 1 & 2 \\
-1 & 2 & 1
\end{array}\right| .
$$

j)

$$
\left|\begin{array}{rrr}
3 & 1 & -2 \\
3 & -2 & 4 \\
-3 & 5 & -1
\end{array}\right| .
$$

k)

$$
\left|\begin{array}{ccc}
1 & 0 & f \\
u & 1 & k \\
0 & 1 & k
\end{array}\right| .
$$

1)

$$
\left|\begin{array}{lll}
0 & a & a \\
a & 0 & a \\
a & a & 0
\end{array}\right| .
$$

m)

$$
\left|\begin{array}{rrr}
a & a & a \\
-a & 0 & a \\
-a & -a & 0
\end{array}\right|
$$

n)

$$
\left|\begin{array}{rrr}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
a c & b c & c^{2}+1
\end{array}\right|
$$

o)

$$
\left|\begin{array}{lll}
\sin x & \cos x & 1 \\
\sin y & \cos y & 1 \\
\sin z & \cos z & 1
\end{array}\right|
$$

3. Calculate the following determinants
a)

$$
\left|\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
-5 & 2 & -1 & 1 \\
-6 & 5 & 2 & 1 \\
3 & -1 & 1 & 0
\end{array}\right| .
$$

b)

$$
\left|\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right|
$$

c)

$$
\left|\begin{array}{rrrr}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right| .
$$

d)

$$
\left|\begin{array}{rrrr}
-1 & -2 & 3 & -1 \\
2 & 4 & -3 & 2 \\
1 & 2 & -2 & -1 \\
-2 & 1 & 1 & -2
\end{array}\right| .
$$

e)

$$
\left|\begin{array}{llll}
1 & 2 & 1 & 1 \\
2 & 1 & 1 & 2 \\
1 & 2 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right|
$$

f)

$$
\left|\begin{array}{rrrr}
2 & 1 & 10 & 2 \\
2 & 2 & -3 & 2 \\
-1 & 2 & 11 & 1 \\
1 & 2 & 8 & 1
\end{array}\right| .
$$

g)

$$
\left|\begin{array}{rrrr}
1 & 2 & -1 & 2 \\
2 & -1 & 4 & 10 \\
1 & 0 & 3 & -5 \\
2 & 5 & 2 & 2
\end{array}\right| .
$$

h)

$$
\left|\begin{array}{rrrr}
2 & 1 & 1 & 1 \\
1 & 2 & -1 & -2 \\
1 & -1 & -1 & 1 \\
1 & 2 & 2 & -2
\end{array}\right| .
$$

i)

$$
\left|\begin{array}{rrrr}
-5 & 1 & -4 & 1 \\
1 & 4 & -1 & 5 \\
-4 & 1 & -8 & -1 \\
3 & 2 & 6 & 2
\end{array}\right| .
$$

j)

$$
\left|\begin{array}{llll}
a & 1 & 1 & 1 \\
b & 0 & 1 & 1 \\
c & 1 & 0 & 1 \\
d & 1 & 1 & 0
\end{array}\right|
$$

k)

$$
\left|\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & a & b \\
1 & a & 0 & c \\
1 & b & c & 0
\end{array}\right|
$$

1)

$$
\left|\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & a & b \\
1 & a & 0 & c \\
1 & b & c & 0
\end{array}\right|
$$

m)

$$
\left|\begin{array}{rrrr}
0 & c & 1 & 0 \\
1 & 0 & a & 0 \\
0 & b & 0 & 0 \\
1 & 0 & -c & 1
\end{array}\right|
$$

n)

$$
\left|\begin{array}{rrrr}
1 & 1 & 1 & a \\
2 & 1 & 2 & b \\
1 & -1 & 1 & c \\
2 & 1 & -2 & d
\end{array}\right| .
$$

4. Solve the equations
a)

$$
\left|\begin{array}{rrr}
x^{2} & 3 & 2 \\
x & -1 & 1 \\
0 & 1 & 4
\end{array}\right|=0
$$

b)

$$
\left|\begin{array}{rrr}
x^{2} & 4 & 9 \\
x & 2 & 3 \\
1 & 1 & 1
\end{array}\right|=0
$$

c)

$$
\left|\begin{array}{rrr}
1 & x & x^{2} \\
1 & a & a^{2} \\
1 & -b & b^{2}
\end{array}\right|=0
$$

d)

$$
\left|\begin{array}{rrr}
1 & 3 & x \\
3 & 1 & 5 \\
x & 2 & 10
\end{array}\right|=0
$$

5. Find the general equation of the straight-line $A B$ and calculate the area of the triangle $A B C$
a) $A=[-1,5], B=[2,-6], C=[4,0]$.
b) $A=[-1,18], B=[1,8], C=[2,3]$.
c) $A=[5,0], B=[0,2], C=[-2,-1]$.
6. Find the genearal equation of the plane $A B C$ and calculate the volume of the tetrahedron $A B C D$
a) $A=[3,0,4], B=[-1,-1,7], C=[0,-2,-3], D=[6,5,4]$.
b) $A=[3,4,5], B=[-2,-3,-4], C=[6,0,8], D=[3,2,7]$.
