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Definition

Let V be a vector space over R, M = {v1, v2, . . . , vn} be its basis, A be a symmetric matrix of size
n × n. By a quadratic form on V we mean a real function on V (F : V → R) defined as

F (x) = 〈x〉M · A · 〈x〉tM , x ∈ V.

Note

1. The symbol 〈x〉M means the coordinates of x with respect to the basis M , so that 〈x〉M =
(x1, x2, . . . , xn) for x = x1v1 + x2v2 + · · ·+ xnvn.

2. The quadratic form F can be written as

F (x) = (x1 x2 . . . xn ) ·











a11 a12 a13 . . . a1n
a12 a22 a23 . . . a2n
a13 a23 a33 . . . a3n
. . . . . . . . . . . . . . . . . . . . . . . . .

a1n a2n a3n . . . ann











·







x1
x2
. . .

xn







or

F (x) =

n
∑

i,j=1

aijxixj = a11x
2

1
+ a22x

2

2
+ · · ·+ annx2n + 2a12x1x2 + 2a13x1x3 + · · ·+ 2an−1,nxn−1xn.

Theorem

If V is a vector space over R and F and G are two quadratic forms on V , then

a) F +G is also a quadratic form on V ,

b) αF is also a quadratic form on V for every α ∈ R.
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Examples

1. Consider F (x) = 2x2 + 3y2 + 2xy − 4xz + 6yz. Decide whether F is a quadratic form on
R
3 (with respect to the standard basis). If yes, write its matrix.

Yes, it is a quadratic form (see the analytic expression in the definition) and its matrix is

A =





2 1 −2
1 3 3

−2 3 0



 .

2. Consider F (x) = x2 + y2 + x+ y − xz. Decide whether F is a quadratic form on R
3 (with

respect to the standard basis). If yes, write its matrix.

No, it is not a quadratic form (see the analytic expression in the definition). The „problematic
partÿ is x+ y.

Examples

1. Consider
(

1 2 1
1 0 1

)

.

Decide whether the matrix A represents a quadratic form on R
3 (with respect to the standard

basis).

No, the matrix is not a square matrix.

2. Consider




1 0 1
2 1 1
1 0 3



 .

Decide whether the matrix A represents a quadratic form on R
3 (with respect to the standard

basis).

No, the matrix is not a symmetric matrix.

3. Consider




1 0 −1
0 1 2

−1 2 −3



 .

Decide whether the matrix A represents a quadratic form on R
3 (with respect to the standard

basis). If yes, write its analytic expression.

The matrix is a symmetric matrix. Hence

F (x, y, z) = (x y z ) ·





1 0 −1
0 1 2

−1 2 −3



 ·





x

y

z



 = x2 + y2 − 3z2 − 2xz + 4yz

is a quadratic form.
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Definition

By the rank of a quadratic form we mean the rank of its matrix.

Note

1. If A is a regular matrix, then F (x) = 0, if and only if x = o.

2. If A is a non-regular matrix, then there exists x ∈ V , x 6= o, such that F (x) = 0.

Definition

The basis N = {u1, u2, . . . , un} of a vector space V is called a polar basis of a quadratic form F ,
if its analytic expression is

F (x) = (x1 x2 . . . xn ) ·







a11 0 0 . . . 0
0 a22 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . ann






·







x1
x2
. . .

xn






= a11x

2

1
+ a22x

2

2
+ · · ·+ annx2n.

Note

1. In this case, the matrix A is diagonal.

2. The form F (x) = a11x
2

1
+ a22x

2

2
+ · · ·+ annx2n is called a polar expression of quadratic form F .

Theorem

Let V be a vector space of dimension n over R and let F : V → R be a quadratic form on V .
Then there exists a polar basis {v1, v2, . . . , vn} of V of the quadratic form F that is, there exist
b11, . . . , bnn ∈ R such that

F (x) = b11x
2

1
+ b22x

2

2
+ · · ·+ bnnx2n,

whenever x =
∑n

i=1 xivi.

Definition

Let F be a quadratic form on a vector space V . Then F

a) is called positive definite, if F (x) > 0 for all non-zero x,

b) is called positive semidefinite, if F (x) ≥ 0 for all x,
c) is called negative definite, if F (x) < 0 for all non-zero x,

d) is called negative semidefinite, if F (x) ≤ 0 for all x,
e) is called indefinite, if F (x) > 0 for some x and F (y) < 0 for some y.
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Theorem

Let F (x) = a11x
2

1
+ a22x

2

2
+ · · ·+ annx2n be a polar expression of a quadratic form on a vector

space V . Then F is

a) positive definite, if and only if aii > 0 for all i = 1, . . . , n,

b) positive semidefinite, if and only if aii ≥ 0 for all i = 1, . . . , n,
c) negative definite, if and only if aii < 0 for all i = 1, . . . , n,

d) negative semidefinite, if and only if aii ≤ 0 for all i = 1, . . . , n,
e) indefinite, if and only if aii > 0 for some i = 1, . . . , n and ajj < 0 for some j = 1, . . . , n.

Definition

By a signature of a quadratic form we mean the 3-tuple of numbers which expresses the
number p of positive entries aii, the number q of negative entries aii and the number r of
zero entries aii in the polar expression of the quadratic form F . We write the signature as
sgnF = (p, q, r).

Note

Let F (x) = a11x
2

1
+ a22x

2

2
+ · · ·+ annx2n be a polar expression of a quadratic form on a vector

space V . Then F is

a) positive definite, if and only if its signature is sgnF = (n, 0, 0),

b) positive semidefinite, if and only if its signature is sgnF = (k, 0,m), where k,m ∈ N and k+m = n,

c) negative definite, if and only if its signature is sgnF = (0, n, 0),

d) negative semidefinite, if and only if its signature is sgnF = (0, l,m), where l,m ∈ N and l+m = n,

e) indefinite, if and only, if its signature is sgnF = (k, l,m), where k, l,m ∈ N and k + l +m = n.

Theorem (the so called Sylvester’s criterium)

The signature of a quadratic form is independent on the choice of a polar basis.

Methods how to find a polar expression of a quadratic form

Our objective now is to obtain a polar form for real symmentric matrices.

∗ ∗ ∗ ∗

I. Process of squares completing

Example

Consider the quadratic form F : R3 → R given by

F (x, y, z) = x2 − 2xy + 4yz − 2y2 + z2.

Find the signature of the quadratic form.
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By process of „completing the squaresÿ it is readily seen that

F (x, y, z) = x2 − 2xy + 4yz − 2y2 + z2 = (x − y)2 − y2 + (z + 2y)2 − 4y2 − 2y2 =

= (x − y)2 − 7y2 + (z + 2y)2.

The expression in a polar form is

F (x′, y′, z′) = (x′)2 − 7(y′)2 + (z′)2.

The polar form is of rank 3 and its singnature is (2, 1, 0), hence a quadratic form is indefinite.

Alternatively, we can work with matrices. The matrix of F is





1 −1 0
−1 −2 2
0 2 4





and the Jordan canonical matrix is





1 0 0
0 −7 0
0 0 1



 .

∗ ∗ ∗ ∗

II. Symmetric elemetary matrix operations

A short theory

Definition

A matrix A is called orthogonal if A−1 exists and is equal to At. If there exists an orthogonal
matrix U such that B = U tAU = U−1AU , then we say that B is orthogonally similar to A.

Theorem

If A is a square matrix over R, then A is orthogonally similar to a diagonal matrix if and only
if A is symmetric.

Example

Consider the quadratic form F on R
3 given by

F (x, y, z) = x2 + 2xy + 2xz + 2y2 + 2z2 + 2yz

expressed with respect to the canonical basis. Find a polar basis, polar expression and signature
of the quadratic form.
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In order to a diagonal matrix, we will introduce a special matrix. In its first part, there is
a matrix of our quadratic form; in each row of the second part there are vectors from a basis of R3.
In our example, we may chose the canonical (standard) basis, therefore {(1, 0, 0), (0, 1, 0), (0, 0, 1}.
We will transform our matrix by symmetric elementary operations, thus we will make the same
elementary operations to rows as well as to columns in the first part of our „special matrixÿ.

The matrix of F is




1 1 1
1 2 1
1 1 2



 .

By process of „symmetric elemetary operationsÿ it is readily seen that





1 1 1 | 1 0 0
1 2 1 | 0 1 0
1 1 2 | 0 0 1



 ∼





1 1 1 | 1 0 0
0 −1 0 | 1 −1 0
0 0 −1 | 1 0 −1



 ∼

∼





1 0 0 | 1 0 0
0 1 0 | 1 −1 0
0 0 1 | 1 0 −1



 .

In the rows of the second part of the last matrix, we can see the polar basis B = {(1, 0, 0),
(1,−1, 0), (1, 0,−1)}. In the first part of the last matrix, we see the diagonal matrix which is the
Jordan canonical matrix of the original matrix of the quadratic form considered, so that

D =





1 0 0
0 1 0
0 0 1



 ,

hence the new analytic expression of our quadratic form with respect to B is

F (x′, y′, z′) = (x′)2 + (y′)2 + (z′)2

and its signature is (3, 0, 0). Our quadratic form is positive definite.

Note

The above described method is a suitable tool in linear algebra because it gives us a new
analytic expression, a signature as well as a polar basis.

∗ ∗ ∗ ∗

III. Method of general upper minors

A short theory

We will use what we learnt in the chapter Determinants.
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Theorem

Let A be the matrix of a quadratic form and let us denote by detA1, detA2, . . . , detAn = detA
the sequence of general upper determinants of a matrix A. Then

1. if all entries of the sequence of general upper determinants are positive, then the quadratic form
is positive definite.

2. if the sings of entries of the sequence of general upper determinants alternate, which means
−,+,−,+, . . . , then the quadratic form is negative definite.

Examples

1. Consider the quadratic form F : R3 → R given by the matrix





1 1 1
1 2 1
1 1 2



 .

Determine the signature of F .

We calculate the general upper determinants. We obtain the following sequence:

detA1 = |1| = 1, detA2 =

∣

∣

∣

∣

1 1
1 2

∣

∣

∣

∣

= 1, detA3 =

∣

∣

∣

∣

∣

∣

1 1 1
1 2 2
1 1 2

∣

∣

∣

∣

∣

∣

= 1.

As we see, all entries of our sequence are positive, therefore our quadratic form is positive
definite and its signature is (3, 0, 0).

2. Consider the quadratic form F : R3 → R given by the matrix





−2 1 0
1 −1 0
0 0 −3



 .

Determine the signature of F .

We calculate the general upper determinants. We obtain the following sequence:

detA1 = | − 2| = −2, detA2 =

∣

∣

∣

∣

−2 1
1 −1

∣

∣

∣

∣

= 1, detA3 =

∣

∣

∣

∣

∣

∣

−2 1 0
1 −1 0
0 0 −3

∣

∣

∣

∣

∣

∣

= −3.

As we see, the signs of the sequence of general upper determinants alternate (they are −,+,−),
hence the quadratic form is negative definite and its signature is (0, 3, 0).
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3. Consider the quadratic form F : R3 → R given by the matrix





1 0 1
0 1 2
1 2 0



 .

Determine the signature of F .

We calculate the general upper determinants. We obtain the following sequence

detA1 = |1| = 1, detA2 =

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1, detA3 =

∣

∣

∣

∣

∣

∣

1 0 1
0 1 2
1 2 0

∣

∣

∣

∣

∣

∣

= −5.

As we see, the quadratic form is indefinite and its signature cannot be determined by using
the method of general upper minors.

Note

The method described above is useful in mathematical analysis (determination of relative
maxima and minima of functions f : R

n → R; if the form is positive definite at x, then f has
a relative minimum at x, and if the form is negative definite at x, then f has a relative maximum
at x). We will study these applications in the lecture Caculus I.

∗ ∗ ∗ ∗

IV. Method of eigenvalues and eigenvectors

Theorem

Each real symmetric matrix is diagonalizable. All eigenvalues of a symmetric matrix are real.
If u is an eigenvector associated with the eigenvalue λi and v is an eigenvector associated with
the eigenvalue λj and λi 6= λj , then the vectors u and v are orthogonal, that is, u · v = 0.

Note

It should observed that the polar basis contains eigenvectors, so that it is an orthogonal basis.
Eigenvalues are on the diagonal of the Jordan canonical form.

Example

1. Consider the quadratic form F : R3 → R given by the matrix

A =





0 2 3
2 0 0
3 0 0



 .

Find its polar basis and signature.
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We calculate eigenvalues and eigenvectors:

det (A − λE) =





−λ 2 3
2 −λ 0
3 0 −λ



 = −λ(λ2 − 13) = 0.

As we see, the eigenvalues are

λ1 = 0, λ2 =
√
13, λ3 = −

√
13.

Hence the Jordan canonical form of the matrix A is





0 0 0
0

√
13 0

0 0 −
√
13



 ,

its polar expression is F (x′, y′, z′) = 0(x′)2 +
√
13(y′)2 −

√
13(z′)2 and its signature is (1, 1, 1).

Now, we can calculate three independent and orthogonal eigenvectors.

(A − 0 · E) · vt
1
= ot =





0 2 3
2 0 0
3 0 0



 ·





x

y

z



 =





0
0
0



 ⇒ v1 = (0, 3,−2),

(A −
√
13 · E) · vt

2
= ot =





−
√
13 2 3
2 −

√
13 0

3 0 −
√
13



 ·





x

y

z



 =





0
0
0



 ⇒ v2 = (
√
13, 2, 3),

(A+
√
13 · E) · vt

3
= ot =





√
13 2 3
2

√
13 0

3 0
√
13



 ·





x

y

z



 =





0
0
0



 ⇒ v3 = (−
√
13, 2, 3).

The polar basis is {(0, 3,−2), (
√
13, 2, 3), (−

√
13, 2, 3)}.

Exercises

1. Decide whether f is a quadratic form. If yes, write its matrix and calculate its signature.

a)
f(x1, x2, x3) = x1

2 + x2
2 + 2x3

2 + 4x1x2 + 2x1x3 + 2x2x3.

b)
f(x1, x2, x3) = x1

2 − 2x22 + x3
2 + 2x1x2 + 4x1x3 + 2x2x3.

c)
f(x1, x2, x3) = x1

2 − 3x22 − 2x1x2 + 2x1x3 − 6x2x3.
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d)

f(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

e)

f(x1, x2, x3, x4) =

x1
2 + 2x2

2 + x4
2 + 4x1x2 + 4x1x3 + 2x1x4 + 2x2x3 + 2x2x4 + 2x3x4.

f)

f(x1, x2, x3) = x1
2 + 5x2

2 − 4x32 + 2x1x2 − 4x1x3.

g)

f(x1, x2, x3) = 4x1
2 + x2

2 + x3
2 − 4x1x2 + 4x1x3 − 3x2x3.

h)

f(x1, x2, x3) = 2x1x2 + x1x3 + x2x3.

i)

f(x1, x2, x3) = 2x1
2 + 18x2

2 + 8x3
2 − 12x1x2 + 8x1x3 − 27x2x3.

j)

f(x1, x2, x3) = −12x12 − 3x22 +−12x32 + 12x1x2 +−24x1x3 + 8x2x3.

2. Decide whether the matrices A and B represent quadratic forms . If yes, write their analytic
expressions and express their signatures.

a)

A =





4 2 1
2 0 1
1 1 2



 , B =

(

2 3
1 2

)

.

b)

A =





1 0 −1
0 12 1
−1 1 2



 , B =







2 3 0
3 2 0
2 0 2
0 2 1






.

c)

A =





0 2 −1
2 0 2
−1 2 0



 , B =





2 3 0
3 2 0
0 2 1



 .

d)

A =





10 0 1
2 1 2
1 2 1



 , B =





0 3 1
−3 0 2
−1 −2 0



 .

e)

A =

(

10 1
1 2

)

, B =

(

2 3 2
3 2 0

)

.
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f)

A =





0 0 1
0 1 2
1 2 3



 , B =





0 0 1
3 0 2
1 2 0



 .

g)

A =





2 1 1
1 2 1
1 1 2



 , B =

(

0 0 1
3 0 2

)

.

h)

A =





1 0 −1
0 0 1
−1 1 2



 , B =

(

0 0
0 0

)

.

i)

A =





2 0 −1
0 1 0
−1 0 1



 , B =

(

1 2
0 1

)

.

j)

A =





11 1 −1
1 8 1
−1 1 1



 , B =

(

1 2 2
2 2 2

)

.

3. Calculate signatures of the quadratic forms f and g.

a)
f(x1, x2, x3, x4) = −4x1x4,

g(x1, x2) = x1
2 − 2x1x2 + 4x22.

b)

f(x1, x2) = x1
2 + 26x2

2 + 10x1x2,

g(x1, x2) = x1
2 + 56x2

2 + 16x1x2.

c)

f(x1, x2, x3) = 8x1
2 − 28x22 + 14x32 + 16x1x2 + 14x1x3 + 32x2x3,

g(x1, x2) = x1
2 + 4x2

2 + 2x3
2 + 2x1x2.

d)

f(x1, x2, x3) = 2x1
2 + 3x2

2 − x3
2 + 2x1x2 + 2x2x3,

g(x1, x2, x3) = 3x1
2 + 2x2

2 + x3
2 − 2x1x3.

e)

f(x1, x2) = x1
2 + 4x1x2 − x2

2,

g(x1, x2) = x1
2 + 6x1x2 + 5x2

2.
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f)
f(x1, x2, x3) = 21x1

2 − 18x22 + 6x32 + 4x1x2 + 28x1x3 + 6x2x3,

g(x1, x2, x3) = 11x1
2 + 6x2

2 + 6x3
2 − 12x1x2 + 12x1x3 − 6x2x3.

g)
f(x1, x2, x3) = 14x1

2 − 4x22 + 17x32 + 8x1x2 − 40x1x3 − 26x2x3,

g(x1, x2, x3) = 9x1
2 + 6x2

2 + 6x3
2 + 12x1x2 − 10x1x3 − 2x2x3.

h)
f(x1, x2, x3) = 3x2

2 + 3x3
2 + 4x1x2 + 4x1x3 − 2x2x3,

g(x1, x2, x3) = 7x1
2 + 7x2

2 + 7x3
2 + 2x1x2 + 2x1x3 + 2x2x3.

i)
f(x1, x2, x3) = x1

2 − 2x1x2 − 2x1x3 − 2x2x3,

g(x1, x2, x3) = 3x1
2 + 3x2

2 − x3
2 − 6x1x3 + 4x2x3.

j)
f(x1, x2, x3) = 11x1

2 + 5x2
2 + 2x3

2 + 16x1x2 + 4x1x3 − 20x2x3,

g(x1, x2, x3) = x1
2 + x2

2 + 5x3
2 − 6x1x2 − 2x1x3 + 2x2x3.


