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Definition

By a vector space we shall mean a set V on which there are defined two operations, one called addition
and the other called multipication by scalars, such that the following properties hold:

1. x+ y = y + x for all x, y ∈ V ;

2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V ;

3. there exists an element o ∈ V such that x+ o = x for all x ∈ V ;

4. for every x ∈ V there exists an element −x ∈ V such that x+ (−x) = o;

5. λ(x+ y) = λx+ λy for all x, y ∈ V and all scalars λ;

6. (λ+ µ)x = λx+ µx for all x ∈ V and all scalars λ, µ;

7. (λµ)x = λ(µx) for all x ∈ V and all scalars λ, µ;

8. 1 · x = x for all x ∈ V .

Notes

1. When the scalars are real numbers, we shall often speak of a real vector space; and when the scalars
are complex numbers we shall talk of a complex vector space.

2. The first axiom, so that x+ y = y + x, says that the operation + is commutative.

3. The second axiom, so that (x+ y) + z = x+ (y + z), says that the operation + is associative.

4. Elements of V are called vectors.

5. The vector o is called a zero vector. For example, in the vector space R
3 a zero vector is o = (0, 0, 0).

6. Vector −x is called an opposite vector to the vector x. For example, in the vector space R
4,

x = (1,−2, 0, 6), −x = (−1, 2, 0,−6).

Attention

We use the same symbol + for addition of vectors and for addition of real (complex) numbers.

We use the same symbol · for multiplication of a vector by scalar and for multiplication scalar by
scalar.

∗ ∗ ∗ ∗
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Some examples of vector spaces

1. The set R
n of n-tuples (x1, . . . , xn) of real numbers is a real vector space under the following

component-wise definitions of addition and multiplication by scalars:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

λ(x1, . . . , xn) = (λx1, . . . , λxn).

• Geometrically, R
2 represents the cartesian plane, and R

3 represents the three-dimensional cartesian
space.

• Similarly, the set C
n of n-tuples of complex numbers can be considered as a real vector space (real

scalars) as well as a complex vector space (complex scalars).

2. Let Rn+1[x] be the set of polynomials of degree at most n with real coefficients. Define the addition
by setting

(a0 + a1x+ a2x
2 + · · ·+ anxn) + (b0 + b1x+ b2x

2 + · · ·+ bnxn) =

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + · · ·+ (an + bn)x

n,

and a multiplication by scalars by setting

λ(a0 + a1x+ a2x
2 + . . . anxn) = λa0 + λa1x+ λa2x

2 + · · ·+ λanxn.

Then Rn+1[x] is a real vector space.

3. Geometrical model

−→v = −→u1 +
−→u2 ,

−→w = −−→u1 ,
−→o

Comments

It should be noted that in the definition of a vector space the scalars need not be restricted to be
real or complex numbers. They can in fact belong to any „fieldÿ F . Although in what follows we shall
find it convenient to say that „V is a vector space over a field Fÿ to indicate that the scalars come from
a field F , we shall in fact assume throughout that F is either the field R of real numbers or the field C

of complex numbers.

∗ ∗ ∗ ∗
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We now list some basic properties of multiplication by scalars in a vector space that follow from the
above eight axioms.

Theorem

If V is a vector space over R (or C), then

1. λ · o = o for every λ ∈ R (or C);

2. 0 · x = o for every x ∈ V ;

3. if λx = o then either λ = 0 or x = o;

4. (−λ)x = −(λx) = λ(−x) for all x ∈ V and λ ∈ R (or C);

5. −(−x) = x for every x ∈ V ;

6. λ(x − y) = λx − λy for all x, y ∈ V and λ ∈ R (or C);

7. (λ − µ)x = λx − µx for all x ∈ V and λ, µ ∈ R (or C).

Using the axioms try to proved (or verify) these statements.

∗ ∗ ∗ ∗

In order to study vector spaces we firstly introduce subspaces, thus those subsets that are also vector
spaces.

Definition

Let V be a vector space over R (or C). By a subspace of V we mean a non-empty subset W of V that
is closed under the operations of V , that is,

(1) if x, y ∈ W , then x+ y ∈ W ;

(2) if x ∈ W and λ ∈ R (or λ ∈ C), then λx ∈ W .

Note that (1) says that sums of elements of W belong to W , and (2) says that scalar multiples of
elements of W belong to W .

Notes

1. Every vector space V is (trivially) a subspace of itself; this is the largest subspace of V .

2. Obviously, V = {o} is the smallest subspace of V .

3. These two subspaces are called trivial subspaces.

4. Other subspaces (if exist) are called non-trivial subspaces.
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Some examples of subspaces

1. In the plane R
2 every line through the origin can be expressed in the form

L =
{

(x, y);αx+ βy = 0
}

;

the slope of the line is given by tanφ = −α
β
, if β 6= 0. Every line through the origin is a subspace of R

2.

Verify it!

2. In the space R
3 every plane through the origin can be expressed in the form

P =
{

(x, y, z);αx+ βy + γz = 0
}

.

Every plane through the origin is a subspace of R
3. Verify it!

3. The set of real functions on the interval (a,b) with usual operations f + g, λf (i.e. for every
x ∈ (a, b) we define (f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x)) is a vector space. Consider now the
subset of all continuous functions with the same operations. It is a subspace of the vector space. Verify
it!

∗ ∗ ∗ ∗

Notes on the intersection of subspaces

Suppose now that A and B are subspaces of a vector space V over R (or C) and consider their
intersection A ∩ B.

(1) We know that the zero vector o is contained in both A and B, so that o ∈ A ∩ B so that A ∩ B
is not empty.

(2) Now, if x, y ∈ A ∩ B, then x, y ∈ A gives x + y ∈ A, and x, y ∈ B gives x + y ∈ B, whence we
have x+ y ∈ A ∩ B.

(3) Likewise, if x ∈ A∩B, then x ∈ A gives λx ∈ A, and x ∈ B gives λx ∈ B for every real (complex)
number λ, whence we have λx ∈ A ∩ B.

Thus we see that A ∩ B is a subspace of V .

Theorem

The intersection of any collection of subspaces of a vector space V is a subspace of V.

Notes

In contrast with this the above situation, we note that the union of a collection of subspaces of a vector
space V is not in general a subspace of V .
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Example

In R
2 the x-axis X and the y-axis Y are subspaces, but their union is not. For example, we have

a vector (1, 0) ∈ X and we have a vector (0, 1) ∈ Y but a vector (1, 0) + (0, 1) = (1, 1) /∈ X ∪ Y . So the
subset X ∪ Y is not closed under addition and therefore cannot be a subspace.

x-axis = X, y-axis = Y, −→u = −→x +−→y , hence x+ y = 0.

∗ ∗ ∗ ∗

Definition

Let V be a vector space over R (or C) and let S be a non-empty subset of V . We say that v ∈ V is
a linear combination of elements of S if there exist x1, . . . , xn ∈ S and λ1, . . . , λn ∈ R (or C) such that

v = λ1x1 + · · ·+ λnxn =

n
∑

j=1

λjxj .

Notes

1. When j ≥ 1 and λj = 0 for every j a linear combination is called a trivial linear combination.

2. In other cases, a linear combination is called a non-trivial combination.

Examples

1. Let x1 = (1, 2, 4,−1), x2 = (0,−1, 2, 3), x3 = (0, 0, 1,−1) and λ1 = −1, λ2 = 2, λ3 = 0. Calculate
v = λ1x1 + λ2x2 + λ3x3:

v = λ1x1 + λ2x2 + λ3x3 = −1 · (1, 2, 4,−1) + 2 · (0,−1, 2, 3) + 0 · (0, 0, 1,−1) =

= (−1,−2,−4, 1) + (0,−2, 4, 6) + (0, 0, 0, 0) = (−1,−4, 0, 7).
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2. Let x1 = (1, 2), x2 = (0, 2, 3) and λ1 = 12, λ2 = −3. Calculate v = λ1x1 + λ2x2.

The sum is not defined because x1 ∈ R
2 and x2 ∈ R

3.

Notes

It is clear that if v = λ1x1+ · · ·+λnxn and w = µ1x1+ · · ·+µnxn are linear combinations of elements
of S, then so are v + w and λv for every λ ∈ R (or C).

Thus the set of linear combinations of elements of a finite set S is a subspace of V . We call it the
subspace spanned by S and denote it by Span S or < S >.

Definition

If Span S is the whole of V , we often say that S is a spanning set for V.

Some examples:

1. Consider the subset S = {(1, 0), (0, 1)} of the cartesian plane R
2. For every (x, y) ∈ R

2 we have

(x, y) = (x, 0) + (0, y) = x(1, 0) + y(0, 1),

so that every element of R
2 is a linear combination of elements of S. Thus S spans R

2.

2. Consider the subset S = {(1, 0, 0), (0, 0, 1)}. SpanS is

SpanS{(1, 0, 0), (0, 0, 1)} = {a(1, 0, 0) + b(0, 0, 1); a, b ∈ R} = {(a, 0, b); a, b ∈ R}.

In other words, the subspace of R3 that is spanned by the subset S = {(1, 0, 0), (0, 0, 1)} is the „x, z-planeÿ.

3. More generally, if ej = (0, . . . , 0, 1, 0, . . . , 0) is an n-tuple with the 1 in the j-th position, then we
have

(x1, . . . , xn) = x1e1 + · · ·+ xnen,

and so {e1, . . . , en} spans R
n.

4. Consider the subset S = {(2, 1), (1, 1), (−1, 1)} of the plane R
2. For every (x, y) ∈ R

2 we have

(x, y) = a(2, 1) + b(1, 1) + c(−1, 1), wherea, b, c ∈ R,

so that every element of R
2 is a linear combination of elements of S Thus S spans R

2.

Indeed, for every (x, y) ∈ R
2 we can find a, b, c by solving the following system of linear equations

2a+ b − c = x,

a+ b+ c = y.

∗ ∗ ∗ ∗
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Definition

A non-empty subset S of a vetor space V over R (or C) is said to be linearly independent, if the only
way of expressing the vector o as a linear combination of elements of S is the trivial one; equivalently, if
x1, . . . , xn ∈ S and λ1, . . . , λn ∈ R (or C), then

λ1x1 + . . . λnxn = o ⇒ λ1 = · · · = λn = 0.

A subset that is not linearly independent is said to be linearly dependent.

Notes

1. For a linearly dependent subset S it is evident that the vector o can be expressed as a non-trivial
combination of elements of S, thus if x1, . . . , xn ∈ S and λ1, . . . , λn ∈ R (or C), then

λ1x1 + . . . λnxn = o with at least one λj 6= 0.

2. No linearly independent subset of a vector space V can contain the vector o.

Examples

1. Let S = {(0, 2, 0), (3, 0, 0), (0, 0,−5)}. The subset S is linearly independent. Verify it!

Let us denote x = (0, 2, 0), y = (3, 0, 0), z = (0, 0,−5). We write a linear combination of these three
vectors and equal it to the zero vector. We obtain

ax+ by + cz = o,

a(0, 2, 0) + b(3, 0, 0) + c(0, 0,−5) = (0, 0, 0),

(3b, 2a,−5c) = (0, 0, 0).

We obtain the following system of linear equations

3b = 0,

2a = 0,

−5c = 0.

We can see that a = 0, b = 0, c = 0, hence only a trivial linear combination of vectors x, y and z gives
the zero vector, so that the vectors x, y and z are linearly independent.

2. Let S = {(1, 2, 1), (1, 3, 2), (1, 1, 0)}. The subset S is linearly dependent. Verify it!

Let us denote x = (1, 2, 1), y = (1, 3, 2), z = (1, 1, 0). We write a linear combination of these three
vectors and equal it to the zero vector. We obtain
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ax+ by + cz = o,

a(1, 2, 1) + b(1, 3, 2) + c(1, 1, 0) = (0, 0, 0),

(a+ b+ c, 2a+ 3b+ c, a+ 2b) = (0, 0, 0).

We obtain the following system of linear equations

a+ b+ c = 0,

2a+ 3b+ c = 0,

a+ 2b = 0.

Multiply the second equation by −1 and add the first equation. We obtain the following system of
two identical equations

a+ 2b = 0,

a+ 2b = 0.

We see that a = −2b, where b ∈ R. We can easily calculate that c = b, hence the solution of our
system is (−2b, b, b) = b(−2, 1, 1) for every real number b. We can go back and we see that

−2bx+ by + bz = b · (−2x+ y + z) = o, for every b ∈ R.

In particular, −2x+ y + z = o, thus the zero vector o is expressed as a non-trivial linear combination
of vectors x, y and z, so that the vectors are linearly dependent.

A faster method for solving our problem

1. Let S = {(0, 2, 0), (3, 0, 0), (0, 0,−5)}. The subset S is linearly independent.





0 2 0
3 0 0
0 0 −5



 ∼





3 0 0
0 2 0
0 0 −5



 .

We write the vectors in the rows (the first one in the first row, the second one in the second row and
the third one in the third row) and we obtain a matrix. Now we interchange the first row and the second
row. We obtain the matrix which has below the diagonal only zeros. We have three non-zero rows in the
so-called a row-echelon (or stairstep) matrix, hence vectors are linearly independent.

2. Let S = {(1, 2, 1), (1, 3, 2), (1, 1, 0)}. The subset S is linearly dependent.





1 2 1
1 3 2
1 1 0



 ∼





1 2 1
0 1 1
0 1 1



 ∼





1 2 1
0 1 1
0 0 0



 .

We write the vectors in the rows (the first one in the first row, the second one in the second row and
the third one in the third row) and we obtain a matrix. Now we multiply the first row by −1 and add the
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second row, we multiply the first row by −1 and add the third row. We obtain a matrix which has two
identical rows. We see that our vectors are linearly dependent. We can also continue. Now we multiply
the second row by −1 and add the third row. We obtain one row with zeros only, so that we have the
zero vector in the last row, hence our vectors are linearly dependent.

We can use these three types of matrices modifications:

1. We can replace one row by another row (we can interchange two rows).

2. We can multiply one row by a non-zero real (complex) number.

3. We can add two or more rows together.

These modifications do not change the independence (dependence) of vectors!

Examples

1. Let S = {(1, 2, 1, 1), (1, 3, 2, 2), (1, 1, 1, 1, )}. Is the subset S linearly dependent? Justify your
answer!





1 2 1 1
1 3 2 2
1 1 1 1



 ∼





1 2 1 1
0 1 1 1
0 −1 0 0



 ∼





1 2 1 1
0 1 1 1
0 0 1 1



 .

The vectors are linearly independent.

2. Let S = {(−1,−2,−1), (1, 0, 1), (1, 1, 1), (3, 3, 3)}. Is the subset S linearly dependent? Justify your
answer!

The vectors are linearly dependent because when we multiply vector (1, 1, 1) by 3 we obtain vector
(3, 3, 3). Another argument: we have four vectors from R3 and four vectors in this space are always
linearly dependent. Or we can calculate as follows







−1 −2 −1
1 0 1
1 1 1
3 3 3






∼







−1 −2 −1
0 −2 0
0 −1 0
0 −3 0






∼







−1 −2 −1
0 −2 0
0 0 0
0 0 0






.

Theorem

Let V be a vector space over R (or C). If S is a subset of V containing at least two elements, then the
following statements are equivalent:

(1) S is linearly dependent;

(2) at least one element of S can be expressed as a linear combination of other elements S.

∗ ∗ ∗ ∗
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Now we combine the notions of a linearly independent set and a spanning set to obtain the following
important notion.

Definition

By a basis of a vector space V we mean a linearly independent subset of V that spans V .

Examples showing differences between basis and span

1. The set {(1, 0), (0, 1)} is a basis of the plane R
2. It is evident.

2. The set {(1, 1), (1,−1)} is a basis of the plane R
2. For every (x, y) ∈ R

2 we have (x, y) =
λ(1, 1) + µ(1,−1) where λ = 1

2
(x + y) and µ = 1

2
(x − y). So {(1, 1), (1,−1)} spans R

2. And if
α(1, 1) + β(1,−1) = (0, 0) then α + β = 0 and α − β = 0, whence α = β = 0, so {(1, 1), (1,−1)} is
also linearly independent.

3. Let {(1, 1), (1,−1), (0, 1)}. It is not a basis of the plane R
2. The vectors (1, 1), (1,−1), (0, 1) are

linearly dependent. The set {(1, 1), (1,−1), (0, 1)} spans the plane R
2.

4. {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of R
3. It is evident.

5. Let {(1, 0, 0), (0, 1, 0)}. It is not a basis of R
3. Every (x, y, z) ∈ R

3 cannot be written as a linear
combination of (1, 0, 0) and (0, 1, 0).

6. More generally, {e1, e2, . . . , en} is a basis of R
n. This basis is called a canonical basis or natural

basis.

7. Clearly, {1, x, x2, . . . , xn} is a basis of the space Rn+1[x]. It is evident.

Theorem

If V has a finite basis B, then every basis of V has the same number of elements as B.

Definition

By a finite-dimensional vector space we shall mean a vector space V that has a finite basis. The
number of elements in any basis of V is called the dimension of V and will be denoted by dimV .

Examples

1. The space R
n has dimension n.

2. The vector space of complex numbers over real numbers has dimension 2 (one of its basis is for
example {1, i}).

∗ ∗ ∗ ∗
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A fundamental characterization of bases is the following.

Theorems

• A non-empty subset S of a vector space V is a basis, if and only if every element of V can be
expressed in a unique way as a linear combination of elements of S.

• Let V be a vector space that is spanned by the set {v1, v2, . . . , vn}. If I = {w1, w2, . . . , wm} is
a linearly independent subset of V , then necessarly m ≤ n.

• Every linearly independent subset I of a finite-dimensional vector space can be enlarged to a basis.

• If V is of dimension n, then every linearly independent set consisting of n elements is a basis of V .

• If S is a subset of V , then the following statements are equivalent:

(1) S is a basis;

(2) S is a maximal independent subset;

(3) S is a minimal spannig set.

• If V is of dimension n, then every subset containing more than n elemetns is linearly dependent;
moreover, no subset containing less than n elements can span V .

We now enquire about bases for subspaces of given finite-dimensional vector space.

Theorem

Let V be a finite-dimensional vector space. IfW is a subspace of V , thenW is also of finite dimension,
and dimW ≤ dimV . Moreover, we have dimW = dimV , if and only if W = V .

Theorem

Let V be a finite-dimensional vector space, U and W be subspaces of V . Then

dim (U +W ) + dim (U ∩ W ) = dimU + dimW,

where U +W means 〈U ∪ W 〉.

Examples

1. Choose a basis from the set S spanning a vector space V :
S = {(1, 0, 2,−3), (3, 2, 1,−5), (−1, 2, 1,−2), (−3, 0, 2, 0)}.

We consider the vectors as rows and we transform the matrix obtained into the a row-echelon matrix.







1 0 2 −3
3 2 1 −5

−1 2 1 −2
−3 0 2 0






∼







1 0 2 −3
0 2 −5 4
0 2 3 −5
0 2 3 −5






∼







1 0 2 −3
0 2 −5 1
0 0 8 −9
0 0 0 0
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We see three linearly independent vectors in three rows, so that three linearly independent vectors
which span our vector space. One basis of our vector space is {(1, 0, 2,−3), (0, 2,−5, 1), (0, 0, 8,−6)}. The
dimension of vector space V is 3.

2. Choose a basis from the set S spanning a vector space V :
S = {(1, 1, 2), (3, 0, 3), (2, 2, 2), (−3, 0, 0)}.







1 1 2
3 0 3
2 2 2

−3 0 0






∼







1 1 2
0 −3 −3
0 0 −2
0 1 2






∼







1 1 2
0 −3 −3
0 0 −2
0 0 3






∼







1 1 2
0 −3 −3
0 0 −2
0 0 0







We see three linearly independent vectors in three rows, thus three linearly independent vectors which
span our vector space. One basis of our vector space is {(1, 1, 2), (0,−3,−3), (0, 0,−2)}. The dimension
of vector space V is 3.

3. From the set S spanning a vector space V choose a basis which contains the vector (2, 3, 5, 4).
S = {(1, 2, 5, 3), (1, 1, 0, 1), (1, 1, 1, 1)}.











2 3 5 4
. . . . . . . . . . .
1 2 5 3
1 1 0 1
1 1 1 1











∼







2 3 5 4
0 −1 −5 −2
0 1 5 2
0 1 3 2






∼







2 3 5 4
0 −1 −5 −2
0 0 0 0
0 0 −2 0






∼







2 3 5 4
0 −1 −5 −2
0 0 −2 0
0 0 0 0







We see that vectors (2, 3, 5, 4), (1, 2, 5, 3), (1, 1, 0, 1), (1, 1, 1, 1) are linearly dependent, thus the
vector (2, 3, 5, 4) are elements of 〈S〉. We see three linearly independent vectors in the first three
rows of the last matrix, so that our basis has three members. One basis of our vector space is
{(2, 3, 5, 4), (0,−1,−5,−2), (0, 0,−2, 0)}. The dimension of vector space V is 3.

4. From the set S spanning a vector space V choose a basis which contains a vector (1, 1, 0, 0).
S = {(1, 0, 1, 1), (2, 1, 0, 1)}.







1 1 0 0
. . . . . . . . . . .
1 0 1 1
2 1 0 1






∼





1 1 0 0
0 −1 1 1
0 −1 0 1



 ∼





1 1 0 0
0 −1 1 1
0 0 −1 0





We see that vectors (1, 1, 0, 0), (1, 0, 1, 1), (2, 1, 0, 1) are linearly independent, therefore the vector
(1, 1, 0, 0) cannot be expressed as a linear combination of vectors (1, 0, 1, 1), (2, 1, 0, 1) so our example has
no solution.

∗ ∗ ∗ ∗
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Definition

Let V be a vector space, B = {v1, v2, . . . , vn} be a basis of V , v ∈ V . By coordinates of a vector
v with respect to the basis B we understand an ordered n-tuple of real numbers (or complex numbers)
(a1, a2, . . . , an) such that

v = a1v1 + a2v2 + · · ·+ anvn =

n
∑

j=1

ajvj .

We write 〈v〉B = (a1, a2, . . . , an).

Notes

1. For every vector its coordinates are uniquely determined n-tuple.

2. A modification of a basis means a modification of coordinates.

Examples

1. Let V be a vector space, let B = {(1, 2, 3), (0, 1, 1)} be a basis of V and let x = (2, 3, 5), y = (2, 3, 0).
Calculate 〈x〉B and 〈y〉B .

Let us denote v1 = (1, 2, 3) and v2 = (0, 1, 1). According to the definition of coordinates we can write

av1 + bv2 = x,

a(1, 2, 3) + b(0, 1, 1) = (2, 3, 5),

(a, 2a+ b, 3a+ b) = (2, 3, 5).

We obtain the following system of three linear equations

a = 2,

2a+ b = 3,

3a+ b = 5.

From the first equation we see that a = 2, from the second equation we obtain b = 3−2a = 3−4 = −1.
Now we must verify that our solution (2,−1) satisfies also the third equation. We see that on the left
hand side of the equation is 3a+ b = 3 · 2− 1 = 5, on the right hand side of the equation is 5. 5 = 5. Our
system of equations has a solution a = 2, b = −1, so the vector x has coordinates (2,−1) and we have
〈x〉B = (2,−1).

Similarly, for the vector y = (2, 3, 0),

av1 + bv2 = y,

a(1, 2, 3) + b(0, 1, 1) = (2, 3, 0),

(a, 2a+ b, 3a+ b) = (2, 3, 0).

We obtain the following system of three linear equations

a = 2,

2a+ b = 3,

3a+ b = 0.
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From the first equation we see that a = 2, from the second equation we obtain b = 3−2a = 3−4 = −1.
Now we must verify that our solution (2,−1) is also a solution of the third equation. We see that on
the left hand side of the equation is 3a + b = 3 · 2 − 1 = 5, on the right hand side of the equation is 0.
Our system of equations has no solution, so the vector y cannot be expressed as a linear combination of
vectors v1 and v2, therefore y /∈ V .

∗ ∗ ∗ ∗

Exercises

1. Decide whether the vectors are linearly dependent.

a) v = (2, 1, 3, 1), u = (1, 2, 0, 1), w = (−1, 1,−3, 0).

b) v = (2, 3,−5), u = (1,−1, 1), w = (3, 2,−2).

c) v = (1, 0, 3), u = (−3, 0,−9), w = (1, 1, 2).

d) v = (3, 4, 3), u = (1, 3,−1), w = (1,−1, 1).

e) v = (1, 2, 0, 0), u = (0, 1, 1, 0), w = (1, 0, 0, 1), q = (1, 1,−1, 1).

f) v = (4, 7, 1, 0), u = (2, 3,−1, 2), w = (1, 2, 1,−1), q = (5, 7,−4, 7).

g) v = (2, 1, 1, 1), u = (1, 2,−1, 2), w = (1,−1,−1, 1), q = (1, 2, 2,−2).

h) p = (2, 1, 3,−1), q = (−1, 1,−3, 1), r = (4, 5, 3,−1), s = (1, 5,−3, 1).

ch) p = (1, 2, 1), q = (0, 1,−1), r = (2,−1, 1), s = (1, 0, 1).

2. Let a ∈ R be a parameter. Decide when the vectors are linearly dependent and when independent.

a) v = (a,−2, 1), u = (3, 2a,−1), w = (a2, 1, a − 1).

b) v = (a,−4,−1), u = (4,−6,−3), w = (1, 1,−a).

c) v = (2, 3,−1), u = (a, 4, 2).

d) v = (1, 1, 1), u = (1, a, 1), w = (2, 2, a).

e) u = (a,−4,−1), v = (4,−6,−3), w = (1, 1,−a)

3. Find a basis of the vector space V spanned by next vectors. Calculate its dimension.

a) u1 = (1, 2, 3, 4), u2 = (1, 5, 1, 2), u3 = (1, 1, 2, 3).

b) u1 = (1, 2, 3, 2), u2 = (0, 1, 1, 0), u3 = (1, 0, 1, 2).

c) u1 = (1, 2, 3, 2), u2 = (0, 1,−1, 3), u3 = (1, 2, 1, 6), u4 = (2, 4, 3, 5).

d) u1 = (3, 1, 5, 4), u2 = (2, 2, 3, 3), u3 = (1,−1, 2, 1), u4 = (1, 3, 1, 2).
e) u1 = (1, 0, 2,−3), u2 = (3, 2, 1,−5), u3 = (−1, 2, 1,−2), u4 = (−3, 0, 2, 0).

f) u1 = (3, 1, 5, 4), u2 = (2, 2, 3, 3), u3 = (1,−1, 2, 1), u4 = (1, 3, 1, 2).

g) u1 = (3,−1,−3, 2), u2 = (1, 2, 0,−3), u3 = (1, 2, 1, 2), u4 = (5, 1,−3, 2).

f) u1 = (5, 7,−1, 3), u2 = (1,−3, 8, 2), u3 = (9, 17,−10, 4), u4 = (−2, 6,−16,−4).
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4. Find a basis of the vector space spanned by the set S = {u1, u2, u3} which contains the vector v.

a) u1 = (0, 1,−3, 4), u2 = (2, 2, 2, 2), u3 = (1,−1, 3, 7) and v = (1, 4,−4,−1).

b) u1 = (1, 2, 2,−2), u2 = (1, 2,−1,−2), u3 = (2, 1, 1, 1) and v = (1,−1,−1,−1).

c) u1 = (1, 3, 5), u2 = (3, 9, 15), u3 = (1, 0, 2) and v = (8, 25, 40).

5. Calculate 〈u〉M or 〈v〉M

a) u = (−10, 7,−4), M = {(2, 1, 3), (−3, 1,−2), (5,−2, 4)}.

b) u = (29, 12, 5), M = {(−3, 2,−4), (5,−3, 2), (0, 6,−3)}.

c) u = (−5, 17,−11), M = {(1, 2, 1), (3,−2, 7), (11,−2, 23)}.

d) u = (10, 1, 9, 33), M = {(4, 0,−6, 13), (2, 3,−4, 7), (1,−2, 5, 3), (3, 0, 14, 10)}.

e) u = (9,−26, 0, 21), M = {(4,−6, 1, 9), (2,−3,−2, 5), (1, 2, 1, 2), (−1, 6,−2,−2)}.

f) u = (−1,−2, 3, 5), M = {(−1, 0, 2, 4), (2, 3,−5, 1), (1, 2,−3, 2), (2, 1,−4, 2)}.

g) u = (−1, 0, 16, 15), M = {(1, 2,−1, 3), (2, 1, 0, 0), (0,−1, 3, 0)}.

h) u = (0, 0, 1, 5), M = {(1, 2, 3, 4), (4, 3, 2, 1), (3, 1, 0, 2)}.

i) u = (2, 4, 3,−2), M = {(1, 0, 0, 1), (0, 1, 0, 1), (0, 1, 1, 0)}.

j) u = (2,−2, 2), v = (7,−7,−2), M = {(5, 2, 3), (4, 3, 2)}.

k) u = (3,−1, 7), v = (−1, 3,−7), M = {(1, 1,−1), (2, 0, 3)}.

l) u = (7, 9, 2), v = 3(0, 1, 2) + 4(1, 0, 2) + 5(1, 2, 0), M = {(0, 1, 2), (1, 0, 2), (1, 2, 0)}.


