
Mixture estimation with uniform components

The main characteristic of a uniform distribution is:

1. Modeling complete uncertainty within given bounds.

2. The sharp boundary of the range of permissible values of the random variable.

These exceptional properties of the uniform distribution have the consequence that it does
not belong to the exponential class of distributions. This means that its estimation is not
straightforward and should be combined with some heuristic procedures.

Next, we demonstrate two possible approaches to estimation of single uniform model. Then we
extend it to mixture estimation.

Single uniform model

Maximum likelihood approach

Scalar uniform distribution can be de�ned through its probability density function (pdf) which
is constant on a �xed interval (U,L) .The constant is 1

U−L . It is drawn in the following picture

f(y)

yL U

1
U−L

For estimation, the variables U and L are the unknown parameters. A standard way of their
estimation is the ML method.

Model

f (y) =
1

U − L
, for L ≤ y ≤ U

Likelihood

L =

N∏
t=1

f (yt) =
1

(U − L)
N
, for L ≤ min (y) , U ≥ max (y)

Maximum, under the restrictions is for

L ≤ min (y) and U ≥ max (y)

These estimates su�er from the following drawbacks:

• The on-line estimation fails is the initial initial positions of the estimated borders L and
U do not lie within the domain of the data generator.

1



• The variance of the estimates does not fall with time as it is with standard estimates where
σ2
est = σ2/t (so called tightening of the estimates).

• Any wrong value of data shifts irrevocably the corresponding border to its position and
this wrong shifting is not repaired by the following correct values.

Remark

These properties are especially disagreeable with mixture estimation because the data from other

components are just those wrong values.

Method of moments

Model

f (y) =
1

2r
, S − r ≤ y ≤ U

First moment

ȳ =
1

2r

� S+r

S−r

y dy =
1

2r

� r

−r

(y + S) dy =
1

2r

[
y2

2
+ Sy

]r
−r

= S

Second central moment

var (y) =
1

2r

� S+r

S−r

(y − S)
2
dy =

1

2r

� r

−r

y2 dy =
1

2r

[
1

3
y3
]r
−r

=

=
1

6r

(
r3 − (−r)3

)
=
r2

3

Estimates
S = ȳ

var (y) =
r2

3
→ r =

√
3var (y) =

√
3 (m2 −m2

1)

where m1 and m2 are �rst and second general moments ȳ and ȳ2.

This method of estimation gives results that are much better for mixture estimation. The
parameters are naturally tightened (their variances decrease with the number of used data) and
the exponential forgetting can be used in a standard way.

Mixture estimation with uniform components

Bayesian mixture estimation is based on weighting the data entering the estimation. The weights
can be derived from proximities, i.e. �distances� of the data records to the individual components.
They can be applied as the probabilities that the individual components are active with respect
to the current data record or in the form of point estimates, i.e. one for the most probable
components and zero for others.The latter form emphasizes the individual components and
prevents from using the parasite data which have only small weight for a speci�c component.

The proximity is introduced as the value of the corresponding component model substituted
with the data record and the existing point estimate of the parameters. This principle here

2



fails. The uniform distribution provides classi�cation, not distance. The data record either
belongs to the component or not. What we need is a kind of distance.

So, some other distribution must be introduced. We use normal distribution with the expectation
equal to the center of the window and diagonal covariance matrix whose entries on the diagonal
are proportional to the sides of the window.

For mixture estimation with uniform components we use the method of moments.

// Unif est - sim (Method of moments)

// - dDel no

// - forg no

// -------------------------------------------

[u,t,n]=file(); // find working directory

chdir(dirname(n(2))); // set working directory

clear("u","t","n") // clear auxiliary data

exec("ScIntro.sce",-1),mode(0) // intro to sesion

// ==========================================================

frg=1; // forgetting yL=yL-frg/t

ptw=0; // point w ptw=1 - use point w

// ==========================================================

nd=500; // number of data

// SIMULATION

thS=list();

alS=[.4 .3 .3]; // alS

thS(1)=[1 4

1 7]; // thS

thS(2)=[3 11

6 11];

thS(3)=[10 15

10 15];

nc=length(alS); // numb. of components

ny=size(thS(1),1); // dimension of y

for t=1:nd

c(t)=sampCat(alS); // pointer generation

for i=1:ny

y(i,t)=randu()*(thS(c(t))(i,2)-thS(c(t))(i,1))+thS(c(t))(i,1);

end // generation of y

end

// INITIALIZATION

S=list(); T=list(); C=list(); r=list();

thR=list(); thC=list(); D=list();

S(1)=[5; 2]; // initial statistics (sums)

S(2)=[9; 4]; // - centers of initial windows

S(3)=[12; 9];

for j=1:nc, C(j)=S(j); r(j)=.1*ones(ny,1); D(j)=diag(r(j)); end

// ceneters, radiuses, covar.

ka=ones(1:nc); // counter

3



nc=length(S); // number of components

nu=ones(1,nc); // pointer statistics

al=fnorm(nu); // pointer parameter

Lm=zeros(1,nc);

for j=1:nc

thR(j)=zeros(ny,nd); thC(j)=zeros(ny,nd);

T(j)=S(j)^2;

end

thI=thCons(C,r); // initial windows

ir=0; // switch for estimation D

for t=2:nd // ----------- TIME LOOP --------------

// weights

if t>15, ir=1; end // D is estimated from t=15

for j=1:nc

V=ir*1e-2*D(j)+(1-ir)*.1*eye(ny,ny); // cov. matrix

[xxx,Lm(j)]=GaussN(y(:,t),C(j),V);

end // Gaussian proximity

Lm=Lm-max(Lm);

m=exp(Lm);

if sum(m)<1E-10, m=ones(1,nc); end // component is too far

w=(m/sum(m)); // weights

if ptw==1, w=dDel(w); end // point est. of pointer

wt(:,t)=w';

// on-line estimation - statistics

for j=1:nc

ka(j)=frg*ka(j)+w(j); // counter

S(j)=frg*S(j)+w(j)*y(:,t); // sum

T(j)=frg*T(j)+w(j)*y(:,t)^2; // sum of squares

C(j)=S(j)/ka(j); // centers

r(j)=sqrt(3*(T(j)/ka(j)-C(j)^2)); // radiuses

for i=1:ny

if r(j)(i)<1e-8, r(j)(i)=.01; end // correct zero length

end

D(j)=diag(r(j)); // cov. matrix for proximity

end

// on-line estimation - parameters

for j=1:nc

thR(j)(:,t)=r(j); // stor radiuses

thC(j)(:,t)=C(j); // stor centers

end

nu=nu+w; // pointer statistics

al=fnorm(nu); // pointer parameter

end

th=thCons(C,r); //final windows

// RESULTS

4



cp=amax(wt,1); // estimates of components

Acc=acc(c,cp) // accuracy of classification

for j=1:nc

set(scf(),'position',[100+50*j 200+50*j 800 600])

plot([thC(j)']) // evolution of centers

title('Evolution of parameters - component '+string(j))

end

set(scf(),'position',[900 300 800 600]) // final windows

for j=1:nc

plot(y(1,:),y(2,:),'c.') // data

end

unifplot(thI,'.:r') // initial parameters

unifplot(th) // estimated parameters

ellips(D,C) // cuts of Gaussians for proximity

title 'Uniform clusters (red: initial support, blue: estimated support)'

Program description

For the program, the library functions is necessary.

At the beginning of the program we have a possibility to choose the value of forgetting frg
(1 means no forgetting, the recommended values for forgetting are around the value 0.95 - in
dependence of the data). Another option if ptw. For its value 0 we use probability weights, for
its value 1 we use one for the most probable component and zero for the others.

Then, the simulation is performed, c (t) is the pointer variable and y (t) is two-dimensional target
variable (output).

In the section Initialization we set initial centers and radiuses and the statistics and parameters
for the pointer model (nu, al).

The Time loop performs estimation:

� proximities and weights,

� recomputation of the statistics,

� construction of the point estimates of parameters.

The section Results demonstrates the evolution of the estimated parameters and the data clusters
with the �nal estimated windows of the uniform components.

5


