
Estimation with normal regression model
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f (yt|ψt,Θ) =
1√
2πr

exp

{
− 1

2r

(
yt − ψ

′

tθ
)2
}

The square can be edited as follows (
yt − ψ

′

tθ
)2

=
(
yt − θ

′
ψt

)(
yt − ψ

′

tθ
)

=

=

(
−
[
−1, θ

′
] [ yt

ψt

])(
−
[
yt, ψ

′

t

] [ −1

θ

])
=

=
[
−1, θ

′
]([ yt

ψt

] [
yt, ψ

′

t

])[ −1

θ

]
=

=
[
−1, θ

′
]
Dt

[
−1

θ

]

where Dt =

[
yt

ψt

] [
yt, ψ

′

t

]
is so called data matrix.



The regression model then is
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The conjugate distribution to this model (i.e. the distribution of the parameters that is reproducible during estimation)

is GaussWishart (GW) with the pdf
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where Vt is a square, positive de�nite matrix called information matrix.

Statistics

Now, substituting into the Bayes rule

f (Θ|d (t))︸ ︷︷ ︸
GW

∝ f (yt|ψt,Θ)︸ ︷︷ ︸
model
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By comparison of of the �rst and last expression we get the well known update of statistics

Vt = Vt−1 +Dt

κt = κt−1 + 1

The posterior pdf at time N is
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Point estimates

The point estimates of the parameters θ and r lay at its maximum.
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Now, putting the minimized quadratic form back to the posterior (1), we get
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Estimation with categorical model

Model

The model pf is

f (yt|ψt,Θ) = Θyt|ψt =
∏
y|ψ

Θ
δ(y|ψ;yt|ψt)
y|ψ

where δ (y|ψ; yt|ψt) = 1 for y|ψ = yt|ψt and zero otherwise. The rightmost expression i formal and helps to derive the

recursion for the statistics.

The conjugate distribution is the Dirichlet one
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Statistics

The Bayes rule gives ∏
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From it, the statistics update is

Sy|ψ;t = Sy|ψ;t−1 + δ (y|ψ; yt|ψt)



Remark

The statistic is a table, similarly as the model. This formula says: Take the entry with the index yt|ψt and increment

it by one. The rest stays unchanged.

The �nal statistics determine the posterior pdf

f (Θ|d (N)) ∝
∏
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Θ
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y|ψ

Point estimates

Point estimates of Θ are arguments of its maxima.

Example

For f (Θ|d (N)) = ΘS1ΘS2 (1−Θ1 −Θ2)
S3 we have
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from the �rst derivative

S1 (1−Θ1 −Θ2) = Θ1S3 → S1 − S1Θ1 − S1Θ2 = Θ1S3
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substitute S1Θ2 = S2Θ1 and we have
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