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1 Introduction, probability, system

www.fd.cvut.cz/personal/nagyivan + Stochastic systems

1.1 Revision

• Variable × Random variable (continuous, discrete)

Remark: Variables are (i) continuous, (ii) discretized (ordinal), (iii) discrete (nominal)
- can be ordered according to something (frequently money, some loss).

• Distribution (pf, pdf)

� discrete: f (x) ≡ P (X = x)

� continuous: f (x) ≡ limP (Ox) /m (Ox) for m (Ox)→ 0, where m (Ox) is a measure
of the neighborhood Ox around the point x

• Random vector, joint; marginal; conditional distribution
draw continuous and discrete uniform distribution for X = [x1, x2]

f (x1, x2) = f (x1) f (x2|x1) = f (x2) f (x1|x2)

Example

Discrete case

f (x1, x2)
x1\x2 1 2 f (x1)

1 0.1 0.3 0.4
2 0.4 0.2 0.6

f (x2) 0.5 0.5

f (x2|x1)
1
4

3
4

2
3

1
3

f (x1|x2)
1
5

3
5

4
5

2
5

f (x1) f (x2)

0.2 0.2
0.3 0.3

Continuous case

f (x1, x2) = 6x2
1x2, x1, x2 ∈ (0, 1)

f (x1) =

∫ 1

0
6x2

1x2dx2 = 3x2
1

f (x2) =

∫ 1

0
6x2

1x2dx1 = 2x2

f (x1|x2) =
6x2

1x2

2x2
= 3x2

1

f (x2|x1) =
6x2

1x2

3x2
1

= 2x2

As it is f (x1, x2) = f (x1) f (x2) the variables are independent.
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• Characteristics

E [X] =

[
E [x1]
E [x2]

]
, C [X] =

[
D [x1] cov [x1, x2]

cov [x1, x2] D [x2]

]
• Random process is random variable indexed by time

time \ values discrete continuous

discrete Markov chains random sequences
continuous queues x

• Categorical distribution

x 1 2 · · · n

f (x) p1 p2 · · · pn

where p1 ≥ 0,
∑
pi = 1. Each realization has its probability.

• Normal distribution

f (X) =
1√

(2π)n |R|
exp

{
−1

2
(x− µ)′R−1 (x− µ)

}

1.2 System and its variables

System is a part of reality we are interested in, on which we measure data and which we want
to learn about to be able to predict its behavior or in�uence it.

SYSTEM

imput (control)

disturbance

noise

output

state

ut

vt

et

yt

xt

• output - the modeled variable, after application of the control it can be measured

• input - variable that in�uences the output and that can be fully manipulated by us

• disturbance - can be measured, cannot be in�uenced

• state - is in�uenced by input, in�uences output, cannot be measured

• noise - can be neither measured nor predicted
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2 Di�erential equations, regression model

2.1 Di�erential equations

Dynamic process is described by di�erential equation

• stationary - constant coe�cients

� homogeneous: zero right-hand side (characteristic equation)

� controlled: model with control variable (variation of constant)

First order

y′ + ay = 0, y (0) = y0

• Laplace
pY − y0 + aY = 0

(p+ a)Y = y0

Y = y0
1

p+ a
→ y (t) = y0 exp {−at}

• by guess
y = α exp {λt}

characteristic equation
λ+ a = 0 → λ = −a

substitution
y = α exp {−at}

α according to initial condition
y (0) = α = y0

the solution is
y = y0 exp {−at}

Second order

y′′ + a1y
′ + a0y = 0, y (0) = y0, y

′ (0) = d0

Characteristic equation
λ2 + a1λ+ a0 = 0

Solution
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1. two real roots - two exponentials

2. one double root - exponential and polynomial

3. two complex roots - exponentials and sine, cosine

Stability - real parts of the roots must be in the left half-plane.

2.2 Discretization

Approximate

y′ + ay = 0

y′ (t)→y(t+T )−y(t)
T = yt+1−yt

T - T is step

y (t+ T )− y (t)

T
+ ay (t) = 0

yt+1 − yt + Tayt = 0 → yt+1 = (1− Ta)︸ ︷︷ ︸
Ã

yt

Precise

Discretization: τ = t0 + tT - t0 is initial time, t discrete time, T period (t0 often 0).

Notation: y (tT ) ≡ yt.
Equation

y′ (τ) + ay (τ) = 0

→ y (τ) = y0 exp {−aτ} solution

at time τ and τ + T
y (tT ) = y0 exp {−atT}

y (tT + T ) = y0 exp {−a (tT + T )} = y0 exp {−atT}︸ ︷︷ ︸
y(tT )

exp {−aT} = exp {−aT} y (tT )

notation
yt+1 = exp {−aT} yt = Ayt

Solution

y1 = Ay0

y2 = Ay1 = A2y0

· · ·
yt = At y0

Stability: inside of unit circle in complex plane.
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2.3 Regression model

yt = ψ
′
tΘ + et

• yt modeled variable (output) at time t

• ψt regression vector, containing samples of variables in�uencing the output

• Θ model parameters (regression coe�cients θ and noise variance r)

• et noise, with zero expectation, constant variance, independent of variables in regression
vector = sequence of independent and identically distributed r.v. = i.i.d.

ψt = [ut, yt−1, ut−1 · · · yt−n, ut−n, 1]′

θ = [b0, a1, b1, · · · an, bn, k]′ ,

Model in detail

yt = b0ut + a1yt−1 + b1yt−1 + · · ·+ anyt−n + bnut−n + k + et

Comments

1. Number of delayed y and u can be di�erent. Number of delayed y is called model

order.

2. The term ψ
′
tθ is at time t known constant. Model represents a transformation of et to

yt according to the model equation.

3. If ψt contains no delayed outputs, the model is static. Otherwise, it is dynamic.

4. yt = ψ
′
tθ represents a di�erence equation.

A general description of the model as a tool, describing yt as random variable is distribution

f (yt|ψt,Θ)

Moments of the model are

E [yt|ψt,Θ] = E
[
ψ
′
tθ + et

]
= ψ

′
tθ ≡ ŷt

D [yt|ψt,Θ] = D
[
ψ
′
tθ + et

]
= D [et] = r

7



Normal regression model

f (et) =
1√
2πr

exp

{
− 1

2r
e2
t

}
transformation: yt = ŷt + et → et = yt − ŷt , Jacobian is 1

f (yt|ψt,Θ) =
1√
2πr

exp

{
− 1

2r

(
yt − ψ

′
tθ
)2
}

2.4 Regression model in the state-space form

The state model is
xt = Mxt−1 +Nut + wt.

We will demonstrate the transformation for the 2nd order model

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k + et

The state model is
yt
ut
yt−1

ut−1

1

 =


a1 b1 a2 b2 k
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1



yt−1

ut−1

yt−2

ut−2

1

+


b0
1
0
0
0

ut +


et
0
0
0
0


The �rst row is the regression model, the rest is only one-step time shift.

The advantage of the state-space model lies in recurrent computations. Its memory is only
one.

Example: Compute y3

y1 = b0u0 + a1y0 + a2y−1

y2 = b0u2 + a1 (b0u0 + a1y0 + a2y−1) + a2y0

y3 = · · ·

x1 = Mx0 +Nu1

x2 = M (Mx0 +Nu1) +Nu2 = M2x0 +MNu1 +Nu2

x3 = M3x0 +M2Nu1 +MNu2 +Nu3

In the state form we even can write a general recurrent formula

xk = Mkx0 +

k∑
i=2

Mk−iui
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3 Discrete and logistic models

3.1 Discrete model

All variables are discrete - there is a �nite number of con�gurations of data vector ∆t ≡[
y
′
t, ψ

′
t

]′
. In the model, each data con�guration is assigned its own probability

f (yt|ψt,Θ) = Θyt|ψt

yt - output, ψt - regression vector, Θ parameter.

For two-valued variables and ψt =
[
u
′
t, y

′
t−1

]′
the parameters are Θyt|ut,yt−1

. The model can

be given a form of a table

[ut, yt−1] yt = 1 yt = 2

1, 1 Θ1|11 Θ2|11

1, 2 Θ1|12 Θ2|12

2, 1 Θ1|21 Θ2|21

2, 2 Θ1|22 Θ2|22

In the left, there are all con�gurations of the regression vector. The entries of the table denote
all con�gurations of the data vector, each of them contains its parameter.

It holds:
Θi|jk ≥ 0,

∑
i

Θi|jk = 1, ∀jk

Remarks

1. The structure of the model is practically general. It is dynamic and possesses control
variable.

2. The number of all data con�gurations is always �nite. However, with increasing number
of variables and number of values of the variables, its dimension rapidly grows.

Examples:

1. Coin

yt = 1 yt = 2

Θ1 Θ2

1. Coin with memory
f (yt|yt−1) , y ∈ {1, 2}
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yt−1 yt = 1 yt = 2

1 Θ1|1 Θ2|1
1 Θ1|2 Θ2|2

Uncertainty of the regression model is given by the noise variance. Here, it is given by Θ. If
its entries are close to 0 or 1, the model is almost deterministic. If they are near to 0.5, the
model is very uncertain. E.g.[

0.1, 0.9
0.9, 0.1

] [
0.4, 0.6
0.6, 0.4

]
or

[
1, 0
0, 1

] [
0, 1
1, 0

]

1. Controlled coin
f (yt|ut) , y, u ∈ {1, 2}

2. Controlled coin with memory

f (yt|ut, yt−1) , y, u ∈ {1, 2}

[ut, yt−1] yt = 1 yt = 2

1, 1 0.8 0.2
1, 2 0.7 0.3
2, 1 0.25 0.75
2, 2 0.1 0.9

where yt mostly obeys ut

Other examples


1 0
0 1
0 1
0 1




0 1
0 1
1 0
1 0


First: yt is the bigger from ut and yt−1, second: yt is the opposite to ut.

3.2 Scilab generations

• generate y∈ {1, 2} so that P (y = 1) = 0.3

y=(rand(1,1,'u')>0.3)+1 (one value);

y=(rand(1,nd,'u')>0.3)+1 (nd values);

• generate y ∈ {1, 2, · · · , n} so that P (y = i) = pi; p =[p1 · · · pn]
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pp=cumsum(p);

y=sum(rand(1,1,'u')>pp)+1;

• number of row i in the table for ut, yt−1 ∈ {1, 2}

i=2*(u(t)-1)+y(t-1);

• generate output yt from the model f (yt|ut, yt−1)

i=2*(u(t)-1)+y(t-1);

pp=cumsum(th(i,:));

y(t)=sum(rand(1,1,'u')>pp)+1;

3.3 Logistic model

Output is discrete, regression vector contains at least one continuous variable.

Neither regression nor discrete model can be used!

For yt ∈ {0, 1} the model is

f (yt|ψt,Θ) =
exp {ytzt}

1 + exp {zt}
zt = ψ

′
tΘ + et

ψt regression vector with continuous and possibly discrete variables,

ψt → zt regression (zt is continuous),

P (yt = 1|zt) = exp{zt}
1+exp{zt} , and its complement P (yt = 0|zt) = 1 − exp{zt}

1+exp{zt} = 1
1+exp{zt}

transforms zt to (0, 1) .

The function has a form

1

P (yt = 1|zt)

zt

11



and it holds

if zt > 0 then P (yt = 1|zt) > 0.5 estimate: yt = 1
if zt < 0 then P (yt = 1|zt) < 0.5 estimate: yt = 0

Example:

yt car accidents: 0 - just damage, 1 - injury or death

ψt (i) light: 1 - full, 2 - gloom, 3 - dark; (ii) weather: 1 dry, 2 - slippery; (iii) speed: continuous.

Output: discrete, its values denote system modes.

Regression vector: circumstances under which the output is measured.

Remarks

1. f (yt|ψt,Θ) = [P (yt = 0|zt) , P (yt = 1|zt)] where P (y = 0|zt) = 1/ (1 + exp {zt}) and
P (y = 1|zt) = exp {zt} / (1 + exp {zt}), P1 + P2 = 1

2. Other form of logistic model is

logit (pt) = ψ
′
tΘ + et

where logit (p) = ln p
1−P and pt = P (yt = 1|ψt,Θ)

z = logit (p) transforms (0, 1)→ R, p = logit−1 (z) transforms R→ (0, 1) .

3. For yt ∈ {0, 1, 2, · · ·n} we have

ln
p1

p0
= ψ

′
θ1, ln

p2

p0
= ψ

′
θ2, · · · , ln

pn
p0

= ψ
′
θn

with the parameter Θ = [θ1, θ2, · · · , θn] , where θi are columns.
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4 Estimation of regression model2

Notation: yt, dt = {yt, ut} , d (t) = {d0, d1, d2, · · · , dt} ; d0- prior, the rest are measurements.

Bayesian estimation

• classical statistics - parameters are unknown constants
Bayesian statistics - parameters are random variables (their description is distribution)

• distributions
model description f (yt|ψt,Θ)

parameter description f (Θ|d (t− 1)) , f (Θ|d (t))

• evolution of parameter pdf

f (Θ|d (0)) →︸︷︷︸
d1={u1,y1}

f (Θ|d (1)) →︸︷︷︸
d2={u2,y2}

· · · →︸︷︷︸
dt={ut,yt}

f (Θ|d (t))

• The evolution is governed by the Bayes rule

f (Θ|d (τ)) ∝ f (yτ |ψτ ,Θ) f (Θ|d (τ − 1))

starting from prior pdf f (Θ|d (0)) .

Remarks

1. Derivation of Bayes rule

f (A,B|C) = f (A|B,C) f (B|C)

= f (B|A,C) f (A|C)

→ f (A|B,C) = f(B|A,C)f(A|C)
f(B|C)

where
A→ Θ, B → dt, C = d (t− 1)

and {B,C} = {dt, d (t− 1)} = d (t) .

2. Natural conditions of control: The person that estimates also controls. For both actions
he uses only information from d (t− 1) .

→
f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1)) and conversely

f (ut|d (t− 1) ,Θ) = f (ut|d (t− 1))

2
two lectures
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It applies in estimation with controlled model

f (Θ|d (t)) ∝ f (yt|ψt,Θ) f (ut|d (t− 1) ,ΘX) f (Θ|d (t− 1))

which means that f (ut| · · · ) goes to constant.

3. Self reproducing form of Bayes rule
B.r. is recursive for functions. To be able to manage functions it is necessary to
parametrize the pdfs - e.g. normal distribution is given just by two numbers. Re-
cursiveness requires so that the form of prior pdf (after multiplication by the model) is
reproduced in the posterior pdf. E.g. normal pdf → normal pdf, with only statistics
recomputed.

Example (not recursive)

f (yt|a) =
a

1 + a

(
1

y2
t

+ exp {−ayt}
)

or

f (yt|a) =
1

2 + πa
(sin (yt) + a)

when computing product of models in measured yt the number of di�erent terms grows.

Example (recursive)
f (yt|a) = a exp {−ayt}

Posterior
f (a|y1, y2, y3) ∝ a3 exp {−a (y1 + y2 + y3)} =

aκ3 exp {−aS3}

where κ and S are statistics, evolving as follows

κt = κt−1 + 1

St = St−1 + yt

with initial stats κ0 and S0 with the meaning:

• κ0 is a virtual number of data samples, from which the prior statistics is constructed.

• S0 =
∑κ0

i=1 yi from which we have ȳ = S0
κ0

i.e. we say that average output is S0/κ0.

• Batch estimation

From Bayes rule if follows
f (Θ|d (t)) ∝ Lt (Θ) f (Θ)

where Lt (Θ) =
∏t
τ=1 f (yτ |ψτ ,Θ) is likelihood and f (Θ) ≡ f (Θ|d (0)) is the very prior

pdf.
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• Results of estimation

(i) posterior pdf f (Θ|d (t)) which brings full information and sometimes can be used as
it is - e.g. in prediction

f (yt|d (t− 1)) =

∫
Θ∗
f (yt,Θ|d (t− 1)) dΘ =

∫
Θ∗
f (yt|ψt,Θ) f (Θ|d (t− 1)) dΘ

(ii) point estimates computed using posterior pdf

Θ̂t = E [Θ|d (t)] =

∫
Θ∗

Θf (Θ|d (t)) dΘ

ŷt = E [yt|d (t− 1)] =

∫
y∗
yt f (yt|d (t− 1)) dyt =∫

y∗
yt

[∫
Θ∗
f (yt|ψt,Θ) f (Θ|d (t− 1)) dΘ

]
dyt

• Point estimate with quadratic criterion

E.g. for Θ and d - data

J = E

[(
Θ̂−Θ

)2
|d (t)

]
→ min

We derive

min
Θ̂
E

[(
Θ̂−Θ

)2
|d
]

= min
Θ̂
E
[
Θ̂2 − 2Θ̂Θ + Θ2|d

]
=

= min
Θ̂

{
Θ̂2 − 2Θ̂E [Θ|d] + E

[
Θ2|d

]}
=

= min
Θ̂

Θ̂2 − 2Θ̂E [Θ|d] + E [Θ|d]2−E [Θ|d]2 + E
[
Θ2|d

]︸ ︷︷ ︸
D[Θ]

 =

= min
Θ̂

{
Θ̂2 − 2Θ̂E [Θ|d] + E [Θ|d]2

}
+D [Θ] =

= min
Θ̂

{(
Θ̂− E [Θ|d]

)}
+D [Θ]

→ Θ̂ = E [Θ|d].
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5 Estimation of speci�c models

5.1 Normal regression model

Model

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r

(
yt − ψ

′
tθ
)2
}

For 1st order yt = but + ayt−1 + et it is ψt = [ut, yt−1]′ . The square in the exponent can be
written

(yt − but − ayt−1) (yt − but − ayt−1) =

= (−1) [−1, b, a]

 yt
ut
yt−1

 (−1) [yt, ut, yt−1]

 −1
b
a

 =

=
[
−1, θ′

] [ yt
ψt

] [
yt, ψ

′
t

]
︸ ︷︷ ︸

Dt

[
−1
θ

]

where Dt is data matrix.

Model (in modi�cation)

f (yt|ψt,Θ) ∝ r−0.5 exp

{[
−1, θ′

]
Dt

[
−1
θ

]}

Prior pdf

In the same form as model

f (Θ|d (0)) ∝ r−0.5κ0 exp

{[
−1, θ′

]
V0

[
−1
θ

]}
Bayes

f (Θ|d (1)) ∝ r−0.5 exp

{[
−1, θ′

]
Dt

[
−1
θ

]}
r−0.5κ0 exp

{[
−1, θ′

]
V0

[
−1
θ

]}
=

= r−0.5κ1 exp

{[
−1, θ′

]
V1

[
−1
θ

]}

Posterior

f (Θ|d (t)) ∝ r−0.5κt exp

{[
−1, θ′

]
Vt

[
−1
θ

]}
16



Recursion

κt = κt−1 + 1

Vt = Vt−1 +Dt

with κ0 and V0 as prior statistics.

Result

(a) Posterior - GiW with statistics κt and Vt.

(b) Point estimates of parameters

Vt =

[
Vy Vyψ
Vyψ Vψ

]
· · ·
[
• −−
| �

]

θ̂t = V −1
ψ Vyψ regression coe�cients

r̂t =
Vy − V

′
yψV

−1
ψ Vyψ

κt
noise variance

Point estimate of output
ŷt = ψtθ̂t−1 (θ → θ̂t−1, et → 0)

Batch estimation

yt = b0ut + · · · anyt−n + bnut−n + k + et

for t = 1, 2, · · · , N

y1 = b0u1 + · · · any1−n + bnu1−n + k + e1

y2 = b0u2 + · · · any2−n + bnu2−n + k + e2

· · ·
yN = b0uN + · · · anyN−n + bnuN−n + k + eN

→ matrix form
Y = Xθ + E

optimization - least squares

J =
∑

e2
i = E′E = (Y −Xθ)′ (Y −Xθ) = Y ′Y − 2θ′X ′Y + θ′X ′Xθ

∂

∂θ
J = −2X ′Y + 2X ′Xθ

X ′Xθ = X ′Y → θ̂t =
(
X ′X

)−1
X ′Y

17



5.2 Categorical model

Product form of the model

f (yt|ψt,Θ) = Θyt|ψt =
∏
y|ψ

Θ
δ(y|ψ; yt|ψt)
y|ψ

i.e. product over all possible con�gurations of y|ψ; but only yt|ψt is chosen.

Posterior pdf

f (Θ|d (t)) ∝
∏
y|ψ

Θ
νy|ψ;t

y|ψ

where νy|ψ;t for all con�gurations of y|ψ is statistics; νy|ψ;0 is the prior one.

Statistics update

From Bayes rule
νy|ψ;t = νy|ψ;t−1 + δ (y|ψ; yt|ψt)

for all con�gurations of y|ψ (or νyt|ψt;t = νyt|ψt;t−1 + 1 for actual data)

Point estimate

θ̂y|ψ;t =
νy|ψ;t∑
i νi|ψ;t

which is normalization of the statistic matrix in rows.

Example (a coin)

Model
f (y|p) = py, y = 1, 2 ; p = [p1, p2]′

Product form
f (y|p) = p

δ(y,1)
1 p

δ(y,2)
2

Posterior
f (p|d (t)) ∝ pν1;t1 p

ν2;t
2

Statistics
νt = [ν1;t, ν2;t]

Update

� for y = 1
ν1;t = ν1;t−1 + 1

18



� for y = 2
ν2;t = ν2;t−1 + 1

For the data
t 1 2 3

yt 1 1 2

and zero initial statistics

t 0 1 2 3

ν1 0 1 2 2
ν2 0 0 0 1

p1 x 1 1 2
3

p2 x 0 0 1
3

With initial statistics 10

t 0 1 2 3

ν1 10 11 12 12
ν2 10 10 10 11

p1 x 0.524 0.546 0.522
p2 x 0.476 0.454 0.478

The ratio
ν1;0

ν1;0+ν2;0
expresses the value of p1

The magnitude of ν expresses our belief in .our guess.

Output estimate

f (yt|d (t− 1)) = f
(
yt|ψt,Θ = Θ̂t−1

)
yt 1 2 3 · · · n

f
(
yt|ψtΘ̂t−1

)
P (yt = 1) P (yt = 2) P (yt = 3) P (yt = n)

Point estimate: e.g. the value with the biggest probability.

5.3 Model of logistic regression

For estimation, numerical maximization of log-likelihood is used.

For yt ∈ {0, 1} the model is

f (yt|zt) =
exp {ytzt}

1 + exp {zt}
, zt = ψ

′
tΘ + et

19



Likelihood

Lt =

t∏
τ=1

f (yτ |zτ ) =

t∏
τ=1

exp {yτzτ}
1 + exp {zτ}

lnLt =

t∑
τ=1

[ytzt − ln (1 + exp {zt})] , zt = ψ
′
tΘ

Θ̂t = arg min
Θ

lnLt

for minimization, Newton method can be used.

Output estimation

Substitute ψt into the model with parameter estimates. The value with the biggest probability
can be selected.

Classi�cation

The space of all possible ψ is divided into two subsets - one with ŷ = 0, the other with ŷ = 1.

20



6 Prediction

Estimation of the future output.

6.1 Output estimation (zero step prediction)

E.g. for 1st order regression model without control f (yt|yt−1,Θ)

f (yt|y (t− 1)) =

∫
Θ∗
f (yt,Θ|y (t− 1)) dΘ =

(i) =

∫
Θ∗
f (yt|yt−1,Θ) f (Θ|y (t− 1)) dΘ posterior of Θ

(ii)
.
= f

(
yt|yt−1, Θ̂t−1

)
point estimate of Θ

where (ii) is achieved by replacing f (Θ|y (t− 1))→ δ
(

Θ, Θ̂t−1

)
and∫

Θ∗
f (yt|yt−1,Θ) f (Θ|y (t− 1)) dΘ

.
=

.
=

∫
Θ∗
f (yt|yt−1,Θ) δ

(
Θ, Θ̂t−1

)
dΘ = f

(
yt|yt−1, Θ̂t−1

)
where Θ̂t−1 = E [Θ|y (t− 1)] =

∫
Θ∗ Θf (Θ|y (t− 1)) dΘ is point estimate of Θ based on the

data y (t− 1) .

Remark: In f (yt|y (t− 1)) the parameter Θ is missing. We need to supply it.

6.2 One step prediction

f (yt+1|y (t− 1)) =

∫
Θ∗

∫
y∗t

f (yt+1, yt,Θ|y (t− 1)) dytdΘ =

(i) =

∫
Θ∗

∫
y∗t

f (yt+1|y (t) ,Θ) f (yt|yt−1,Θ) f (Θ|y (t− 1)) dytdΘ

(ii)
.
= f

(
yt+1|ŷt, Θ̂t−1

)
where for (ii) we lay f (Θ|y (t− 1))→ δ

(
Θ, Θ̂t−1

)
and f (yt|y (t− 1))→ δ (yt, ŷt) with Θ̂t−1

and ŷt being point estimates.

Remark
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• Here, both Θ and yt are missing. We must supply both.

• Comparing (i) and (ii) we can see the basic principle of Bayesian estimation. Basically,

value of the missing unknown variable (Θ and yt) is substituted (into the pdfs) and it is

weighted by its probability (prior pdf + integration). In the second variant (ii) �rst point
estimates are computed and then substituted for the unknown variables.

6.3 Multi-steps prediction

Regression model with known parameters and point estimation

For a 1st order regression model yt = ayt−1 + but + et with known parameters and point
prediction we have

yt = ayt−1 + but + et

ŷt = ayt−1 + but

ŷt+1 = aŷt + but+1 = a (ayt−1 + but) + but+1 =

= a2yt−1 + abut + but+1

ŷt+2 = aŷt+1 + but+2 =

= a3yt−1 + a2but + abut+1 + but+2

etc.

The point prediction can be achieved by a simple repetitive substitution of the model. For
simulation, directly last estimates can be used.

Full prediction with regression model under condition of normality

Prediction with normal model with known parameters preserves normality. If et is normal, all
predictions are normal, too.

yt = ayt−1 + but + et

yt−1 = ayt + but+1 + et+1 =

= a (ayt−1 + but + et) + but+1 + et+1 =

= a2yt−1 + abut + but+1 + aet + et+1

yt+2 = ayt+1 + but+2 + et+2 =

= a3yt−1 + a2but + abut+1 + but+2 + a2et + aet+1 + et+2

→

E [yt+2|y (t− 1)] = a3yt−1 + a2but + abut+1 + but+2
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D [yt+2|y (t− 1)] = D
[
a2et + aet+1 + et+2

]
=
(
a4 + a2 + 1

)
r

Predictive pdf

f (yt+2|y (t− 1)) = Nyt+2 (E [yt+2|y (t− 1)] , D [yt+2|y (t− 1)])

(normal distribution is determined by its expectation and variance)

6.4 Prediction with discrete model

For model f (yt|yt−1,Θ) we have

Zero step prediction

f (yt|yt−1,Θ) = Θyt|yt−1

Multi-steps prediction

f (yt+k|y (t− 1)) =
(

Θk+1
)
yt+k|yt−1

Example

Two steps prediction

f (yt+2|y (t− 1)) =
∑
yt+1

∑
yt

f (yt+2|yt−1) f (yt+1|yt) f (yt|yt−1) =

=
∑
yt+1

Θyt+2|yt+1

∑
yt

Θyt+1|ytΘyt|yt−1
=
(
Θ3
)
yt+2|yt−1

For

Θ =

[
0.4, 0.6
0.8, 0.2

]

f (yt+2|y (t− 1)) =

[
0.4, 0.6
0.8, 0.2

]3

=

[
0.544, 0.456
0.608, 0.392

]
→

for yt−1 = 1 we have f (yt+2|1) = [0.544, 0.456]

for yt−1 = 2 we have f (yt+2|2) = [0.608, 0.392]

Point prediction either MAP, or to generate from the distribution.
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7 State-space model, state estimation

7.1 Model

f (xt|xt−1, ut−1) model of the state

f (yt|xt, ut) model of the output

is generated by the equations

xt = Mxt−1 +Nut−1 + wt

yt = Axt +But + vt

where M, N, A, B are matrices, wt and vt white noises with covariance matrices rw and rv.

7.2 Estimation

State description

f (xt−1|d (t− 1)) →︸︷︷︸
prediction

f (xt|d (t− 1)) →︸︷︷︸
�ltration

f (xt|d (t))

Evolution

f (xt|d (t− 1)) =

∫
x∗t−1

f (xt|xt−1, ut−1) f (xt−1|d (t− 1)) prediction

f

 xt︸︷︷︸
Θ

|d (t)

 ∝ f (yt|xt, ut)︸ ︷︷ ︸
model

f

 xt︸︷︷︸
Θ

|d (t− 1)

 Bayes

! In the above derivation Natural Conditions of Control are used !

Kalman �lter

For normal model and normal prior state distribution the normality is preserved. Functional
recursion becomes algebraic one for expectations and covariance matrices.

Notation

f (xt|xt−1, ut) = Nxt (Mxt−1 +Nut, rw)

f (yt|xt, ut) = Nyt (Axt +But, rv)
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and

f (xt−1|d (t− 1)) = Nxt−1

(
xt−1|t−1, Rt−1|t−1

)
f (xt|d (t− 1)) = Nxt

(
xt|t, Rt|t

)
f (xt|d (t)) = Nxt

(
xt|t, Rt|t

)
Substitution into the evolution equations gives Kalman �lter (KF)

Kalman �lter

xt|t−1 = Mxt−1|t−1 +Nut state prediction

Rt|t−1 = rx +MRt−1|t−1M
′

yp = Axt|t−1 +But output prediction

Rp = ry +ARt|t−1A
′

Rt|t = Rt|t−1 −Rt|t−1A
′R−1

p ARt|t−1

K = Rt|tA
′r−1
y Kalman gain

xt|t = xt|t−1 +K (yt − yp) state correction

The �lter starts with prior x0|0 and R0|0, uses data yt, ut, t = 1, 2, · · · , N and currently
computes xt|t and Rt|t. The result is either point state estimate xt|t or the full distribution of
the state f (xt|ut, d (t)) = Nxt

(
xt|t, Rt

)
.

Program with the task is in LecKalman.sce and Kalman.sci.
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8 Nonlinear state estimation

8.1 Nonlinear model

xt = g (xt−1, ut) + wt

yt = h (xt, ut) + vt

Example

For

xt =

[
x1

x2

]
t

, ut, yt

the model is

x1;t = exp {−x1;t−1 − x2;t−1}+ ut + wt

x2;t = x1;t−1 − 0.3ut + w2;t

yt = x2;t + vt

Linearization

Is done using �rst two terms of Taylor expansion of nonlinear functions at the point of last
point estimate. For the state equation it is x̂t−1 and for the output equation it is x̂t.

Generally, i.e. for a general value x the expansion reads

g (x, ut)
.
= g (x̂t−1, ut) + g′ (x̂t−1, ut) (x− x̂t−1)

h (x, ut)
.
= h (x̂t, ut) + h′ (x̂t, ut) (x− x̂t)

Remarks

1. xt and xt−1 are random variables. x is their general value, x̂t and x̂t−1 are special values:
x̂t is the point estimate of xt and x̂t−1 is point estimate of xt−1.

2. Linearization can be applied only to nonlinear parts of the model. The linear parts can

stay as they are.

The derivatives g′ and h′ are

g′ (x̂t−1, ut) =


∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

· · · · · · · · · · · ·
· · ·

∂gn
∂x1

· · · ∂gn
∂xn


|x=x̂t−1

, h′ (x̂t, ut) =


∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

· · · · · · · · · · · ·
· · ·

∂hm
∂x1

· · · ∂hm
∂xn


|x=x̂t
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After substitution the linearization into the model, we have

and for x = x̂t−1 in the case of the state equation and x = x̂t for output equation we obtain
the linearized model

xt = M̄xt−1 + F + wt

yt = Āxt +G+ vt

where

M̄ = g′ (x̂t−1, ut) , F = g (x̂t−1, ut)− g′ (x̂t−1, ut) x̂t−1,

Ā = h′ (x̂t, ut) , G = h (x̂t, ut)− h′ (x̂t, ut) x̂t.

Example (continuation) - · · · only �rst equation is nonlinear

g1 (x, ut) = exp {−x1 − x2}+ ut

g
′
1 (x, ut) =

[
∂g1

∂x1
,
∂g1

∂x2

]
= [− exp {−x1 − x2} , − exp {−x1 − x2}]

Fully linearized model is

x1;t = g
′
1 (x̂t−1, ut)xt−1 + g1 (x̂t−1, ut)− g

′
1 (x̂t−1, ut) x̂t−1 + wt

x2;t = [1, 0]xt−1 − 0.3ut + w2;t

yt = [0, 1]xt + vt

where

M̄ =

[
g
′
1 (x̂t−1, ut)

[1, 0]

]
, F =

[
g1 (x̂t−1, ut)− g

′
1 (x̂t−1, ut) x̂t−1

−0.3ut

]
,

N =

[
0
0

]
, Ā = [0, 1] , G = 0, B = 0.

With this, we can use subroutine Kalman

[xt,Rx,yp]=Kalman(xt,yt,ut,M̄ ,N,F,Ā,B,G,Rw,Rv,Rx)
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8.2 Model with unknown parameters

The unknown parameters of the model are added to the state a and estimated. However, the
model becomes nonlinear - model matrices contain state entries and they are multiplied by
state. So, the technique of linearization must be used, again.

Example

Model

xt = exp {−axt−1}+ but + wt

yt = xt + vt,

where a and b are unknown.

We de�ne new state

Xt =
[
x
′
t, a, b

]′
, Xt−1 =

[
x
′
t−1, a, b

]′
and obtain new model

Xt =

 exp {−X2;t−1X1;t−1}+X3;t−1ut
X2;t−1

X3;t−1

+

 wt
ε2;t

ε3;t


︸ ︷︷ ︸

Wt

yt = [1, 0, 0]Xt + vt

Only the �rst equation is nonlinear, however, we will treat the whole model as nonlinear (it is
well possible)

g =

 exp {−X2;t−1X1;t−1}+X3;t−1ut
X2;t−1

X3;t−1


Xt−1=X̂t−1

g′ =

 −X2;t−1 exp {−X2;t−1X1;t−1} , −X1;t−1 exp {−X2;t−1X1;t−1} , ut
0 1 0
0 0 1


Xt−1=X̂t−1

model

Xt = g′︸︷︷︸
M̄

Xt−1 + g − g′X̂t−1︸ ︷︷ ︸
F

+Wt

yt = [1, 0, 0]︸ ︷︷ ︸
Ā

Xt + vt

and N = [0, 0, 0]′ , B = 0, G = 0.

[x, Rx, yp] = Kalman(x, y, u, M̄ , N, F, Ā, B, G, Rw, Rv, Rx)
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9 Estimation of mixtures

9.1 Mixture model

f (dt|Θ) =

nc∑
k=1

αkfk (dt|Θk)

where fk denotes component; k is component index; Θk are parameters of k-th component;
αk stationary weights of components.

Example (for nc = 3)

f1 : dt = m(1) + e1;t e1;t ∼ Ndt

(
0, r(1)

)
f2 : dt = m(2) + e2;t e2;t ∼ Ndt

(
0, r(2)

)
f3 : dt = m(3) + e3;t e3;t ∼ Ndt

(
0, r(3)

)
dt =

[
d1

d2

]
t

=

[
m1

m2

](k)

t

+

[
e1

e2

](k)

t

, k = 1, 2, 3

d1

d2 components of a mixture

dt = [d1, d2]t

We cannot use dt for updating all components - it would not respect multi-modality of the
system. It is necessary to determine probabilities that the measured data item belongs to
individual components (so called actual weights of components). This starts with assumption
that the data belongs to a single component - called active component.

9.2 Estimation

Known active components

We introduce pointer ct ∈ {1, 2, · · · , nc} as a discrete process whose realizations at each time
t point at the active component.
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If the activities of the components are known, it holds

f (ct) = δ (ct, ĉt)

where δ is Kronecker function, ĉt is known number of active component at t.

In this case, the posterior is

f (Θk|d (t)) ∝ fk (dt|Θk) f (Θk|d (t− 1)) , for k = ĉt, ∀t

· · · each component has its own prior and each time t only the prior of the active component
is updated.

Unknown active components

If the active components are not known, we have to estimate them. We have two models -
active component model

fct (dt|Θct) =

nc∏
k=1

fct (dt|Θct)
δ(k; ct) (product form)

=

nc∏
k=1

r0.5 exp

{
− 1

2r

([
yt
ψt

]′
Dt

[
yt
ψt

])}δ(k; ct)

(normal model)

and pointer model - with categorical description

f (ct|α) = αct =

nc∏
k=1

α
δ(k; ct)
k (product form)

f(ct|α)

α1 = 0
α2 = 0

α3 = 1
α4 = 0

αn = 0
ct

Bayes
f (ct,Θ, α|d (t)) ∝︸︷︷︸

Bayes

f (dt, ct,Θ, α|d (t− 1)) =
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= f (dt|ct,Θ)︸ ︷︷ ︸
component

f (ct|α)︸ ︷︷ ︸
pt. model

f (Θ, α|d (t− 1))︸ ︷︷ ︸
priors (independent)

=

= fct (dt|Θct)αctf (Θ|d (t− 1)) f (α|d (t− 1)) =

= fct (dt|Θct) f (Θ|d (t− 1))︸ ︷︷ ︸
component part

×αctf (α|d (t− 1))︸ ︷︷ ︸
pointer part

∝ (∗)

In product form with conjugated priors

f (Θ|d (t− 1)) =

nc∏
k=1

GiWΘk (Vk, κk) ∝
nc∏
k=1

r0.5κk;t−1 exp

{
− 1

2r

([
yt
ψt

]′
Vk;t−1

[
yt
ψt

])}

f (α|d (t− 1)) =

nc∏
k=1

Diα (νk) ∝
nc∏
k=1

α
νk;t−1

k

where GiW is Gauss-inverse-Wishart and Di is Dirichlet distributions, we have

(∗) ∝
nc∏
k=1

r0.5 exp

{
− 1

2r

([
yt
ψt

]′
Dt

[
yt
ψt

])}δ(k; ct) nc∏
k=1

r0.5κk;t−1 exp

{
− 1

2r

([
yt
ψt

]′
Vk;t−1

[
yt
ψt

])}
×

×
nc∏
k=1

nc∏
k=1

α
δ(k; ct)
k

nc∏
k=1

α
νk;t−1

k

→ statistics update

Vk;t = Vk;t−1 + δ (k; ct)Dt

κk;t = κk;t−1 + δ (k; ct)

νk;t = νk; t−1 + δ (k; ct)

for all k = 1, 2, · · · , nc (in practice, only statistics of the currently active component are
updated).

Problem is that we do not know ct. We will approximate δ (k; ct) by its expectation

E [δ (k; ct) |d (t)] =

nc∑
k=1

δ (k; ct) f (ct|d (t)) = P (ct = k|d (t)) = wk;t

f(ct|α)

α1 = p1
α2 = p2

α3 = p3
α4 = p4

αn = pn
ct
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→ approximated statistics update

Vk;t = Vk;t−1 + wk;tDt

κk;t = κk;t−1 + wk;t

νk;t = νk; t−1 + wk;t

i.e. only part of data is used for each component.

Computation of actual weights

Using posterior pdf

wk;t =

∫ ∫
f (ct = k,Θ, α|d (t)) dαdΘ =

=

∫
Θ∗
fct (dt|Θct) f (Θ|d (t− 1)) dΘ︸ ︷︷ ︸

data prediction Mk

×
∫
α∗
αctf (α|d (t− 1)) dα︸ ︷︷ ︸

component prediction α̂k;t−+

where Mk is a "distance" of dt from k-th component - fk

(
dt|Θ̂t−1

)
; α̂k;t−1 is a probability

of k-th component "historical" occurrence.

Algorithm

for t = 1, 2, · · · , nc

1. compute α̂k =
νk;t−1∑
i νi;t−1

and Θ̂k;t−1 (LS)

2. measure new data dt

3. compute Mk = fk

(
dt|Θ̂k;t−1

)
4. compute weights wk = Mkα̂k;t−1 and normalize w = w∑

w

5. update component and pointer statistics

Vk = Vk + wkDt

κk = κk + wk

νk = νk + wk

6. compute point estimate of active component

ĉt = arg max(wt)
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10 Control with regression model

10.1 Derivation in pdf

Criterion

Optimal control needs criterion. We will use summation one

J =

N∑
t=1

Jt

where Jt is a penalization for time t. Mostly it is Jt = y2
t + ωu2

t .

We want to set ut, t = 1, 2, · · · , N that minimizes J . But, J is a random variable, due to the
output yt. As random variable can take many di�erent values it is not possible to speak about
its minimization. So, we must minimize its estimate (which is expectation). So the minimized
criterion is

E [J |d (0)] = E

[
N∑
t=1

Jt|d (0)

]
where in condition of the expectation is our preliminary knowledge - prior data.

Remark

For N = 1 we obtain one-step control. Here, we optimize control only for the next output.

This control is dangerous, because the controller does not take into account future evolution

of the system and to act best in one step it can generate too beg output. This can excite the

system so much that it is not possible even to stabilize it in the future and the control fails.

Minimization

min
u1:N

E

[
ϕ∗N+1 +

N∑
t=1

Jt|d (0)

]
=

= min
u1:(N−1)

E

min
uN

E
[
ϕ∗N+1 + JN |uN , d (N − 1)

]︸ ︷︷ ︸
ϕ∗N

+

N−1∑
t=1

Jt

∣∣∣∣d (0)

 =

= min
u1:(N−1)

E

[
min
uN

ϕN +
N−1∑
t=1

Jt|d (0)

]
= min

u1:N
E

[
ϕ∗N +

N−1∑
t=1

Jt|d (0)

]
which reproduces the initial form, only with N → N − 1 and where (due to the reproduction
in general form)
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Bellman equations

ϕt = E
[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
expectation

ϕ∗t = min
ut

ϕt minimization

for t = N, N − 1, N − 2, · · · , 1. Each minimization gives the formula for optimal control -
it is ut = arg minϕt (d (t− 1)) . However, ti cannot be used immediately, because the data
d (t− 1) is not known, yet. Only at time t = 1 we need data d (0) and the control can start
to be generated.

Comments

1. The operator form of expectation is brief but not explicit. We will show its integral
form:

min
u1:N

E

[
ϕ∗N+1 +

N∑
t=1

Jt|d (0)

]
=

= min
u1:N

∫
· · ·
∫ (

ϕ∗N+1 +
N∑
t=1

Jt

)
f (y (N) , u (N) |d (0)) dy (N) du (N) =

= min
u1:N

∫
· · ·
∫ ∫ ∫ ([

ϕ∗N+1 + JN
]

+
N−1∑
t=1

Jt

)
f (yN |uN , d (N − 1)) f (uN |d (N − 1))×

×f (y (N − 1) , u (N − 1) |d (0)) dy (N) du (N) =

= min
u1:(N−1)

{∫
· · ·
∫

min
uN

∫ ∫ (
ϕ∗N+1 + Jt

)
f (yN |uN , d (N − 1)) dyN︸ ︷︷ ︸

ϕN (uN ,d(N−1))

f (uN |d (N − 1)) duN+

N−1∑
t=1

Jtf (y (N − 1) , u (N − 1) |d (0)) dy (N − 1) du (N − 1)

}
Minimum over uN

min
uN

∫ ∫ (
ϕ∗N+1 + Jt

)
f (yN |uN , d (N − 1)) dyN︸ ︷︷ ︸

ϕN (uN ,d(N−1))

f (uN |d (N − 1)) duN =

= min
uN

∫
ϕN (uN , d (N − 1)) f (uN |d (N − 1)) duN

→ u∗N = arg minuN ϕN and f (uN |d (N − 1)) = δ (uN , u
∗
N ) - all ut is concentrated into

one point u∗N .
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10.2 Derivation for regression model

Regression model can be converted to state-space form (see lecture 2 - Regression model in
state-space form).

xt = Mxt−1 +Nut + wt

where xt = [yt, ut, yt−1, ut−1, · · · yt−n+1, ut−n+1]′.

The penalty can be written as
y2
t + ωu2

t = x′tΩxt (10.1)

where Ω is a diagonal matrix

Ω =


1

ω
0
· · ·

0


Now the model and criterion is used in general Bellman equations, where we guess the form
of ϕ∗t+1 = x

′
tRt+1xt

E
[
x
′
tRt+1xt + x

′
tΩxt|ut, d (t− 1)

]
= E

[
x
′
tUxt

]
=

= (Mxt−1 +Nut)
′ U (Mxt−1 +Nut) + ρ =

= x
′
t−1M

′UM︸ ︷︷ ︸
C

xt−1 + 2u
′
tN
′UM︸ ︷︷ ︸
B

xt−1 + u
′
tN
′UN︸ ︷︷ ︸
A

ut + ρ =

= u
′
tAut + 2u

′
tAA

−1B︸ ︷︷ ︸
St

xt−1 + x
′
t−1S

′
tAStxt−1+

+x
′
t−1Cxt−1 − x

′
t−1S

′
tAStxt−1︸ ︷︷ ︸

xt−1Rtxt−1

+ρ =

= (ut + Stxt−1)′A (ut + Stxt−1) + x
′
t−1Rtxt−1 + ρ

Optimal ut = Stxt−1.

Recursion

RN+1 = 0

for t = N, N − 1, · · · , 1
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U = Rt+1 + Ω
A = N ′UN
B = N ′UM
C = M ′UM
St = A−1B
Rt = C − S′tASt
ut = Stxt−1.

end

Remark

The penalty function (10.1) can be very easily extended to the following form

(yt − st)2 + ωu2
t + λ (ut − ut−1)2

where the �rst term leads to the following the output yt the prescribed set-point st and the

last term introduces penalization of increments of the control variable. Penalizing the control

increments calms control behavior and at the same time it does not result to steady-state

deviation of the output and the set-point as it is when penalizing the whole control variable.

The solution how to introduce the above requirements for the control lies in construction of the

penalization matrix as follows

Ω =



1 −1
ω + λ −λ

0
−λ λ

· · ·
0

−1 1


which is evident if we take into account that the criterion is

x
′
tΩxt

and xt = [yt, ut, yt−1, ut−1, · · · , 1] .
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11 Control with categorical model

Here, we are going to demonstrate synthesis for the controlled coin with memory. The model is
introduced by the table below. The penalization matrix is of the same form. Each of its entries
individually penalizes the corresponding con�guration of values of actual data [yt, ut, yt−1] .

model f (yt|ut, yt−1)

penalty Jyt|ut,yt−1

for three steps control, i.e. for t = 1, 2, 3 and the following model and penalization

model ( Θ )

u3, y2 y3 = 1 y3 = 2

1, 1 0.7 0.3
1, 2 0.2 0.8
2, 1 0.9 0.1
2, 2 0.4 0.6

penalty ( J )

u3, y2 y3 = 1 y3 = 2

1, 1 0 1
1, 2 1 0
2, 1 1 2
2, 2 2 1

11.1 Optimization

Optimization is a bit unusual, however, it again follows the Bellman equations (??) and (??).
We will show the synthesis on the interval of the length 3. We begin at the end of it.

Step for t = 3: ϕ∗4 = 0

Expectation

ϕ3 = E [J |u3, d (2)] =
2∑

y3=1

Jy3|u3,y2Θy3|u2,y2 =

=


0
1
1
2

 . ∗


0.7
0.2
0.9
0.4

+


1
0
2
1

 . ∗


0.3
0.8
0.1
0.6

 =


0.3
0.2
1.1
1.4


· · · u3 = 1, y2 = 1
· · · u3 = 1, y2 = 2
· · · u3 = 2, y2 = 1
· · · u3 = 2, y2 = 2

Minimization
for : y2 = 1→ min {0.3, 1.1} = 0.3 foru3 = 1

for : y2 = 2→ min {0.2, 1.4} = 0.2 foru3 = 1

→

u3 =

{
1 for y2 = 1

1 for y2 = 2

and reminder after minimization
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y2 = 1 y2 = 2

0.3 0.2
∀u2, y1 →

u2, y1 y2 = 1 y2 = 2

1, 1 0.3 0.2
1, 2 0.3 0.2
2, 1 0.3 0.2
2, 2 0.3 0.2

= ϕ∗3

Step for t = 2:

Expectation

ϕ2 = E [J + ϕ∗3|u2, d (1)] =
2∑

y2=1

(
Jy2|u2,y1 + ϕ∗3;y2|u2,y1

)
Θy2|u2,y1 =

=




0
1
1
2

+


0.3
0.3
0.3
0.3


 .ϕ∗2 = 0 ∗


0.7
0.2
0.9
0.4

+




1
0
2
1

+


0.2
0.2
0.2
0.2


 . ∗


0.3
0.8
0.1
0.6

 =

=


0.8
0.7
1.6
1.9


· · · u2 = 1, y1 = 1
· · · u2 = 1, y1 = 2
· · · u2 = 2, y1 = 1
· · · u2 = 2, y1 = 2

Minimization
for : y1 = 1→ min {0.8, 1.6} = 0.8 foru2 = 1

for : y1 = 2→ min {0.7, 1.9} = 0.7 foru2 = 1

→

u2 =

{
1 for y1 = 1

1 for y1 = 2

and reminder after minimization

y1 = 1 y1 = 2

0.8 0.7
∀u1, y0 →

u1, y0 y1 = 1 y1 = 2

1, 1 0.8 0.7
1, 2 0.8 0.7
2, 1 0.8 0.7
2, 2 0.8 0.7

= ϕ∗2

Step for t = 1:

Expectation

ϕ1 = E [J + ϕ∗2|u1, d (0)] =

2∑
y1=1

(
Jy1|u1,y0 + ϕ∗2;y1|u1,y0

)
Θy1|u1,y0 =
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=




0
1
1
2

+


0.8
0.8
0.8
0.8


 . ∗


0.7
0.2
0.9
0.4

+




1
0
2
1

+


0.7
0.7
0.7
0.7


 . ∗


0.3
0.8
0.1
0.6

 =

=


1.8
1.7
2.6
2.9


· · · u1 = 1, y0 = 1
· · · u1 = 1, y0 = 2
· · · u1 = 2, y0 = 1
· · · u1 = 2, y0 = 2

Minimization
for : y0 = 1→ min {1.8, 2.6} = 1.8 foru1 = 1

for : y1 = 2→ min {1.7, 2.9} = 1.7 foru1 = 1

→

u1 =

{
1 for y0 = 1

1 for y0 = 2

and reminder after minimization

y0 = 1 y0 = 2

1.8 1.7

11.2 Application

For t = 0 let us have y0 = 2.

For y0 = 2 we have u1 = 1; → [1, 2] Θ1,2 =[0.2, 0.8] let us obtain y1 = 2

For y1 = 2 we have u2 = 1; → [1, 2] Θ1,2 =[0.2, 0.8] let us obtain y2 = 1

For y2 = 1 we have u3 = 1; → [1, 1] Θ1,1 =[0.7, 0.3] let us obtain y3 = 2

The �nal value of criterion is J2|12 + J1|12 + J2|11 = 0 + 1 + 1 = 2.
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12 Appendix

12.1 Elementary di�erential equations

First order equations

The �rst order homogeneous di�erential equation with constant coe�cients has the form

y′ + a0y = 0, y(0) = ỹ0 (12.1)

Characteristic equation is linear with unique solution

λ+ a0 = 0 → λ = −a0 (12.2)

The solution to the di�erential equation (12.1) is

y(t) = ỹ0e
λt (12.3)

Second order equations

The second order homogeneous di�erential equation with constant coe�cients has the form

y′′ + a1y
′ + a0y = 0, y(0) = ỹ0, y

′(0) = ỹ1 (12.4)

Characteristic equation is quadratic

λ2 + a1λ+ a0 = 0 (12.5)

with the following types of solution

1. Two di�erent real roots λ1 and λ2

The equation (12.4) is
y′′ − (λ1 + λ2)y′ + λ1λ2y = 0

The solution is
y(t) = c1e

λ1t + c2e
λ2t, (12.6)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 + c2 = ỹ0

λ1c1 + λ2c2 = ỹ1

which gives the solution

c1 = (λ2y0 − y′0)/(λ2 − λ1) and c2 = (λ1y0 − y′0)/(λ1 − λ2)
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2. One real double root λ

The equation (12.4) is
y′′ − 2λy′ + λ2y = 0

The solution is
y(t) = c1e

λt + c2te
λt, (12.7)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

λc1 + c2 = ỹ1

which gives the solution
c1 = ỹ0 and c2 = ỹ1 − λỹ0

3. Two complex roots λ1 = ρ+ ωi and λ2 = ρ− ωi
The equation (12.4) is

y′′ − 2ρy′ + ρ2 + ω2 = 0

The solution is
y(t) = c1e

ρt cos(ωt) + c2e
ρt sin(ωt), (12.8)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

ρc1 + ωc2 = ỹ1

which gives the solution

c1 = ỹ0 and c2 = (ỹ1 − ρỹ0)/ω

12.2 Elementary di�erence equations

Here, we will consider discrete time k for which it holds t = kT , where t is continuous time
and T is a �x period of sampling.

First order equations

The �rst order homogeneous di�erence equation with constant coe�cients has the form

yk+1 + a0yk = 0, y0 = ỹ0 (12.9)

Characteristic equation is linear with unique solution

λ+ a0 = 0 → λ = −a0 (12.10)

The solution to the di�erential equation (12.9) is

yk = ỹ0.λ
k (12.11)
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Second order equations

The second order homogeneous di�erence equation with constant coe�cients has the form

yk+2 + a1yk+1 + a0y = 0, y0 = ỹ0, = y1 = ỹ1 (12.12)

Characteristic equation is quadratic

λ2 + a1λ+ a0 = 0 (12.13)

with the following types of solution

1. Two di�erent real roots λ1 and λ2

The equation (12.12) is

yk+2 − (λ1 + λ2)yk+1 + λ1λ2y = 0

The solution is
yk = c1λ

k
1 + c2λ

k
2, (12.14)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 + c2 = ỹ0

λ1c1 + λ2c2 = ỹ1

which gives the solution

c1 = (λ2ỹ0 − ỹ1)/(1− λ1) and c2 = (λ1ỹ0 − ỹ1)/(1− λ2)

2. One real double root λ

The equation (12.12) is
yk+2 − 2λyk+1 + λ2y = 0

The solution is
yk = c1λ

k + c2kλ
k, (12.15)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

λc1 + λc2 = ỹ1

which gives the solution
c1 = ỹ0 and c2 = ỹ1/λ− ỹ0
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3. Two complex roots λ1 = ρ+ ωi and λ2 = ρ− ωi

The equation (12.12) is
yk+2 − 2ρyk+1 + ρ2 + ω2 = 0

The solution is
yk = |c|k[c1 cos(ωk) + c2 sin(ωk)], (12.16)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

c1|Reλ|+ c2|Imλ| = ỹ1

which gives the solution

c1 = y0 and c2 = (ỹ1 − ỹ0|Reλ|)/|Imλ|

12.3 Discretization of a continuous model

Our aim is to construct a discrete regression model whose output is a sampled output of the
corresponding continuous one - homogeneous di�erential equation of 1st or 2nd order with
constant coe�cients. We will call this task discretization.

Let us denote the continuous time by t and the discrete time by k. It holds

t = kT, T is a period of sampling.

First order equation

Consider a homogeneous di�erential equation with constant coe�cient

y′ + a0y = 0, y0 = ỹ0. (12.17)

Then the equivalent di�erence equation (whose response is the sampled response to the di�er-
ential one) is

yk+1 = A0yk, where A0 = e−a0T . (12.18)

Solution: The solution to the di�erential equation is

yt = ỹ0e
−a0t.

To get the discrete version of the solution, we set t = k for actual sample and t + T = k + 1
for the shifted one. So, for the actual sample, the solution the same but the substitution k for
t and for the shifted sample it holds

yk+1 = yt+T = ỹ0e
−a0(t+T ) = ỹ0e

−a0te−a0T = e−a0T yk

which proves (12.18). /
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Second order equation

• Two distinct real roots

Let us consider a homogeneous di�erential equation with constant coe�cients

y′′ + a1y
′ + a0y = 0, y0 = ỹ0, y

′
0 = ỹ1 (12.19)

whose characteristic equation λ2 + a1λ+ a0 = 0 has two di�erent real roots λ1 and λ2.

Then the equivalent di�erence equation (whose response is the sampled response to the
di�erential one) is

yk+2 = A1yk+1 +A0yk, (12.20)

where
A1 = eλ1T + eλ2T , A0 = −e(λ1+λ2)T (12.21)

Solution: A response to the considered continuous model is

yt = c1e
λ1t + c2e

λ2t.

Sampling with t = kT and the denotation yk = ykT gives

yk = c1e
λ1kT + c2e

λ2kT

This sampled response must obey the di�erence equation

yk+2 = A1yk+1 +A0yk.

We express still the shifted responses

yk+1 = c1e
λ1kT eλ1T + c2e

λ2kT eλ2T

yk+2 = c1e
λ1kT eλ12T + c2e

λ2kT eλ22T

and notice that they all are expressed in the basis with items eλ1kT and eλ2kT . Thus we
substitute into the di�erence equation and obtain

c1e
λ1kT eλ12T + c2e

λ2kT eλ22T = A1(c1e
λ1kT eλ1T + c2e

λ2kT eλ2T ) +A0(c1e
λ1kT + c2e

λ2kT ).

The coe�cients B and A will be obtained by the comparison of items with the same
basis element. We obtain the following system of equations

c1e
λ12T = A1c1e

λ1T +A0c1

c2e
λ22T = A1c2e

λ1T +A0c2.

The coe�cients c get canceled (what is important) and the solution to this system is
just what we want to prove. /

44



• One double root

Let the characteristic equation of (12.19) has one two-fold solution λ = λ1.

Then the equivalent di�erence equation (12.19) has the coe�cients

A1 = 2eλ1T , A0 = −e2λ1T (12.22)

Solution: The proof is formally the same as for the two distinct roots, only with basis
elements eλ1kT and kT eλ1kT .

The response to the continuous system is

yk = c1e
λ1t + c2te

λ1t

After expressing the sampled response and its shifted variants, substituting into (12.20)
and comparing the terms at the individual basis items, we obtain the following set of
equations

c1e
2λ1T + 2c2T e

2λ1T = A1c1e
λ1T +A1Tc2e

λ1T +A0c1

c2e
2λ1T = A1c2e

λ1T +A0c2

Again, the solution is just what we wanted to proof. /

• Two complex roots

Let the characteristic equation of (12.19) has two complex roots λ1 = ρ + ωi and λ2 =
ρ− ωi.
Then the equivalent di�erence equation (12.19) has the coe�cients

A1 = 2eρT cos(ωT ), A0 = −e2ρT (12.23)

Solution: Again, the proof is formally the same as for the previous cases, only with the
basis elements eρkT sin(ωkT ) and eρkT cos(ωkT ).

The response of the continuous system is

yk = c1e
ρt cos(ωt) + c2e

ρt sin(ωt)

After expressing the sampled response and its shifted variants, substituting into (12.20)
and comparing the terms at the individual basis items, we obtain the following set of
equations

−c1e
2ρT sin(2ωT ) + c2e

2ρT cos(2ωT ) = −A1c1e
ρT sin(ωT ) +A1c2e

ρT cos(ωT ) +A0c2

c1e
2ρT cos(2ωT ) + c2e

2ρT sin(2ωT ) = A1c1e
ρT cos(ωT ) +A1c2e

ρT sin(ωT ) +A0c1

Once more, the solution is just what we wanted to proof. /
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