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1 Introduction, probability, system

www.fd.cvut.cz/personal /nagyivan + Stochastic systems

1.1 Revision

e Variable x Random variable (continuous, discrete)

Remark: Variables are (i) continuous, (i¢) discretized (ordinal), (¢i7) discrete (nominal)
- can be ordered according to something (frequently money, some loss).

e Distribution (pf, pdf)
— discrete: f(z) =P (X =x)

— continuous: f (z) =lm P (O,) /m (O) for m (O5) — 0, where m (O;) is a measure
of the neighborhood O, around the point =

e Random vector, joint; marginal; conditional distribution
draw continuous and discrete uniform distribution for X = [x1, x9]

f(z1,2) = f (1) f (22|21) = [ (32) f (21]22)

Example

Discrete case

f($1,$2)

zi\zg | 12 | f(x1) f (x2lz1)

1 |01 03] 04 T 2

2 |04 02| 06 : 3

f(x2) |05 05
f (z1]z2) f(z1) f(22)
T 2 02 02
2 % 0.3 03

Continuous case
f(x1,22) = 6x%:r2, x1,29 € (0, 1)

1
fx1) = /0 622 xodry = 322

1
fxz2) = / Gm%xgdml = 229
0

62270 9
= = 3
[ (z1]22) 2y ]
6221,
f (wg‘iﬁl) = L = 2.%’2
323

As it is f (z1,22) = f (z1) f (z2) the variables are independent.



e Characteristics

E[X]= [ E ] ] , ClX]= [ co‘l,j [Et]m] CO}[E;]@]

e Random process is random variable indexed by time
time \ values ‘ discrete continuous
discrete Markov chains random sequences
continuous queues X
e Categorical distribution
: |1 2 - o
f@ |p p2 - o
where p; > 0, Y p; = 1. Each realization has its probability.
e Normal distribution
FX) = —— {Ge-wrte-w)
(2m)" R 2

1.2 System and its variables

System is a part of reality we are interested in, on which we measure data and which we want
to learn about to be able to predict its behavior or influence it.

e;  noise

imput (control)

w T

SYSTEM output
L .

disturbance b

T

t state ¢

e output - the modeled variable, after application of the control it can be measured
e input - variable that influences the output and that can be fully manipulated by us
e disturbance - can be measured, cannot be influenced

e state - is influenced by input, influences output, cannot be measured

e noise - can be neither measured nor predicted



2 Differential equations, regression model
2.1 Differential equations
Dynamic process is described by differential equation

e stationary - constant coefficients

— homogeneous: zero right-hand side (characteristic equation)

— controlled: model with control variable (variation of constant)

First order

Y +ay =0, y(0)=1yo

e Laplace
pY —yo+aY =0
(p+a)Y =yo
1
Y = — 1y (t) =yoexp{—at
o y (t) = yoexp {—at}
e by guess

y = aexp {At}

characteristic equation
Af+a=0 = A=—-a

substitution
y = aexp {—at}
a according to initial condition
y(0) =a=uy
the solution is
y = yoexp {—at}

Second order

Y +ary +ay =0, y(0)=yo, ¥ (0)=do

Characteristic equation
A4+ a\+ ag=0

Solution



1. two real roots - two exponentials
2. one double root - exponential and polynomial

3. two complex roots - exponentials and sine, cosine

Stability - real parts of the roots must be in the left half-plane.

2.2 Discretization

Approximate
v +ay=0
y/ (t)_>y(t+T72—y(t) — yt+,}—yt - T is step
t+T)—y(t
yUET) =y
T
Ytr1 —ye +Tayy =0 — yp1 = (1 —Ta)y
W
A

Precise

Discretization: 7 = to + tT - to is initial time, ¢ discrete time, T" period (¢o often 0).
Notation: y (tT) = y;.
Equation
Y (1) +ay(r) =0
— y (1) =yoexp{—ar} solution
at time 7 and 7+ T
y (tT) = yp exp {—atT}
y(AT+T)=yoexp{—a (T +T)} =yoexp{—atT}exp{—aT} =exp{—aTl}y (tT)

y(tT)
notation
Yt+1 = €xp {—GT} Yy = Ay
Solution
yi = Ay
y2 = Ay = A%y
Y = A Yo

Stability: inside of unit circle in complex plane.



2.3 Regression model

i = 10,0 + e

yr modeled variable (output) at time ¢

1 regression vector, containing samples of variables influencing the output

© model parameters (regression coefficients 6 and noise variance r)

e ¢; noise, with zero expectation, constant variance, independent of variables in regression
vector = sequence of independent and identically distributed r.v. = i.i.d.

Ve = (U Y15 Utm1 "+ Yt Ut—p, 1]
0 = [b(), at, b17 T Anp, bm k]/7

Model in detail

yr = bous + arys—1 +bryi—1 + -+ anYi—n + bpui—n +k + e
Comments

1. Number of delayed y and u can be different. Number of delayed y is called model
order.

2. The term ¢;9 is at time t known constant. Model represents a transformation of e; to
y; according to the model equation.

3. If ¢4 contains no delayed outputs, the model is static. Otherwise, it is dynamic.

4.y = 1!1;0 represents a difference equation.

A general description of the model as a tool, describing ¥, as random variable is distribution

f (|, ©)
Moments of the model are

Elynlvr, 0] = B[40 +ec| =16 = i

D [y|pr, 0] = D [w;e + 64 =Dle] =r



Normal regression model

fe) = \/21? exp {—;62}

transformation: y; = 9 + e — e = y¢ — ¢ , Jacobian is 1

F ol ©) = <o e { ~ - (w—vi0)’}

2.4 Regression model in the state-space form

The state model is
e = Max—1 + Nug + wy.

We will demonstrate the transformation for the 2nd order model

Yt = bour + ar1yr—1 + brus—1 + agyr—2 + boug—o + k + e

The state model is

Yt ar b ax by k Yi—1 bo et
Ut 0O 0 0 0 O Up_1 1 0
Yi—1 | = 1 0 0 0 O Yo |+ O [ur+ ] O
U1 O 1 0 0 0 Ut_9 0 0
1 O 0 0 o0 1 1 0 0

The first row is the regression model, the rest is only one-step time shift.

The advantage of the state-space model lies in recurrent computations. Its memory is only
one.

Example: Compute ys
Y1 = boug + ar1yo + azy—1

Y2 = bous + a1 (boug + a1yo + asy_1) + asyo

1 = Mxog+ Nuq
xy = M (Mxo + Nup) + Nugy = M?xq + MNuy + Nuy
z3 = M3z9 + M?Nuy + MNus + Nug
In the state form we even can write a general recurrent formula

k
v = Mz + > M
1=2



3 Discrete and logistic models

3.1 Discrete model

All variables are discrete - there is a finite number of configurations of data vector Ay =

[y;, w;} . In the model, each data configuration is assigned its own probability

f (e, ©) = Oy, 1,
y; - output, ¢, - regression vector, @ parameter.

The model can

For two-valued variables and vy = [u;, y;_l} the parameters are O, ,, 4, ;-

be given a form of a table

1,1 O Ogn

1,2 O112  Og12
2,1 O121 Oz
2,2 O122 Oz

In the left, there are all configurations of the regression vector. The entries of the table denote
all configurations of the data vector, each of them contains its parameter.

It holds:
Ok = 0, Z®i|jk =1, Vjk
i

Remarks

1. The structure of the model is practically general. It is dynamic and possesses control
variable.

2. The number of all data configurations is always finite. However, with increasing number
of variables and number of values of the variables, its dimension rapidly grows.

Examples:
1. Coin

yu=1 y=2
0, Oy

1. Coin with memory

[ Wilye-1), y€{1,2}



Y1 =1 y=
1 O O
1

Oz Oy
Uncertainty of the regression model is given by the noise variance. Here, it is given by ©. If

its entries are close to 0 or 1, the model is almost deterministic. If they are near to 0.5, the
model is very uncertain. E.g.

0.1, 0.9 04, 067 [1, 0 0, 1
0.9, 0.1 0.6, 0.4 0, 1 1, 0

f(yt|ut)7 Yy,u € {172}

1. Controlled coin

2. Controlled coin with memory

[ (elue, ye—1) s y,u € {1,2}

[u, yo1] [y =1 y =2

1,1 0.8 0.2
1,2 0.7 0.3
2,1 0.25 0.75
2,2 0.1 0.9
where 1, mostly obeys wu;
Other examples
10 01
0 1 01
01 10
01 10

First: y; is the bigger from u; and y;_1, second: y; is the opposite to us.
3.2 Scilab generations
e generate y€ {1,2} so that P(y=1) =0.3
y=(rand(1,1,'u’)>0.3)+1  (one value);
y=(rand(1,nd,'u’)>0.3)+1  (nd values);
e generate y € {1,2,--- ,n} so that P(y =1) = p;; p =[p1 - Dn)

10



pp=cumsum(p);
y=sum(rand(1,1,'v’)>pp)+1;
e number of row ¢ in the table for u, y;—1 € {1,2}
i=2*%(u(t)-1)+y(t-1);
e generate output y; from the model f (y¢|ue, yi—1)
i=2*(u(t)-1)+y(t-1);
pp=cumsum(th(i,:));

y(t)=sum(rand(1,1,'v")>pp)+1;

3.3 Logistic model

Output is discrete, regression vector contains at least one continuous variable.
Neither regression nor discrete model can be used!

For y; € {0,1} the model is

f (el ©) m

zZt = 1[);@4‘675

¢ regression vector with continuous and possibly discrete variables,

1y — 2z regression (z; is continuous),

Py =1]z) = %, and its complement P (y; =0|z) = 1 — 1iti§i} = 1+exlp{2t}

transforms 2z to (0,1).

The function has a form

_

11




and it holds

if zz >0 then P(y; =1|z) > 0.5 estimate: y, =1
if 2 <0 then P(y; =1|z;) < 0.5 estimate: y, =0

Example:
y¢ car accidents: 0 - just damage, 1 - injury or death

Wy (4) light: 1-full, 2 - gloom, 3 - dark; (i7) weather: 1 dry, 2 - slippery; (éii) speed: continuous.

Output: discrete, its values denote system modes.

Regression vector: circumstances under which the output is measured.

Remarks

L f (wel¢r,©) = [P (ye = 0lz1) , P (yr = 1]z)] where P (y =0]z) = 1/ (1 +exp{z}) and
P(y=1|z) =exp{z} /(1 +exp{z}), P+P=1

2. Other form of logistic model is
logit (pr) = 1,0 + e
where logit (p) = In %5 and p; = P (y; = 1|14, ©)
z = logit (p) transforms (0,1) — R, p = logit~! (z) transforms R — (0,1).

3. For y, € {0,1,2,---n} we have

2 =y, M2 =90y, 2 =y'e,
Po Po Po
with the parameter © = [01,09,--- ,0,], where 6; are columns.

12



4 Estimation of regression model?

Notation: vy, dy = {ys, ue}, d(t) = {do,d1,da,- -+ ,di}; dp- prior, the rest are measurements.

Bayesian estimation

e classical statistics - parameters are unknown constants
Bayesian statistics - parameters are random variables (their description is distribution)

e distributions
model description f (y¢|1y, ©)

parameter description f(©|d(t—1)), f(O|d(t))

e evolution of parameter pdf

FOldO) o FEd) o o F(eld)
di={u1,y1} da={u2,y2} di={ut,y¢}

e The evolution is governed by the Bayes rule
f©ld(r)) < f(y-|vr,0) f(Old (T — 1))

starting from prior pdf f (©|d (0)).

Remarks

1. Derivation of Bayes rule

f(A,B|IC) = [f(A[B,C)f(B|C)
= [(BJA,C) f(AlC)

- f(AIB,C) = LBACAIO)
where

A—0O, B—d, C=d(t—1)
and {B,C} ={d;, d(t—1)} =d(t).
2. Natural conditions of control: The person that estimates also controls. For both actions
he uses only information from d (¢ —1).
N
f(Olu,d(t—1)) = f(O]d(t — 1)) and conversely
fuld (t=1),0) = f (ue|d (£ — 1))

2two lectures
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It applies in estimation with controlled model

f(Old(t) o< f (yelibr, ©) f (weld (¢t —1),8) f (Old (t — 1))
which means that f (u|---) goes to constant.

. Self reproducing form of Bayes rule

B.r. is recursive for functions. To be able to manage functions it is necessary to
parametrize the pdfs - e.g. normal distribution is given just by two numbers. Re-
cursiveness requires so that the form of prior pdf (after multiplication by the model) is
reproduced in the posterior pdf. E.g. normal pdf — normal pdf, with only statistics
recomputed.

Example (not recursive)

a

+ ex —a
1 ytz Y Yt

f (la) = 37—

when computing product of models in measured y; the number of different terms grows.

f(ytla) =

or

(sin (y¢) + a)

Example (recursive)
f (yela) = aexp {—ay}

Posterior
f(alyr,y2,y3) x a®exp{—a(y1 +y2 +y3)} =

a” exp {—aSs}

where k and S are statistics, evolving as follows

Rt = HtflJrl
Sy = Si—1+u

with initial stats kg and Sy with the meaning:

e £ is a virtual number of data samples, from which the prior statistics is constructed.

e So=>1 y; from which we have § = 5—8 i.e. we say that average output is Sy/ko.

Batch estimation

From Bayes rule if follows

f(old(t)) o« L: () f (©)

where L; (©) = [['_, f (y-|¢r, ©) is likelihood and f (©) = f (©]d (0)) is the very prior
pdf.

14



e Results of estimation

() posterior pdf f (©|d (t)) which brings full information and sometimes can be used as
it is - e.g. in prediction

F el (t — 1) /fyt,@du—l ) do = /fytwt, 0) f (Old(t - 1))dO

(7i) point estimates computed using posterior pdf

6, = E[O]d (t) / Of (0ld(t)

G = Elyrld (t — 1)) =/ e £ (uld (¢ — 1)) dy, =
;

[ o [ 7 ln0) £ ©late - 1) de | ay

e Point estimate with quadratic criterion

E.g. for © and d - data

J=E [(é) - @)2 |d(t)] ~ min

We derive )
in 2 [(6-0)"d] = min 1 [62 200 + 671 -
= mén{é2 ~20E[0]d + F [6%/d] | =
= min 02 — 20E([0|d] + E[0]d]* ~E[0|d? + E[0?|d] § =
Dlo)
{é 20E[0ld) + E[0ld} + D [6] =
= uin{(6- i)} + Do)
— 0 = E[0|d].

15



5 Estimation of specific models

5.1 Normal regression model

Model

F o ©) = =% exp { = (s - vit)'}
) = X T a_ -
Y|Pt Jon p o Yt t
For 1st order y; = buy 4 ay;—1 + e it is ¢y = [ug, y¢—1]'. The square in the exponent can be
written

(Y — bug — aye—1) (ye — buy — ay—1) =

Yt —1
=(-1)[-1, b, a [ Uy (=1) [y, ut, ye—1] |: b } —
Yi—1 a
o 4] b [
Dy

where D, is data matrix.

Model (in modification)

I (Wel, ©) r0~5exp{[_17 o] D, [ —01 ]}

Prior pdf

In the same form as model
£ (8]d (0)) oc 770550 exp { -1, 0 Vo [ _91 } }
Bayes

£(Old(1)) & 1% exp { 1, ¢) D, [ B ] }rowo exp { 1,07V [ " } } _

= 05K e { 1.0 [ " } }

Posterior



Recursion

Ky = Ke—1+1
Vi = Via+ Dy

with kg and Vj as prior statistics.
Result

(a) Posterior - GiW with statistics x; and V;.

(b) Point estimates of parameters
Vt:[vy VW]...[’ __}
Vow Vo | O
0, = VJlVW regression coefficients

_ Vy — Vywvzp_l%w

Kt

noise variance

Tt

Point estimate of output
Ot =Pib1 (0 — 01, &g — 0)

Batch estimation

ye = boug + - anyr—n + bpup_pn +k+ e
fort=1,2,--- N

y1 = boutr + - apy1—n +bpur—n +k+e1
y2 = boug + - - - apYo—n + bpua_y, + k + €2

YN = boun + - apyYN—pn +bpun_n +k +en

— matrix form
Y=X0+F

optimization - least squares

J=> e =FEE=(Y-X0)(Y-X0)=YY -20X'Y +6/X'X0

0
—J=-2X"Y +2X'X
89J + 0

X'X0=XY — 6,=(X'X)"'XY

17



5.2 Categorical model

Product form of the model

I (e, © th}t H@ (ylv; yelve)
ylY

i.e. product over all possible configurations of y|v¢; but only y|¢; is chosen.

Posterior pdf

Feld) o [Jo,n"
Yyl

where vy for all configurations of yl1) is statistics; Vyly:0 18 the prior one.

Statistics update

From Bayes rule
Vylyst = Vylyst—1 0 (Y113 yeltde)
for all configurations of y[i) (o1 vy, |yt = Vy,|y,e—1 + 1 for actual data)

Point estimate

0 it = Vylopst
s > Vit
which is normalization of the statistic matrix in rows.
Example (a coin)

Model
fWlp) =py, y=1,2;p=[p1, pa

Product form

71 4 )
(yIp) (y ) (y 2)
Posterior

f(pld (1)) o< p"'py™
Statistics

vy = [Vl;h V2;t]

Update
—fory=1

vig = vig—1 +1

18



—fory =2
Vot = V-1 + 1

For the data

t[1 2 3
w1l 1 2

and zero initial statistics

t |0 1 2 3
v1 10 1 2 2
vy |0 0 0 1
mlx 1 1 %
p2|x 0 0 3
With initial statistics 10
t 0 1 2 3

v | 10 11 12 12
vy | 10 10 10 11
p1 | x 0524 0.546 0.522
p2 | x 0476 0454 0478

The ratio —=% _ expresses the value of p;
v1;0+v2;0

The magnitude of v expresses our belief in .our guess.

Output estimate
flurld (¢ = 1) = £ (il © = 61-1)

Yt | 1 2 3

f(wle®e) | Pl=1 P=2) Pu=3)
Point estimate: e.g. the value with the biggest probability.

5.3 Model of logistic regression

For estimation, numerical maximization of log-likelihood is used.

For y, € {0, 1} the model is

f lular) = 2202k

= , 2= O +e
L+exp{z} v :

19



Likelihood .

ne= T ko) =TT 00

T=1 =1
t

InL; = Z [yeze —In (14 exp{z})], 2z =0

=1
ét = arg Hgn In L,
for minimization, Newton method can be used.

Output estimation

Substitute v, into the model with parameter estimates. The value with the biggest probability
can be selected.

Classification

The space of all possible 1 is divided into two subsets - one with § = 0, the other with ¢ = 1.

20



6 Prediction

Estimation of the future output.

6.1 Output estimation (zero step prediction)

E.g. for 1st order regression model without control f (y:|yi—1,©)

Fluly@=1)= | F(n0ly(t—1))d0 =
9*
(i) = /9* f (ytlyi—1,0) f(BOly (t — 1)) dO posterior of ©
(i) = f (yt‘yt—hét—l) point estimate of ©
where (i7) is achieved by replacing f (Oly (t — 1)) — ¢ (@, (:)t,1> and
[ 7 .0 £ @y (¢ = 1)) d =

= / f (ytlyi—1,0) 9 (@,ét_1> de = f (yt’yt—l, ét—l)

where ©;, 1 = E[Oy (t —1)] = Jo-©f (Oly (t —1))d® is point estimate of © based on the
datay(t—1).

Remark: In f (y:]y (¢t — 1)) the parameter © is missing. We need to supply it.

6.2 One step prediction

f (sly (¢ — 1)) = / / £ (st un Oly (t — 1)) dyd© =
*Jyr

(i) = / / F Westly (6),0) F (i, ©)  (Oly (¢ — 1)) dyed®
o Jyy

(i4) = f<yt+1\?}t7é)t—1)

where for (i) we lay f (O|y (t — 1)) — § (@,(C)H) and f (yely (t — 1)) — & (ys, ) with O,y
and ¢; being point estimates.

Remark

21



e Here, both © and y; are missing. We must supply both.

o Comparing (i) and
value of the missin

(71) we can see the basic principle of Bayesian estimation. Basically,
g unknown variable (© and y;) is substituted (into the pdfs) and it is

weighted by its probability (prior pdf + integration). In the second variant (ii) first point
estimates are computed and then substituted for the unknown variables.

6.3 Multi-steps prediction

Regression model wit

h known parameters and point estimation

For a 1st order regression model y; = ay;—1 + buy + e; with known parameters and point

prediction we have

Yt
Yt
Utr1

Ti42

= ayi-1+bu+e

ayi—1 + buy

ay + bury1 = a (ay—1 + buy) + bugp =
a’ys_1 + abug + bug41

afjis1 + bugro =
= agyt—l + a/2but + abUt_;,_l + but_;’_z

etc.

The point prediction can be achieved by a simple repetitive substitution of the model. For
simulation, directly last estimates can be used.

Full prediction with regression model under condition of normality

Prediction with normal model with known parameters preserves normality. If e; is normal, all

predictions are normal, t

Y =
Yt—1

Yt+2 =

%

E [yiyaly (t —1)] = a’y,—

00.

ayi—1 + buy + ¢4

ayr + bueyr + €1 =

a(ayi—1 + buy + 1) + bugrq + e =
a®yi_1 + abug + bugy1 + ae; + e
ayiy1 + bugro + €40 =

2 2
aSyi—1 + a®buy + abugiq + bugio + a’ey + aepiq + erpo

1+ aQbut + abut_H + but+2

22



D [yri2ly (t = 1)] = D [a%e; + aep1 + epq2] = (a* +a® +1) 7
Predictive pdf

f Weraly (t = 1)) = Ny, (E [yer2ly (8 = 1)), D [yealy (t —1)])

(normal distribution is determined by its expectation and variance)

6.4 Prediction with discrete model

For model  f (yt|ly1—1,0©) we have

Zero step prediction
f (yt‘yt—h @> = Gytlyt—1

Multi-steps prediction

I (yegnly (t = 1)) = (@k+1>

yt+k|yt—1

Example

Two steps prediction

Fyealy t=1) =D f Weralye1) £ (yerlvn) £ (welyer) =

Yt+1 Yt
3
= Z G)yt+2|yt+1 Z@yt+1|yt®yt|yt71 = (6 )yz+2|yt—1
Yt+1 Yt
For
0.4, 0.6
0= [ 0.8, 0.2 }
3
04, 0.6]° [0544, 0.456
f yeealy (= 1)) = [ 0.8, 0.2 ] - { 0.608, 0.392 }
%

for ys—1 =1 we have f (yi42|1) = [0.544, 0.456]
for y;—1 = 2 we have f (y:42/2) = [0.608, 0.392]

Point prediction either MAP, or to generate from the distribution.

23



7 State-space model, state estimation

7.1 Model

f(z]zi—1, up—1) model of the state

I (ye|ze, we) model of the output

is generated by the equations

ry = Mxi—1+ Nup—1 +wy
yr = Axy+ Bup + vg

where M, N, A, B are matrices, w; and v; white noises with covariance matrices r,, and 7.

7.2 Estimation
State description

flamldt=1)) = flaldl-1)) o flzld?)

prediction filtration

Evolution

Fladd@-1) = [ fladnue) f @ed(E- 1) prediction

d(t , dt—1)| B
S o |dt) ) oo fytlze,ue) f | ae |d( ) ayes
o model e

! In the above derivation Natural Conditions of Control are used !

Kalman filter

For normal model and normal prior state distribution the normality is preserved. Functional
recursion becomes algebraic one for expectations and covariance matrices.
Notation
f(xt|lze—1,ur) = Ny (Mazi—1 + Nug, ryp)
[ elze,we) = Ny, (Aze + Bug, 1)



and

flaald(t=1) = Ny (2e-1j—15 Re—1je-1)
fzld(t=1)) = Ny (xt\b Rt\t)
flzld(t)) = Ny, ($t\t7 Rt\t)

Substitution into the evolution equations gives Kalman filter (KF)

Kalman filter
Typ—1 = Mzy_yp—1 + Nug state prediction

Ryp1 =72 + MRy M’
Yp = Axyy_1 + Buy output prediction
Rp = T'y + ARt‘tflA,

Ry = Ryp—1 — Rt|t71A,R;1ARt\tfl

K = Ry A'r) ! Kalman gain
Tope = Ty + K (Yo — yp) state correction
The filter starts with prior xg¢ and Rgjg, uses data yi, u¢, t = 1,2,---, N and currently

computes z;; and Ry;. The result is either point state estimate z;; or the full distribution of
the state f (x|ug, d (t)) = Na, (244, Re) -

Program with the task is in LecKalman.sce and Kalman.sci.
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8 Nonlinear state estimation

8.1 Nonlinear model

xr =g (Ti—1,u) + wy

yr = h(xp,up) + vy

EXAMPLE

For

the model is

Ty = €xp {—$1;t—1 - 372;1:—1} + ur + wy
T2t = w1-1 — 0.3up + way
Y¢ = T2+ U¢

Linearization

Is done using first two terms of Taylor expansion of nonlinear functions at the point of last
point estimate. For the state equation it is Z;_1 and for the output equation it is Z;.

Generally, i.e. for a general value x the expansion reads
g (@, up) = g (Te-1,ue) + 9 (Fe-1,u) (= Bp1)
h ($, ut) =h (i’t, Ut) + h/ (i’t, Ut) (33‘ — Zi‘t)

REMARKS

1. x; and xy_; are random variables. x is their general value, Z; and %;_; are special values:
Z; is the point estimate of x; and ;1 is point estimate of x;_;.

2. Linearization can be applied only to nonlinear parts of the model. The linear parts can
stay as they are.

The derivatives ¢’ and h' are

991 O .. 091 Ohy Oh1 . ohy
Ooxr1  Oxa O0xn ox1 Oxo Oxp
s )
g <.Z‘t_1,Ut) = , h (xtvut) -
Ogn .. 9gn Ohm ... Ohnp
0x1 Oxn | |\z=3,_, Oxy Oxn |z=d1

26



After substitution the linearization into the model, we have

and for x = Z;_1 in the case of the state equation and x = I for output equation we obtain
the linearized model

x = Mz +F+w

vy = Az + G+
where
M =g (#-1,u), F=g@-1,w)— g @1—1,u) -1,
A: h, (ft,ut), G = h(@t,ut) — h, (i’t,ut) .’i’t.
EXAMPLE (continuation) - --- only first equation is nonlinear

g1 (z,up) = exp{—z1 — 22} + wy

/ 0 0
i (o) = | 28, S| = [ exp {1 = a2} — exp {1 — 2]
Fully linearized model is
Tig = 9/1 (1, ue) Te—1 + g1 (Te—1,ut) — 9/1 (-1, up) Tp—1 + wy
Tot = [1, 0] Ti—1 — OSUt + wa:t
. = [07 1] Ty + v

where , /
Y 91 (fot—l, Ut) _ |l 5 («%t—lv Ut) — 01 (i’t—hut) T
M = F =
|: [1, 0} :| ’ |: —0.3ut ’

With this, we can use subroutine Kalman

[xt,Rx,yp]=KaIman(xt,yt,ut,M,N,F,/_I,B,G,RW,RV,RX)
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8.2 Model with unknown parameters

The unknown parameters of the model are added to the state a and estimated. However, the
model becomes nonlinear - model matrices contain state entries and they are multiplied by
state. So, the technique of linearization must be used, again.

EXAMPLE

Model
xr = exp{—azi_1}+bur + wy
Yt = Ty + U,

where a and b are unknown.

We define new state ,

/ / /
X = [:ct, a, b} , Xioq1 = [a:tfl, a, b}

and obtain new model

exp{—Xoy—1 X1} + Xs—1w wy
Xy = Xot—1 + | e
X341 €3;1
——
Wi
Yt = [1a 07 0] Xt+vt

Only the first equation is nonlinear, however, we will treat the whole model as nonlinear (it is
well possible)

exp{—Xoy 1 X1;0-1} + X3 1w

g= Xoit—1
X3;t_1 Xp_1=Xi—1
—Xog—rexp{—Xoy—1X1—1}, —Xp—rexp{—Xos1 X141}, w
g = 0 1 0
0 0 X 1=Xi—1
model
X = ¢ Xi14+9-9Xi 1 +W,
~ —
M F
Yt = [17 07 0] Xt + (%
\—Y—/
A

and N =10,0,0, B=0,G=0.

[x, Rx, yp] = Kalman(x, y, u, M, N, F, 4, B, G, Rw, Ry, Rx)
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9 Estimation of mixtures

9.1 Mixture model

Fdile) = anfi (dl6y)

k=1
where fj, denotes component; k is component index; O are parameters of k-th component;
ay, stationary weights of components.
ExampLE (for n. = 3)
fl : dt = m(l) + €1t €1t~ th (0, T(l))
fo: dy =m® + ezt e ~ Ng, (0, 7“(2))
f3: dy =m® + e3¢ €3y ~ Ng, (O, r(3))

[ d,

di = do

da

d

We cannot use d; for updating all components - it would not respect multi-modality of the
system. It is necessary to determine probabilities that the measured data item belongs to
individual components (so called actual weights of components). This starts with assumption
that the data belongs to a single component - called active component.

9.2 Estimation
Known active components

We introduce pointer ¢; € {1,2,--- ,n.} as a discrete process whose realizations at each time
t point at the active component.
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If the activities of the components are known, it holds
fler) =6 (e, )

where § is Kronecker function, ¢; is known number of active component at t.

In this case, the posterior is

f(Okld(t)) o< fi (di|Ok) f (Okld (t — 1)), for k=2¢, Vt

each component has its own prior and each time ¢ only the prior of the active component
is updated.

Unknown active components
If the active components are not known, we have to estimate them. We have two models -

active component model
H ey (de]©¢,)°%5) (product form)
k=1

fei (dt|@Ct) =
d(k;ce)
gt }) } (normal model)

Ne 1
0.5
= rolexpq ——
Moo ([
and pointer model - with categorical description

f(eta) = ae, = H ai(k;ct) (product form)
k=1

A f(ea)

b
g =1
a, =0

Bayes
f(cta@7a|d(t)) NG f(dtvct7@ﬂa|d(t - 1)) -
Bayes
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= [ (d|c,0) flaa)  f(O,ald(t—1)) =
—_— —— —~
component pt. model priors (independent)
- fCt (dt‘@cz)at:tf (@‘d(t - 1)) / (a’d(t - 1)) =
= Jor (di]O¢,) f(Od (t —1)) X e, [ (ad (t —1)) o< (%)

component, part pointer part

In product form with conjugated priors

f(®ld(t-1)) HGZWG)k (Vi ) o HTOE’HM 1exp{ 21r <[ i’; ] Viet—1 [ Z’; })}

k=1 k=1

f(ald(t—1)) HDza (k) ocl_Io//“1

where GiW is Gauss-inverse-Wishart and Dz is Dirichlet dlstrlbutions, we have

T ! s(kict) p )
. 1 o .
0.5 o Yt Yt 0.5kt 1 1 ” |
*)O(;;[l’l" exp{ 27’([%] Dt|:wt:|>} 1:[’/“ exp{ 2r<|:¢t:| Vk,t—l

Ne  Ne
o(k;
e o

k=1k=1 k=1

— statistics update

Viee = Vie—1+0(k; ¢t) Dy

Kk = FKge—1 +0 (ks ¢p)

Ukt = Uki—1 + 0 (k5 ¢r)
for all £k = 1,2,---,n. (in practice, only statistics of the currently active component are
updated).

Problem is that we do not know ¢;. We will approximate 0 (k; ¢;) by its expectation
E[6(k; ¢)|d(t) Zé (k; c) f (cild (8) = P (c; = k|d (1)) = wps

A f(cla)

I T I x .

I I I I
a1 =P a3 = P3 Ct

Q=D
g =Py Oy =]y n = Pn
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— approximated statistics update

Vk;t = Vk;t—1+wk;tDt
Rkt = Hk;t—l“_wk;t

Vit = V-1 T Wiyt

i.e. only part of data is used for each component.

Computation of actual weights

Using posterior pdf

Wt = //f(ct — 1,0, 0ld (1) dad® =

- / for (d)00,) F (Od (£ — 1)) dO x / o, f (ald (t — 1)) da
o a*

data prediction M component prediction .,

where My, is a "distance" of d; from k-th component - f <dt](:)t_1); Qp:i—1 is a probability
of k-th component "historical" occurrence.

Algorithm
fort=1,2,--- ,n.

1. compute dy = ng# and (;)k;t_l (LS)

i Vist—1

2. measure new data d;

3. compute My = fx (dt\ék;t,1>

4. compute weights wy, = Mydy;;—1 and normalize w = s~

5. update component and pointer statistics

Vk = Vk + kat
K = Ki+ wg
Vg = Vgt wg

6. compute point estimate of active component

¢ = argmax(wy)
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10 Control with regression model

10.1 Derivation in pdf
Criterion

Optimal control needs criterion. We will use summation one

N
J = ZJt
t=1

where J; is a penalization for time t. Mostly it is J; = y? + wu?.

We want to set uy, t =1,2,---, N that minimizes J. But, J is a random variable, due to the
output ;. As random variable can take many different values it is not possible to speak about
its minimization. So, we must minimize its estimate (which is expectation). So the minimized

N
> Jild <0>]

where in condition of the expectation is our preliminary knowledge - prior data.

criterion is

EJ|d(0)] = E

Remark

For N =1 we obtain one-step control. Here, we optimize control only for the next output.
This control is dangerous, because the controller does not take into account future evolution
of the system and to act best in one step it can generate too beg output. This can excite the
system so much that it is not possible even to stabilize it in the future and the control fails.

Minimization
N
min 907v+1+ZJtd(0)] =
: t=1
N—1
= min F |minFE |y, + Inv|luy,d(N —1)|+ Ji|d(0)| =
et e [‘PN—H N\ Ny d( )} ; t|d (0)
N
N-1 N—-1
= min F |min + J|d(0)| =minFE | o + Je|d (0
Whvrey o YN ; i ()] o YN ; i ()]

which reproduces the initial form, only with N — N — 1 and where (due to the reproduction
in general form)

33



Bellman equations

¢or = E [pf1 + Jelue,d (t —1)]  expectation
¢; =miny; minimization
ut

fort =N, N—-1, N —2,.--, 1. Each minimization gives the formula for optimal control -
it is  u; = argmingy (d(t — 1)) . However, ti cannot be used immediately, because the data
d(t — 1) is not known, yet. Only at time t = 1 we need data d (0) and the control can start
to be generated.

Comments

1. The operator form of expectation is brief but not explicit. We will show its integral

form:
N
P+ ild (0)] =

min F
Uul:N

U1:N

N—-1
=ggg/-~///(mmuN]+Z@)f(yNuN,duv—1>>f<uNrd<N—1>>x

— 1), u(N —=1)[d(0))dy (N) du (N) =

= min { [ [ / / st + ) F (ylun, d (N = 1)) dyy f (unld (N = 1)) duxc+

N
- min/-~-/ (ml +2Jt> £ (@ (V) u(N) |d (0)) dy (N) du (N) =
t=1

Ur:(N-1)

en (un,d(N—-1))

N-1
> f (0 (Y = 1) u (N = )0 dy (¥ = 1) du (N - 1)}
t=1

Minimum over uy

ngjlvn// (Onae1 + Ji) [ (ynlun,d(N = 1)) dyn f (un|d (N — 1)) duy =

N (un,d(N-1))

_ IS;H/W (un, d (N — 1)) f (unld (N — 1)) duy

— uy = argmin,, oy and  f (un|d (N —1)) =6 (un,u}y) - all u; is concentrated into
one point u}.
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10.2 Derivation for regression model

Regression model can be converted to state-space form (see lecture 2 - Regression model in
state-space form).
xy = Mxi—1 4+ Nug + wy

!/
where x; = [yt, Uty Yt—1, Ut—1, """ yt—n-l—lyut—n-l—l] .

The penalty can be written as
y? + wul = 2)Quy (10.1)

where (2 is a diagonal matrix

Now the model and criterion is used in general Bellman equations, where we guess the form
of pi 1 =z Ry

E |2, Ryy120 + 2, Q¢ |ug, d (t — 1)} =F {x;Ua:t} =
= (Mxzy_1 + Nuy)'U(Mzi_1 + Nug) +p =
=2, (MUMz_1 +2u, NUMx_ +u, NUNu; + p =
C B A
= u;Aut + QULA A 'Ba_ 4 + x;_lS;AStxt_l—l—
St
+ xQ,lC:ct_l — x%,ngAStxt_l +p=

~~

Te—1Rewr 1

= (u + Siwi—1) A (w + Sie—1) + x;_lRthtﬂ +p

Optimal u; = Sixe_1.

Recursion

Ryy1=0

fort=N,N—1,---,1

)
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U=R1+0Q

A=NUN
B=NUM
C=MUM
St =A"'B
R, =C — S, AS,
Ut :St.ft,l.
end
Remark

The penalty function (10.1) can be very easily extended to the following form
(g — s0)” +wuf + A (ur — ug1)°

where the first term leads to the following the output y; the prescribed set-point s; and the
last term introduces penalization of increments of the control variable. Penalizing the control
wncrements calms control behavior and ot the same time it does not result to steady-state
deviation of the output and the set-point as it is when penalizing the whole control variable.

The solution how to introduce the above requirements for the control lies in construction of the
penalization matriz as follows

-1 1

which is evident if we take into account that the criterion is
:U;th

and xy = [yt, Uty Yt—1, Ut—1, * »1}-
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11 Control with categorical model

Here, we are going to demonstrate synthesis for the controlled coin with memory. The model is
introduced by the table below. The penalization matrix is of the same form. Each of its entries
individually penalizes the corresponding configuration of values of actual data [y, us, yi—1] -

model  f (ye|ut, yi—1)
penalty J,

t\ut,yt—1

for three steps control, i.e. for t = 1,2,3 and the following model and penalization

model ( ©) penalty ( J)

ug, Y2 [ ys=1 yz3=2 ug, Y2 | ys=1 ys=2
1,1 0.7 0.3 1,1 0 1
1,2 0.2 0.8 1,2 1 0
2,1 0.9 0.1 2,1 1 2
2,2 0.4 0.6 2,2 2 1

11.1 Optimization

Optimization is a bit unusual, however, it again follows the Bellman equations (??) and (?7?).
We will show the synthesis on the interval of the length 3. We begin at the end of it.

Stepfort=3: ¢; =0

Expectation
2
p3 = E[J]us, d(2)] = Z ‘]y3|“3,y2@y3|1t27y2 =
y3=1
0 0.7 1 0.3 0.3 e ug=1,y9=1
R 0.2 0 08| 02| - ug=1,pp=2
Sl oo T2l o | T 1] o wg=2 =1
2 0.4 1 0.6 1.4 s Uz =2, Y2 =2
Minimization
for: y2=1—-min{0.3, 1.1} = 0.3 foruz =1
for: yo =2 —min{0.2, 1.4} = 0.2 forug =1
—)

1 fory =1
us =
1 fory, =2

and reminder after minimization
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u2, Y1 | Yy2 = Y2 =
1 _ 1,1 0.3 0.2
y20_3 y20_2 Vus,yi — 1,2 | 0.3 02 =i
' ’ 2,1 0.3 0.2
2,2 0.3 0.2
Step for t = 2:
Expectation

2
2 = E[J + p3lug,d(1)] = Z (‘]y2|uz,y1 + @g;yz\w,zﬂ) 9312‘71'272!1 =

y2=1
0 0.3 0.7 1 0.2 0.3
NAERIKE ol lo2 | o] o2 ]| |03
1|1 0.3 || %27~ 0.9 2 0.2 | ["] o1
2 0.3 0.4 1 0.2 0.6
0.8 UQzl,ylzl
0T e ue=1,1=2
N 1.6 UQ:2,y1:
1.9 UQIQ,ylz2
Minimization
for: y1 =1—-min{0.8, 1.6} = 0.8 forug =1
for: y1 =2 —->min{0.7, 1.9} = 0.7 forug =1
%

1 fory; =1
Uy =
1 fory; =2

and reminder after minimization

u, Yo | y1=1 =
1 _ 5 1,1 0.8 0.7
y10 . y10 —Vuy = 1,2 | 08 0.7 =k
' ’ 2,1 0.8 0.7
2,2 0.8 0.7
Step for t = 1:
Expectation

2
o1 = B+ 3, d©) = Y (Jinturao + ©oinfan o) Ouilunn =
y1=1
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0 0.8 0.7 1 0.7 0.3
_ 1 + 0.8 . 0.2 + 0 + 0.7 . 0.8
N 1 0.8 ’ 0.9 2 0.7 ’ 0.1
2 0.8 0.4 1 0.7 0.6
1.8 Ulzl,yozl
o 1.7 U1:17y0:2
- 2.6 U1:2,y0:1
2.9 ’U,1:2,y0:2
Minimization
for: ypo=1—-min{1.8,2.6} =1.8 foru; =1
for: y1 =2 —>min{1.7,2.9} = 1.7 foru; =1
—

1 foryy=1
uyp =
1 foryp=2

and reminder after minimization

Yo = Yo = 2
1.8 1.7

11.2 Application

For ¢t = 0 let us have yg = 2.

For yo = 2 we have u; = 1; — [1, 2] ©12 =[0.2, 0.8] let us obtain y; = 2
For y; = 2 we have ug = 1; — [1, 2] ©12 =[0.2, 0.8] let us obtain yp =1
For y» =1 we have ug = 1; — [1, 1] ©1,1 =[0.7, 0.3] let us obtain y3 = 2
The final value of criterion is Jyj1o + Jyj12 + Jo1 =0+ 1+1=2.
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12 Appendix

12.1 Elementary differential equations
First order equations

The first order homogeneous differential equation with constant coefficients has the form

v +ay =0,  y(0) =1 (12.1)
Characteristic equation is linear with unique solution

Ada=0 — A=-—a (12.2)
The solution to the differential equation (12.1) is

y(t) = goe™ (12.3)

Second order equations
The second order homogeneous differential equation with constant coefficients has the form

y'+awy +ay=0,  y(0) =7, ¥(0) =0 (12.4)

Characteristic equation is quadratic
M 4ad+ap=0 (12.5)

with the following types of solution

1. Two different real roots \; and Ay

The equation (12.4) is
y" — (A1 + )\2)3// + Ay =0

The solution is
y(t) = c1eM’ + cpe?, (12.6)

where the coefficients ¢ can be obtained as a solution of the set of linear equations

c1+c = Yo
Atcr + X2 = Ui

which gives the solution

c1 = (Mayo — ¥p)/ (A2 — A1) and ¢z = (Miyo — vp)/ (A1 — A2)
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2. One real double root \

The equation (12.4) is
Y — 20y 4+ N2y =0

The solution is
y(t) = c1e™ + cate, (12.7)

where the coefficients ¢ can be obtained as a solution of the set of linear equations
aa = Y
Aci+ca =

which gives the solution
c1 =90 and cz = g1 — Ao

3. Two complex roots A\ = p+ wi and Ay = p — wi

The equation (12.4) is
y//_2py/+p2+w2:0

The solution is
y(t) = cre” cos(wt) + coe?’ sin(wt), (12.8)

where the coefficients ¢ can be obtained as a solution of the set of linear equations
a = Y
pcr +wea = Y

which gives the solution

c1 =70 and ¢ = (41 — plo)/w

12.2 Elementary difference equations

Here, we will consider discrete time k for which it holds ¢t = k7', where ¢ is continuous time
and T is a fix period of sampling.

First order equations

The first order homogeneous difference equation with constant coefficients has the form
Yk+1 + aoyr = 0, Yo = Yo (12.9)
Characteristic equation is linear with unique solution
Adtap=0 — A=—aqag (12.10)
The solution to the differential equation (12.9) is
Uk = Jo- N (12.11)
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Second order equations
The second order homogeneous difference equation with constant coefficients has the form

Yk+2 T a1Yk+1 + aoy = 0, Yo = Yo, = Y1 = Y1 (12.12)

Characteristic equation is quadratic
N 4ad+ap=0 (12.13)

with the following types of solution

1. Two different real roots \; and Ay
The equation (12.12) is
Yk+2 — (A1 + A2)Ykg1 + A1 doy =0

The solution is
Yk = c1A] + 25, (12.14)

where the coefficients ¢ can be obtained as a solution of the set of linear equations
c1te2 = Yo
Al +Ac2 = 11
which gives the solution

e = (Aago —41)/(1 = A1) and o = (Mgo — 41)/(1 = A2)

2. One real double root \

The equation (12.12) is
Yrt2 = 2Mk1 + Ay =0

The solution is
yr = a1\ + ok P, (12.15)

where the coefficients ¢ can be obtained as a solution of the set of linear equations

a1 = Yo
Aer+ e =

which gives the solution
Cc1 = ]]0 and Cy = ﬂl/)\ — ]]0
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3. Two complex roots \; = p+wi and Ay = p — wi

The equation (12.12) is
Ykt2 — 2pYks1 + p° +w’ =0

The solution is
Y = |c|¥[c1 cos(wk) + o sin(wk)], (12.16)

where the coefficients ¢ can be obtained as a solution of the set of linear equations

1 = Yo
c1|Re\| + ea| ImA| 71

which gives the solution

c1 =yo and cz = (J1 — Jo|ReA|)/|ImA|

12.3 Discretization of a continuous model

Our aim is to construct a discrete regression model whose output is a sampled output of the
corresponding continuous one - homogeneous differential equation of 1st or 2nd order with
constant coefficients. We will call this task discretization.

Let us denote the continuous time by ¢ and the discrete time by k. It holds

t=kT, T is a period of sampling.

First order equation

Consider a homogeneous differential equation with constant coefficient
Y +ay =0,  yo= 7o (12.17)

Then the equivalent difference equation (whose response is the sampled response to the differ-

ential one) is
Yrt1 = Aoyk, where Ag = e~ %7, (12.18)

Solution: The solution to the differential equation is

yr = goe~ *".

To get the discrete version of the solution, we set ¢ = k for actual sample and t +T =k + 1
for the shifted one. So, for the actual sample, the solution the same but the substitution k& for
t and for the shifted sample it holds

ag (t+T) —agT

—aote—aoT —e n

Yk+1l = YeiT = Yo€ = goe

which proves (12.18). <
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Second order equation

e Two distinct real roots

Let us consider a homogeneous differential equation with constant coefficients
y" + a1y’ +aoy =0, Yo = 9o, Yo = 1 (12.19)

whose characteristic equation A% + a1\ + ag = 0 has two different real roots A; and As.

Then the equivalent difference equation (whose response is the sampled response to the
differential one) is

Yk+2 = A1yks1 + Aoy, (12.20)
where
Ay = et g el Ag = —etAT (12.21)
Solution: A response to the considered continuous model is

yr = cre™M + e,

Sampling with ¢t = kT and the denotation y, = ypr gives

Uk = T cped2kT

This sampled response must obey the difference equation

Y2 = A1Yks1 + Aoy

We express still the shifted responses

MET M T AokT AoT
Yk+1 cre™ et 4 e en2

clez\lkTe)qQT+CQeA2kTeA22T

Yk+2 =

and notice that they all are expressed in the basis with items e**T and e*2*”. Thus we
substitute into the difference equation and obtain

Cle)\lkTe)qQT+c2e)\2sze>\22T :Al(cle)‘lkTe’\lT—}—cze’\QkTe)‘QT)+A0(cleA1kT+02e/\2kT).

The coefficients B and A will be obtained by the comparison of items with the same
basis element. We obtain the following system of equations

cle/\12T = Alcle)‘lT+Aocl

Cge/\22T = A1626A1T+A002.

The coefficients ¢ get canceled (what is important) and the solution to this system is
just what we want to prove. <
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e One double root
Let the characteristic equation of (12.19) has one two-fold solution X\ = A;.

Then the equivalent difference equation (12.19) has the coefficients

Ay = 2eMT Ay = —e2MT (12.22)

Solution: The proof is formally the same as for the two distinct roots, only with basis
elements eM* T and kTeM*T

The response to the continuous system is

At At

Y = c1e”t" + cote

After expressing the sampled response and its shifted variants, substituting into (12.20)
and comparing the terms at the individual basis items, we obtain the following set of
equations

cleQAlT + ZCQTeQ’\lT = Alcle’\lT + AlTCQGAlT + Apc

CQQ2>\1T = A1626>\1T—|—A062

Again, the solution is just what we wanted to proof. <

e Two complex roots

Let the characteristic equation of (12.19) has two complex roots A\ = p + wi and Ay =
p — wi.

Then the equivalent difference equation (12.19) has the coefficients

Ay = 2ePT cos(wT), Ag = —e*T (12.23)

Solution: Again, the proof is formally the same as for the previous cases, only with the
basis elements e?T SWkT) and Pk cos(wkT).

The response of the continuous system is
yr = c1e”’ cos(wt) + coe”’ sin(wt)

After expressing the sampled response and its shifted variants, substituting into (12.20)
and comparing the terms at the individual basis items, we obtain the following set of
equations

—c1e%T sin(2wT) 4 26T cos(2wT) = —Ajciefl sin(wT) + Arcoe?t cos(wT) + Agey
cre?fT cos(2wT') + coe?PT sin(2wT) = Aqcrelt cos(wT') + AqcoelT sin(wT') 4+ Agcy

Once more, the solution is just what we wanted to proof. <
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