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Part I

Clustering and Classi�cation
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1 Stochastic models

Model de�nition

Mathematical model is a formula (function) that assigns an output (result) to an input (argu-
ment). We can also speak about a cause and an e�ect and we will denote them x and y. Then
the model takes form

y = g (x) (1.1)

where g (·) is the function that assigns y to a given x. This model is deterministic. It means
that to each value x it assigns always the same value of y.

If the process being modeled is under uncertainty the model takes the form

y = g (x) + e (1.2)

where e is a noise a�ecting the output y. Then the model is called stochastic.

Remark

The uncertainty in the model may not be due to noise, but it is not wrong to think of uncertain
variables as those that are deterministic but corrupted by noise.

The model (1.2) gives the output in the form of random variable with the expectation f (x) and
the distribution given by that of the noise (mostly of the normal form). All in all, we can de�ne
the model by the distribution of the output it produces. That is

f (y|g (x))

which is conditional distribution for given (known) value of g (x) .

Remark

Known g (x) means that we must know not only x but also the function g (·) which is mostly
described in a parametric form. Than we speak about �measured x� and �known model parame-
ters�.

Mostly the model acts in time. We always use a discrete time t which expresses number of
period of measurement elapsed. That is

τ = tT, t = 0, 1, 2, · · ·

where τ is continuous time (with the beginning at the start of the modeled action), T is the
period of sampling (connected with the action) and t is the discrete time.

Then the random variables x and y become random processes, which are sequences of random
variables with the notation xt and yt. The model then is

f (yt|g (xt)) .

Types of models

Now, the function in the condition is too general. Most frequently it is de�ned in one of the
following forms.
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1. Constant k. The model is then
yt = k + et (1.3)

and it corresponds to measurement of constant variable with a noise.

2. Linear function of explanatory variables x

yt = b1x1;t + b2x2;t + · · ·+ bmxm + k + et (1.4)

where bi, i = 1, 2 · · ·m are constant coe�cients, xi are entries of xt, k is a constant (to
cover the case if yt 6= 0 for xt = 0), et is the noise with zero expectation and constant
variance r.

3. Linear dynamic function

yt = b0ut + a1yt−1 + b1ut−1 + · · ·+ anyt−n + bnut−n + k + et (1.5)

where ai, bi are regression coe�cients and u is input variable (if its values can be set, then
it can be considered a control).

The models listed above concern models of continuous output yt. If yt is a discrete random
process, i.e. it can possess only limited number of di�erent values (e.g. 0 or 1), then a di�erent
type of modeling must be adopted. In the case when both xt and yt are discrete, the described
system has only �nite number of states. They are all combinations of the couples [xt, yt] and they
all can be assigned by their probabilities. Such a model i called categorical and for xt ∈ {1, 2, 3}
and yt ∈ {1, 2} it can be given a form of the following table - it is the probability function

f (yt|xt,Θ) (1.6)

where Θ is a table

xt = 1 2
yt = 1 Θ1|1 Θ1|2
yt = 2 Θ2|1 Θ2|2
yt = 3 Θ3|1 Θ3|2

where Θi|j are conditional probabilities, i.e.
∑
i Θi|j = 1 ∀j (their sums over columns are equal

to one).

A special class of models concern those for description of nonnegative variables. For continuous
variables it can be e.g. exponential model

f (yt|a) = a exp (−ayt) , a > 0, yt = 0, 1 · · ·∞ (1.7)

and for the discrete case Poisson model

f (yt|λ) = exp (−λ)
λyt

yt!
, λ > 0, yt = 0, 1 · · ·∞ (1.8)

or binomial model

f (yt|p) =

(
N

yt

)
pyt (1− p)N−yt p ∈ (0, 1) , yt = 1, 2 · · ·N (1.9)
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Estimators

Constant model (1.3)

Here k is the average of measured yt, t = 1, 2, · · · , N

k̂N =

∑N
i=1 yi
N

or with on-line update of statistics S (sum) and κ (number)

St = St−1 + yt

κt = κt + 1

with S0 = 0 and κ0 = 0. Then

k̂N =
SN
κN

.

Static model (1.4)

Using least square method: Construct

Y =


y1

y2

· · ·
yN

 , X =


x1;1 x2;1 · · · xm;1 1
x1;2 x2;2 · · · xm;2 1
· · · · · · · · · · · · · · ·
x1;N x2;N · · · xm;N 1


where m is the number of variables x and the estimate is

θ̂N = (X ′X)
−1
X ′Y

Dynamic model (1.5)

De�ne time interval s = [n+ 1, n+ 2, · · ·N ] and follow the previous example with

X = [u (s) , y (s− 1) , u (s− 1) , · · · , y (s− n) , u (s− n) , 1]

In θ̂ the parameters are stored in the way the matrix X is constructed.

Categorical model (1.6)

The statistics has the same matrix form as the parameter Θ. The update starts with Θ = 0 and
each time after measuring data xt and yt we add one to the entry Θ[yt,xt].

The estimates are obtained by normalization of the statistics columns to th sum equal to one

Θ̂i,j =
Si,j∑
k Sk,j

, ∀j

Exponential model (1.7)

Here a is the inverse expectation of y. So â =
(∑

y
N

)−1

or on line

St = St−1 + yt
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κt = κt + 1

with S0 = 0 and κ0 = 0. Then

k̂N =
kN
SN

.

Poisson model (1.8)

The parameter λ is the expectation, so its estimate is the average (see th constant model).

Binomial model (1.9)

The parameter is N times the expectation. So, the statistics for constant model (1.3) can be
used and the �nal estimate is

p̂N =
SN
NκN
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2 Models for clustering and classi�cation

One of the prominent approaches in data mining is based on data modeling. The model describes
density of data points in the data space (detects dense areas called clusters) and gives a possibility
to detect the cluster to which a newly measured data record (point in the space) belongs.

First we will inspect models connected with this area and derive simple but general clustering
and classi�cation tool which is near to estimation of mixture models.

Then we will show the same procedure as before but with a simplifying assumption of indepen-
dence of variables in the regression vector. This approach is known as Naive Bayes.

In the end, we will extend the previous attitude for models with unknown parameters. Then the
parameters must be estimated from data. The estimation can be one shot or recursive (on-line).

2.1 Bayesian approach

Our approach to clustering and classi�cation relies primarily on the use of modeling. Generally,
we consider a data space X of �nite vectors x = [x1, x2, · · · , xn] . These vectors represent points
in the data space and we suppose, these points are somehow grouped with respect to their
density (or spatial probability of occurrence). These groups of data vectors (represented as
points in data space) are called components (classes). Our task is t0

1. detect these groups in the data space (clustering),

2. decide, which class a newly measured vector belongs to (classi�cation).

The groups are labeled - each of them has its own �ag (value of pointer). In our case, the �ags
will be integers c = 1, 2, · · · , nc. In classi�cation, we measure a vector x and want to classify
it. As the true class to which the vector belongs in unknown, the pointer c will be described
by a discrete random variable with its probability function f (c|x) where x is the vector to be
classi�ed.

Individual groups have their models f (x|c) = fc (x) which is a probabilistic description of vectors
x belonging to the class c.

Putting it together

As we have seen, in connection with the tasks of clustering and classi�cation, we have two
models (for now, with known parameters).

Models of data (components)
f (x|c)

Model of classi�cation (pointer)
f (c|x)

These two models are connected via Bayes rule

f (c|x) = f (x|c) f (c)

f (x)
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following from the relation

f (c, x) = f (c|x) f (x) = f (x|c) f (c)

Remark

Naturally, from the �rst pdf in the Bayes rule, x is the cause and c is the e�ect. The Bayes rule
says, that from the knowledge of the e�ect we can say something about the cause.

We will demonstrate these models in the following example.

Example

Let the joint model f (c, x) be described trough the conditional pdf

f (x|c = 1) = f1 (x) = Nx (µ1, 1) (2.1)

f (x|c = 2) = f2 (x) = Nx (µ2, 1) (2.2)

and the marginal probability function f (c) given by the table

c 1 2
f (c) 0.4 0.6

Notice that each model is of a di�erent type. The data are continuous, so their model type is
also continuous (regression model), while the pointer is discrete and its description is a discrete
probability function. As the data model depends on the pointer, we have to de�ne two regression
models - for each pointer value one model. They di�er in parameters. The �rst component has
expectation µ1 while the second µ2. The model can be demonstrated in the picture

The left part of the �gure shows the model of the �rst component, which is active (generates
data) in 40% of the model calls, and the right part shows the model of the second component,
active in 60% of the cases.

Now, the joint model f (c, x) = f (x, c) , is given by a product of the conditional data model and
the marginal pointer model; it is

f (x, c) = f (c) f (x|c) =

{
0.4Nx (µ1, 1) for c = 1

0.6Nx (µ2, 1) for c = 2
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This is how a mixed model (i.e. model with both continuous and discrete variables) can be
expressed.

Having the joint distribution of the model, we can express arbitrary conditional or marginal
model. We already have the conditional model of the data x|c and marginal one for the pointer
c - we have de�ned them above. Now, we are going to determine the remaining two models.

Marginal data model

Marginal model for data x is obtained by summing the joint model over all values of the pointer,
i.e. for c = 1, 2. We get

f (x) = 0.4Nx (µ1, 1) + 0.6Nx (µ2, 1)

which is a weighted sum of two Gaussian distributions.

Classi�cation model

Can be computed as

f (c|x) =
f (c, x)

f (x)
or f (x|c) f (c)

f (x)
∝ f (x|c)︸ ︷︷ ︸
component model

f (c)︸︷︷︸
component prior

(2.3)

f (c|x) =

{
0.4Nx(µ1,1)

0.4Nx(µ1,1)+0.6Nx(µ1,2) for c = 1
0.6N(µ2,1)

0.4Nx(µ1,1)+0.6Nx(µ1,2) for c = 2
∝

∝

{
0.4Nx (µ1, 1) for c = 1

0.6Nx (µ2, 1) for c = 2

which is obvious (conditional pdf is proportional to the joint one), however, this is very important
result claiming that:

Result: The probability that x is to be classi�ed into the class c is proportional to the value of
the model of this component with the measured vector x inserted.

Classi�cation algorithm

The classi�cation can run like this:

1. Measure new data vector x (t > N , where N is the length of learning).

2. Compute values of all component models with inserted vector xt multiplied by prior prob-
abilities of the components.

3. Classify the vector xt to the component corresponding to the greatest computed value.

Remark

This holds for known models of components and pointer. If the parameters of these models are
unknown, they have to be estimated and their point estimates can be used instead of the true
parameters. It is an approximation but very good one. We will tackle this problem in more
details later.
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Now, we shall demonstrate the algorithm for the following numerical setting of the previous our
example.

Let µ1 = 1, µ2 = 5 and the measured vector xt = 2.45. The the values of the component models
are

f1 ∝ 0.4
1√
2π

exp

{
−1

2
(2.45− 1)

2

}
= 0.056

f2 ∝ 0.6
1√
2π

exp

{
−1

2
(2.45− 5)

2

}
= 0.009.

The �rst value is greater, the point xt = 2.45 belongs to the �rst component. The situation in
this simple example is clearly visible from the following picture

The point xt lies closer to the �rst model, so the value of the model in xt is greater.

Remark

The in�uence of the pointer model is not so important and is neglected in the picture. The main
e�ect is caused by the component models and their values will be called proximity as they express
the closeness of the measured point to the centers of individual components.

Clustering algorithm

The task of clustering consists in grouping the data into several classes according to given
criterion. Bayesian model based clustering formulates the criterion as a closeness of the data to
sub-models (components), which can be continuously estimated. The way of it is indicated in
the following algorithm.

1. Set prior component models - e.g. for Gaussian components they are given by their centers
and covariance matrices.

2. Subsequently measure data vectors from data space and

(a) classify data into components

(b) perform parameter estimation of component and pointer models. Estimation will be
treated in the section with mixture models.

3. The resulting estimated components describe the found clusters.
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2.2 Naive Bayes classi�cation

This method is nothing but the previous case plus assumption of conditional independence of
data variables, i.e. entries of the data vector x. With this assumption we have

f (x|c) =

n∏
i=1

f (xi;t|c) .

Remarks

1. This formula can be explained by the assumed fact that the data in one cluster di�er only
by noise and thus are independent.

2. The independence brings considerable savings - instead of multidimensional model we can
use only several one-dimensional ones. For normal components, instead of large covariance
matrix we need only several (namely n) scalar variances.

The pointer model (2.3) has now the form

f (c|x) ∝ f (x|c) f (c) = f (c)

n∏
i=1

f (xi;t|c)

where f (xi;t|c) are scalar models of individual variables within the class c.

2.3 Classi�cation with learning

Now, let us take the previous case and add assumption of the ignorance of the true parameter
values. These need to be learned (estimated) from data. Similarly as in the previous case, we
will measure only one data vector x.

The models now will be:

Model of data in component c
f (x|c, θc)

Model of pointer
f (c|αc)

Classi�cation model
f (c|x)

Estimation model
f (θ, α|x)

As in the beginning of this section, we look for the classi�cation pdf f (c|x) . To be able to
construct it, we must introduce the model parameters θ and α. So, we start with pdf of all
unknown objects f (c, θ, α|x) and perform its factorization

f (c, θ, α|x) ∝ f (x, c, θ, α)︸ ︷︷ ︸
joint pdf

= f (x|c, θ, α) f (c|θ, α) f (θ, α) =
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= f (x|c, θc)︸ ︷︷ ︸
component model

f (c|αc)︸ ︷︷ ︸
pointer model

f (θ, α)︸ ︷︷ ︸
prior

where the �rst two pdfs are parameterized models of data and pointer, the last one is a prior
description of parameters which is updated to posterior with the information carried by the data
vector x. From this relation for the joint pdf we can obtain all needed

1. The classi�cation

f (c|x) =

∫
θ∗

∫
α∗
f (x, c, θ, α) dαdθ =

=

∫
θ∗

∫
α∗
f (x|c, θc) f (c|αc) f (θ, α) dαdθ

.
= (2.4)

=

f
(
x|c = 1, θ̂1

)
α̂1 for c = 1

f
(
x|c = 2, θ̂1

)
α̂2 for c = 2

where f
(
x|c = 1, θ̂1

)
= Nx (µ̂1, 1) , f

(
x|c = 2, θ̂2

)
= Nx (µ̂2, 1) , θ̂1 = µ̂1, θ̂2 = µ̂2, α̂1, α̂2

are point estimates of the prior parameters.

Let the true parameters are the same as in the preceding example and let the prior infor-
mation is expressed in these point estimates:

µ̂1 = 2, µ̂2 = 3, α̂1 = .5, α̂2 = .5

2. The estimation
f (θ, α|x) =

∑
c

f (x, c, θ, α) =

=
∑
c

[f (x|c, θc) f (c|αc)] f (θ, α) (2.5)

Example

Let us continue in our previous example, however, the parameters of the models will be unknown.
The component models are (2.1) and (2.2) with unknown values of µ1 and µ2; the pointer model
is

c 1 2
f (c) α1 α1

with α1, α2 ≥ 0 and α1 + α2 = 1.

Substitution to (2.4) gives

f (c|x) =

{
Nx (µ̂1, 1) α̂1 = N (1, 1) 0.4 for c = 1

Nx (µ̂2, 1) α̂2 = N (5, 1) 0.6 for c = 2

For measured x = 2.45 · · ·

Here, the situation is formally the same as in the previous example.
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The update of the estimated parameters will be

f (θ, α|x) = [Nx (µ1, 1)α1 +Nx (µ2, 1)α2] f (µ, α)

which is almost standard update for continuous and discrete models. The only di�erence is
that the models are in a sum. Here, the summation form of the model does not matter but in
recursive estimation we are in a serious trouble. As the Bayes rule is a product of pdfs and the
model is a sum, its repetitive calling produces the posterior pdf in a form which gets more and
more complex and its evaluation and storing in memory is unfeasible.

2.4 Classi�cation with recursive learning

Herr we are going to tackle the general problem of on-line clustering and classi�cation. The
method steams from the cases described above and generalizes them to on-line estimation. It is
based on mixture estimation and it performs parallel classi�cation and clustering. For existing
estimates of data clusters it classi�es a newly measured data record (it determines weights - the
probabilities of membership of the data record to individual clusters) and then used the data
record for updating the cluster description, each with the corresponding weight.

As we deal with data in time, we introduce time indexes at variables.

The models now will be:

Model of data
f (xt|ct, θct)

Model of pointer
f (ct|αct)

Classi�cation model
f (ct|x (t))

Estimation model
f (θ, α|x (t))

where, we remind, x (t) = [x0, x1, · · · , xt] , x0 denotes prior information.

For the derivation of the method, we will follow the last one.

f (ct, θ, α|x (t)) ∝ f (xt, ct, θ, α, x (t− 1))︸ ︷︷ ︸
joint pdf

= f (xt|ct, θ, α) f (ct|θ, α) f (θ, α|x (t− 1)) =

= f (xt|ct, θct)︸ ︷︷ ︸
comp. model

f (ct|αct)︸ ︷︷ ︸
point. model

f (θ, α|x (t− 1))︸ ︷︷ ︸
prior

and here we come to a problem in estimation. Formally, it will be

f (θ, α|x (t)) ∝
nc∑
ct=1

[f (xt|ct, θct) f (ct|αct)] f (θ, α|x (t− 1))

14



as in the last case, but now, in recursive estimation due to the summation form of the model the
computations are unfeasible. The posterior pdf does not preserve the form of the prior and gets
more and more complex. Its remembering and evaluation over�ows the possibility of standard
computer abilities.

That is why we must use an approximation. The straightforward one would be to approximate
the sum of pdfs by a single one of the same form as the prior pdf has. However, this is rather
complex. So we will approximate by a trick.

Suppose, we know the true component to which the measured data record belongs. Then we
can de�ne a pointer

δ (ct, ĉt) =

{
1 for ct = ĉt

0 elsewhere

where ct is random variable and ĉt its realization (the label of the true component). Thus, at
each time instant t the pointer denotes the component that is really true (active - the data
record xt belongs to it). However, in reality, we do not know the active component. So, we must
estimate the pointer as an expectation

E [δ (ct, ĉt) |x (t)] =
∑
cεct

δ (c, ĉt) f (c|x (t)) = P (c = ĉt|x (t)) for c = 1, 2, · · · , nc

which is a vector of probabilities that the c-th component is active. We will call that vector
actual components weights and denote it by wt = [w1;t, w2;t, · · · , wnc;t] where

wi;t = P (ct = i|x (t)) , i = 1, 2, · · · , nc

Remark

Notice that wt depends on the actually measured data record xt. It is the di�erence between it
and the pointer model f (ct|α) . The pointer model expresses only historical knowledge about the
activities of the component while wt takes into account also xt which is most important for the
actual classi�cation.

The e�ect of the approximation is following: Formerly, we needed to know the true active
component. Now, we only need to know the probabilities that each individual component is
active. The knowledge of the true active component is not required. It is like in the following
picture

15



The pointer, now, is nothing but the classi�cation pdf f (ct|x (t)). This is determined in the
task of classi�cation in the last section

f (ct|x (t)) ∝︸︷︷︸
Bayes

f (xt, ct|x (t− 1)) =

=

∫
θ∗

∫
α∗
f (xt, ct, θ, α|x (t− 1)) dαdθ =

=

∫
θ∗

∫
α∗
f (xt|ct, θct) f (ct|α) f (θ, α|x (t− 1)) dαdθ =

or - using point estimates of parameters instead of full likelihoods

= f
(
xt|ct, θ̂ct

)
α̂ctf (θ, α|x (t− 1))

for measured xt and ct = 1, 2, · · · , nc.
Then, the estimation is performed in a standard way for given distribution of components and
categorical distribution of the pointer model. The only di�erence is, that the update of statistics
uses weighted data with just computed weights wt = f (ct|x (t)) .

Example

We will continue with the same example like in the preceding sections. We will:

1. Simulate a mixture with two static Gaussian components

f1 (xt|µ1) , µ1 = 1

f1 (xt|µ2) , µ2 = 5
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with known variances equal to 1 and pointer model

f (ct|α) , α = [0.4, 0.6] .

2. Estimate the mixture with initial parameters

µ̂1;0 = 2, µ̂2;0 = 3, α̂ = [0.5, 0.5] .

The program is here

The program is described inside. Only some notes are necessary:

1. Simulation: �rst the pointer value is generated and according it a corresponding component
is used for data generation.

2. The second part is estimation.

(a) First, the initial parameters m and al are speci�ed. K is the counter. Its initial value
expresses the strength of prior information (the �ctive number of data from which
the information has been extracted).

(b) Then, in the time loop, weights are computed. The computation is performed in
logarithms, then it is roughly normalized by subtracting maximum, then exponent is
taken and multiplication with al is performed and �nally normalized to sum equal to
one.

(c) In the end of the loop, statistics are updated by weighted data and point estimates
computed.

The results of estimation (classi�cation) are in the following pictures

Here the histogram of data sample is plotted. It can be seen, that the components are slightly
overlapping. The classi�cation is not trivial.
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Here, the simulated (blue) pointer values and the predicted (magenta) ones are plotted. The
prediction is �nally classi�ed to the class which is closer to it. It can be seen that at the
beginning, when the learning just started there are some errors. Gradually it improves and in
the end all classi�cations are correct.

And here is supplementary information - evolution of expectation estimated during estimation.
The initial estimates are gradually improved till they reach practically correct values (1 and 5).

Remark

The approach presented for the last time is practically equivalent to mixture estimation.
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3 Regression

Here, we will demonstrate the logistic and Poisson regression. They are both very similar:

1. They use nonlinear models with unknown parameters.

2. Their estimation is performed o�-line using numerical optimization. It has two phases:
learning and testing.

3. They need to cope with non-negativity of estimated parameters.

3.1 Logistic regression

Model for variable ct with Bernoulli distribution

f (ct|p) = pct (1− p)1−ct

with ct = 0, 1 is dichotomous model output p ∈ (0, 1) is the probabilistic parameter: p =
P (ct = 1).

The expectation of ct is
E [ct|p] = p

Now, we would like to extend this model so that its expectation will be modeled by regression
in the form

p→ x′b = b0 + b1x1 + · · ·+ bmxm

However, there are problems. p ∈ (0, 1), i.e. it is nonnegative and bounded from above.

1. The solution with respect to bounding is: instead of p to model p
1−p which is from the

interval (0,∞)

2. Nonnegativity of p
1−p can be solved by taking logarithm ln p

1−p . This variable is called
logit

logit (p) = ln

(
p

1− p

)
This logit will be modeled by regression

ln

(
p

1− p

)
= xtb

The �nal model f (ct|b) can be derived from the above expression and it has the form

f (ct|b) = p =

{
exp{xtb}

1+exp{xtb} for ct = 1
1

1+exp{xtb} for ct = 0

and using the fact that ct ∈ {0, 1} we can write the model as

f (ct|b) =
exp {ctxtb}

1 + exp {xtb}
.
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Note, that both the mentioned demands are ful�lled - p ∈ (0, 1), and nonnegative, indeed.

For estimation of the parameter p we will construct the likelihood function

LN (p) =

N∏
t=1

exp {ctxtb}
1 + exp {xtb}

where we used a trick for writing the model in a uni�ed form. For ct = 1 the nominator in the
model will be exp {xtb} and for ct = 0 it will be 1.

The log-likelihood is

lnLN (p) =

N∑
t=1

[ctxtb− ln (1 + exp {xtb})]

As the �rst and second derivatives of this expression can be computed analytically, the Newton
method for numerical maximization is very suitable. It is quick and has fast convergence.

Program

// DM_LogisReg.sce

// Example: Logistic regression with two independen variables

// ------------------------------------------

clc, clear, close, mode(0), warning('off')

getd _func

function LL=logLL(b,par)

// log-likelihood of logistic regression

x=par.x; // data x

y=par.y; // data y

Li=y.*(x*b)-log(1+exp(x*b)); // vector of log-models

LL=-sum(Li); // log-likelihood

endfunction

function [f,g,ind]=fun(b,ind,par)

// auxiliary function

f=logLL(b,par); // log-likelihood

g=numderivative(logLL,b); // gradient

endfunction

// SIMULATION ==================================================================

nd=200; // number of data

bS=[4 8 -1]'; // simulated parameter

sd=1; // regression noise z=x*b+sd*rand

x=[ones(nd,1) rand(nd,1,'n') 5-rand(nd,1,'n')];

z=x*bS+sd*rand(nd,1,'n');

p=exp(z)./(1+exp(z));

y=round(p);

// LOGISTIC REGRESSION --------------------------------------

b0=[0 0 0]'; // initial estimates of parameters (including ones)

par.x=x; // data x

par.y=y; // data y
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// estimation

fce=list(fun,par);

[LLopt, b, gopt, work, iters, evals, err]..

= optim (fce,b0,iprint=2,'ar',1e8,1e8); // optimization

b,err

z=par.x*b; // regression

p=exp(z)./(1+exp(z)); // p=P(y=1|x)

yp=round(p); // rounding <.5 ->0, >.5 -> 1

wrong=sum(y~=yp) // number of wrong classification

// RESULTS

set(scf(),'position',[800 10 500 300]);

plot(1:nd,y,'bx',1:nd,yp,'r.')

Ep=variance(y-yp)/variance(y) // relative prediction error

scf();

plot(jiggle(y),jiggle(yp),'.','markersize',3)

title 'y against yp - jiggled'

3.2 Poisson regression

Model with Poisson distribution

f (ct|λ) = exp {−λ} λ
ct

ct!
(3.1)

with ct = 0, 1, 2, · · · ,∞, λ > 0 it the expectation (average number of events per time unit).
Again, the expectation should be expanded by regression. The condition of upper limit is nor
demanded, but the non-negativity remains and is solved in the same way as for logistic regression
- by expanding logarithm of λ instead of λ itself

ln (λ) = xtb = b0 + b1x1 + · · ·+ bmxm.

Thus, for λ we have
λ = exp {xtb} .

The �nal model f (ct|λ) will be (3.1) with the above substitution - for log-likelihood we express
directly its logarithm

ln {f (ct|b)} = − exp {xtb}+ ctxtb− ln (ct!)

Log-likelihood is

lnLN (b) =

N∑
t=1

[− exp {xtb}+ ctxtb− ln (ct!)]

and it is maximized numerically.

Program to the Poisson regression is here
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// DM_LogisReg.sce

// Example: Logistic regression with two independen variables

// ------------------------------------------

clc, clear, close, mode(0), warning('off')

getd _func

function LL=logLL(b,par)

// log-likelihood of logistic regression

x=par.x; // data x

y=par.y; // data y

Li=y.*(x*b)-log(1+exp(x*b)); // vector of log-models

LL=-sum(Li); // log-likelihood

endfunction

function [f,g,ind]=fun(b,ind,par)

// auxiliary function

f=logLL(b,par); // log-likelihood

g=numderivative(logLL,b); // gradient

endfunction

// SIMULATION ==================================================================

nd=200; // number of data

bS=[4 8 -1]'; // simulated parameter

sd=1; // regression noise z=x*b+sd*rand

x=[ones(nd,1) rand(nd,1,'n') 5-rand(nd,1,'n')];

z=x*bS+sd*rand(nd,1,'n');

p=exp(z)./(1+exp(z));

y=round(p);

// LOGISTIC REGRESSION --------------------------------------

b0=[0 0 0]'; // initial estimates of parameters (including ones)

par.x=x; // data x

par.y=y; // data y

// estimation

fce=list(fun,par);

[LLopt, b, gopt, work, iters, evals, err]..

= optim (fce,b0,iprint=2,'ar',1e8,1e8); // optimization

b,err

z=par.x*b; // regression

p=exp(z)./(1+exp(z)); // p=P(y=1|x)

yp=round(p); // rounding <.5 ->0, >.5 -> 1

wrong=sum(y~=yp) // number of wrong classification

// RESULTS

set(scf(),'position',[800 10 500 300]);

plot(1:nd,y,'bx',1:nd,yp,'r.')

Ep=variance(y-yp)/variance(y) // relative prediction error
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scf();

plot(jiggle(y),jiggle(yp),'.','markersize',3)

title 'y against yp - jiggled'
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4 Clustering

The task of clustering consists in dividing the data space into several subspaces whose data are
somehow similar. Mostly the similarity is given by the distance of the points. We demand that
the points in a cluster are as close as possible and on the other hand the points between di�erent
clusters are as remote as possible. However, the sorting can be governed also by other rules as
e.g. color or shape of �data points�.

For us the clustering according to the distance will be decisive. The distance is mainly Euclidean
but it can also be some other, like Manhattan or Minkowski ones.

4.1 K-means algorithm

Let us have a data sample X = [x1, x2, · · · , xN ] where xt = [x1;t, x2;t, · · · , xn;t] is a data record
(point) and N is total number of data records. The algorithm of clustering is as follows

0. Determine the number of clusters ans set their initial centers.

1. Measure the distance from each data point to each cluster center and assign the point to
the nearest center. The points form clusters.

2. Compute the average of points in each cluster and set it as its new center.

3. Check, if the centers changed. I yes, go to 1. If not, the algorithm ends.

Program

// DM_kmeans.sce

// K-means

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// SIMULATION

m=list();

m(1)=[0 1]';

m(2)=[5 2]';

m(3)=[3 8]';

n=[15 30 20]*10;

sd=1.5;

ny=length(m(1));
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y=[];

for i=1:3

for t=1:n(i)

y=[y m(i)+sd*rand(ny,1,'n')]; // data generation

end

end

// ALGORITM

nd=size(y,2); // number of data

nc=length(m); // number of clusters

yc=list(); cL=list();

// inicialization of centers

mi=min(y,'c');

ma=max(y,'c');

for j=1:nc

C(j).c0=(mi+ma)/2+rand(ny,1,'n'); // initial centers of clusters

C(j).c=C(j).c0; // first centers are initial ones

end

for it=1:1000

for j=1:nc

C(j).cd=[]; // initialization of clusters

end

// distances of data from nodes

for i=1:nd

for j=1:nc

d(j)=distance(C(j).c,y(:,i)); // distances of point from centers

end

[xxx,k]=min(d); // minimal distance point from the k-th center

C(k).cd=[C(k).cd y(:,i)];

end

df=0;

for j=1:nc

C(j).cs=C(j).c; // remember centers from last step

C(j).c=mean(C(j).cd,2); // new centers

df=df+sum(abs(C(j).c-C(j).cs)); // shift of centers

end

if df<.1

break // end of iterations

end

end

// RESULTS

k1=1:n(1);

k2=k1($)+1:k1($)+n(2);

k3=k2($)+1:k2($)+n(3);

set(scf(),'position',[800 200 600 400]);
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// data

plot(y(1,k1),y(2,k1),'kd','markersize',12)

plot(y(1,k2),y(2,k2),'ks','markersize',12)

plot(y(1,k3),y(2,k3),'ko','markersize',12)

// clusters

plot(C(1).cd(1,:),C(1).cd(2,:),'r.','markersize',3)

plot(C(2).cd(1,:),C(2).cd(2,:),'b.','markersize',3)

plot(C(3).cd(1,:),C(3).cd(2,:),'g.','markersize',3)

title('Data and found clusters','fontsize',4)

disp(it,'number of iterations')

Description of the program

De�nition of the distance

Simulation

Three centers m, standard deviation of data in clusters sd are set. Two dimensional data
generated in loop. In the i-th cluster n (i) data points are simulated.

Algorithm

Structure variable C is de�ned. It has items .c0 - initial centers, .c - new centers, .cs - centers
from previous step, .cd - points in a cluster. It runs according to the list above.

4.2 K-medoids algorithm

This algorithm is similar to k-means with the di�erence, that centers (medoids) are always data
points. The algorithm is:

0. Determinemd as the desired number of clusters. Randomly selectmd data points as initial
centers of medoids.

0. To each medoid �nd the points that are closest to it. They will be initial clusters.

0. Determine overall distance of points from their medians.

1. Randomly select one medoid and one non-medoid (data point that is not a medoid).

2. Swap them and again determine overall distance of points from their medians.

3. If the distance is smaller, continue by 1. If not, algorithm ends.

Program

// DM_cmedoids.sce

// c-medoids (simple - like genetic alg.)

// ------------------------------------------
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clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

function d=distXY(X,Y)

// Distance of vectors X and Y

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nX);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j));

end

end

endfunction

function dc=updateCls(md,s,u,y)

// update of all distances after update of medoids

// dc distances points from individual medoids: matrix md X nd

// md nuber of clusters

// s indexes of medoids

// u indexes of non-medoids

// construction of new clusters

d0=distXY(y(:,s),y(:,u)); // distances between medoids and non-medoids

[xxx,ic]=min(d0,'r'); // ic(k) is label of cluster

c=list(); // to which y(:,k) belongs

for j=1:md

c(j)=find(ic==j); // c(k) is vector of indxes of y

end // which belong to cluster k

// evaluation of new clusters

for j=1:md

dc(j)=sum(distXY(y(:,s(j)),y(:,c(j))));

end // sum of distances data from medoids

endfunction // = optimality criterion

// ===================================================================

// SIMULATION

m=list();

m(1)=[1 1]'; // data centers

m(2)=[5 2]';

m(3)=[3 8]';

sd=.5; // std of data

al=fnorm([1 3 2]); // prababilities of modes

ny=length(m(1)); // dimension of y
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nc=length(al); // number of modes

nd=200; // length of data

md=3; // number of initial centers (points)

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=m(i)+sd*rand(ny,1,'n'); // data generation

end

// CLUSTERING - first step

s=samwr(1,md,1:nd); // first medoids

u=setdiff(1:nd,s); // first non-medoids

dc=updateCls(md,s,u,y); // distances within initial clusters

d0=sum(dc);

dd=d0;

dd0=d0;

ss=s';

// CLUSTERING - iterations

for ite=1:1000

s0=s; // remember medoids from last step

u1=samwr(1,1,u); // choice of one non-medoid

s1=samwr(1,1,s); // choice of one medoid

// swap one medoid and one non-medoid

s=setdiff(s,s1);

s=[s,u1]; // new medoids

u=setdiff(1:nd,s); // remaining non-medoids

dc=updateCls(md,s,u,y); // new distances in clusters

d=sum(dc);

if abs(d-d0)<.001 // test of end of iterations

printf(' Po£et krok· %d\n\n',ite)

break

end

if d<d0 // test in the end of iteration (go on / go back)

d0=d; // crit OK - remember its value

else

s=s0; // crit is not OK - go back to original medoids

end

// remember

dd=[dd d];

dd0=[dd0 d0];

ss=[ss s'];

end

chk=[dd0;dd;ss];
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// RESULTS

C=y(:,s);

scf();

plot(y(1,:),y(2,:),'.')

plot(C(1,:),C(2,:),'rx','markersize',12)

Program description

Function de�nition

- updateCls recomputes centers and evaluates the overall distance of points from medoids within
individual clusters.

Simulation

Two dimensional data y are generated. nd is number of data, md is number of clusters.

Initialization

Select medoids, the rest of points are non-medoids. Compute the overall distance.

Iterations

Chose one medoid and one non-medoid. Swap them. Compute the overall distance and compare
with the previous one. Check for the end.

4.3 Fuzzy clustering

C-means algorithm

In the c-means algorithm we minimize criterion

J =

N∑
i=1

C∑
j=1

umij‖xi − cj‖2, m ≥ 1

where uij is a degree of membership of the point xi to cluster cj and ‖ · ‖ is a norm.

The update of weights uij is performed as follows

- determine the centers (follows from minimization of the criterion)

cj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

- weights (are given as membership functions)

uij =
1∑C

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(4.1)

Algorithm
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0. Set the initial matrix of membership U.

1. Compute the centers cj with existing matrix U.

2. Update the matrix U .

3. If ‖Unová − Ustará‖ < ε, END otherwise go to 1.

Program

// DM_cmeans.sce

// c-means (fuzzy)

// Remark: weights are computed in the function CMupdt

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// ------------------------------------------

function d=distXY(X,Y,p)

// Distance of vectors X and Y

if argn(2)<3, p=1; end

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nY);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j),p);

end

end

endfunction

// ------------------------------------------

function [c,d]=CMupdt(c,y)

// computation of weights and centers

// c clusters

// y data

// distances d

d=distXY(c,y); // distances of points and medoids

// weights u

v=ones(d)./(d+1e-8); // membership function

u=fnorm(v,1); // normoalization over clusters

// centers c
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un=fnorm(u,2); // normalization over points

for j=1:size(c,2)

c(:,j)=y*un(j,:)';

end

endfunction

// ------------------------------------------

function c=clusters(dn)

// indexes of points for individual clusters

// dn normed distances

// c list of indexes of points for clusters

[xxx,ic]=min(dn,'r');

c=list();

for j=1:size(dn,1)

c(j)=find(ic==j); // clusters

end

endfunction

// ------------------------------------------

// SIMULATION

cS=list();

cS(1)=[1 1]'; // centers for simulation

cS(2)=[5 2]';

cS(3)=[3 8]';

sd=.8; // stdev of points

al=fnorm([1 3 2]); // prababilities of modes

ny=length(cS(1)); // dimension of y

nc=length(al); // number of modes

nd=50; // length of data

md=3; // number of initial centers (points)

// SIMULATION

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=cS(i)+sd*rand(ny,1,'n');

end

// CLUSTERING - first step

p=2; // distance [(p-q)'*(p-q)]^(p/2)

j=fix(nd*rand(1,md,'u'))+1; // indexes of initial centers

c=y(:,j); // initial centers

[c,d0]=CMupdt(c,y); // first update of centers

sd0=sum(d0);

// CLUSTERING - iteration

for ite=1:1000

[c,d]=CMupdt(c,y); // new centers (medoids)

sd1(ite)=sum(d);

if abs(sd1(ite)-sd0)<.001 // test of the end of iterations
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printf(' Po£et iterací %d\n',ite)

break

end

sd0=sd1(ite);

end

cL=clusters(d); // indexes of points in clusters

// RESULTS

tx=['r.';'m.';'g.'];

scf();

plot(y(1,:),y(2,:),'x','markersize',7)

for j=1:md

if ~(isempty(y(1,cL(j))) | isempty(y(2,cL(j))))

plot(y(1,cL(j)),y(2,cL(j)),tx(j),'markersize',6)

end

end

plot(c(1,:),c(2,:),'s')

Program description

Function de�nitions

- CMupdt computes distances of points from centers. First normalizes over clusters and then
over points. Finally creates clusters using the weights un.

- clusters constructs clusters according to the distances dm.

Simulation - standard

Initialization - updating of clusters (new centers)

Iterations - update of clusters (new clusters). Check for end of the algorithm.

4.4 Density based clustering

Dbscan

We have a set of data X = {x1, x2, · · · , xN} , where xi ∈ Rm

We de�ne:

• Distance of two points x and y and denote it by d (x, y) .

• ε-neighborhood of point x

Oε (x) = {x ∈ X : d (x, y) < ε} .

• Inner point is such one that has in its neighborhood at least given number of points.

• A point y is accessible from the point x, if a sequence of inner points from x to y exists.

• A connection between points x a y exists, it both these points are accessible from some
inner point.
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Algorithm of clustering

1. For each point from X �nd its ε-neighborhood.

2. De�ne variables �clus� and �bu�� (for storing points).

3. To �clus� put a single inner point and to �bu�� its neighborhood.

4. Select one point (e.g. the �rst one) from �bu��. Add it to �cluss� and its neighborhood
add to �bu��.

5. From �bu�� remove all points that have already been used (those that are in some cluster).

6. Repeat from 4. until �bu�� is not empty. Otherwise continue.

7. Remember the created cluster �clus� and prepare the variable for new one.

8. If there exists another free inner point, put it to �clus� and go to 4. If not, stop the
algorithm.

Clusters are formed by points that are connected.

Program

// DM_dbscan.sce

// Dbscan

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

function b=board(x)

// boards for graph

b=[min(x(1,:))-.2 max(x(1,:))+.2 min(x(2,:))-.2 max(x(2,:))+.2];

endfunction

// SIMULATION

p=[.1 .2 .1 .4 .2]; // switchin parameter

th=[0 0; 0 3; 1 2; 2 1; 3 3]'; // centers

nd=100; // number of data

for i=1:nd

j=sum(randu(1,1)>cumsum(p))+1;

x(:,i)=.3*randn(2,1)+th(:,j);

end

bo=board(x);

// CLUSTERING
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eP=.5; // radius of neighbourhood

mP=3; // minimum of points

// marking of inner points

V=[]; // inner points

X=list(); // neighbourhood of inner points

for i=1:nd

X(i)=[];

for j=setdiff(1:nd,i)

if distance(x(:,i),x(:,j))<eP

X(i)=[X(i) j]; // indexes of neighbourhood

end

end

if length(X(i))>=mP

V=[V i]; // inner points

end

end

// creation of

C=list(); // clusters

b=V(1); // auxiliary variable

M=[]; // already used points

k=1; // label of actual cluster

for h=1:100 // cycle for various clusters

CC=[]; // actual cluster

while ~isempty(b) // cycle for one cluster

b1=b(1); // one inner point

CC=[CC b1]; // new point to cluster

b=union(b,X(b1)); // add neighbourhood to b (auxiliary var.)

b=setdiff(b,CC); // removing just used point from b

end

if isempty(CC)

break // end of algorithm

end

M=[M CC]; // remembering points from a cluster

Vr=setdiff(V,M); // inner points that are still not used

if 1

C(k)=gsort(CC,'g','i'); // actual cluster(with border)

else

C(k)=intersect(V,CC); // actual cluster(without border)

end

k=k+1; // next cluster

b=Vr(1); // still not used point -> b

end

nC=length(C); // number of clusters

// RESULTS

tx=['.r';'.b';'.g';'.m';'.k'];

set(scf(),'position',[600 100 900 400])
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subplot(121)

plot(x(1,:),x(2,:),'c.') // data

set(gca(),'data_bounds',bo)

title Data

subplot(122)

for i=1:nC

plot(x(1,C(i)),x(2,C(i)),tx(i)) // clusters

end

set(gca(),'data_bounds',bo)

title Clusters

Example

Let us have 10 points as demonstrated in the picture

Points are circles and are plotted in a net with unit step. Parameter eps = 1.1, minimum
number of points is mp = 2. Then points

• 3, 4, 8, 9, 10 are inner points

• 2, 5, 6, 7 are border points

• 1 is noise points.
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Cluster construction

If the points are two-dimensional, the best way is to draw them in a plane (as in the picture
above) and to select the clusters manually. Start with arbitrary free inner point and add to it
all connected points. Repeat until all points are classi�ed.

Here the result is:

Cluster1 = {2, 3, 4, 5} a Cluster2 = {6, 7, 8, 9, 10}.

The point 1 is noise.

4.5 Hierarchical clustering

Agglomerative clustering

There is a lot of variations of this method. We will show here one of them which is very simple.
The algorithm is here:

1. All data points are denoted as clusters on the level 1 (with only one point).

2. Find two nearest clusters and join them together in one cluster. Its level is equal to the
number of points in joined clusters.

3. The coordinates of the cluster lie on a connecting line of the coordinates of clusters to be
joined in the proportion of their levels (the higher level the nearer).

4. Remember the clusters from which the new one has been created (hierarchy).

5. Repeat from 2 until only one cluster remains.

Remarks

1. The distance is Euclidean. It is computed between coordinates of clusters.

2. Coordinates of clusters on the level 1 are those of the points. For clusters generated by
joining clusters with coordinates with levels hi a hj are coordinates given as follows:
The line connecting coordinates of the two clusters is

x = xi + t (xj − xi) , t ∈ (0, 1)

The point in the ratio of the levels (nearer to the cluster with higher level) is given by the

parameter t =
hj

hi+hj
. So

x = xi +
hj

hi + hj
(xj − xi) =

hixi + hjxj
hi + hj

3. Dendrogram is a special graph that shows the structure of hierarchical clustering as shown
in the picture
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The resulting clusters can be determined on the basis of the dendrogram which can be drawn
manually. The program gives the matrix C, where in each row the number of cluster, the
distance of the coordinates of parents, and numbers of the parents can be found. The draw-
ing will start in the cluster with the highest number (the last row of the matrix). In the
graph, in the middle of the axis x and in the level of the distance (the second column in
the matrix) on the axis y, we draw a circle and write a number of the cluster inside it. In
the matrix C, �nd the parents of the node and draw the circles with their numbers in a
corresponding levels on the axis y (the position on the axis x is arbitrary). We repeat this
procedure until we exhaust all clusters that have been created by joining, only clusters with
level one remain.

According to the desired number we can proceed as follows in determining the clusters :

We draw a horizontal line that intersect vertical lines of the dendrogram. The line can be shifted
up or down. The number of intersections of the horizontal line with the vertical ones gives the
number of created clusters. The points belonging to individual clusters are in the axes x below
the intersection.

Example

We have 5 points

i 1 2 3 4 5
y1 4.6 4.0 2.4 1.0 -1.2
y2 -2.3 0.3 7.2 9.2 4.0
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The matrix C is

C =


6, 2.44, 3, 4
7, 2.67, 1, 2
8, 5.10, 5, 6
9, 8.58, 7, 8


Construction of dendrogram starts with the last row (the cluster 9). We draw a circle in the
middle of the axis x and in the height 8.58. Its parents are clusters 7 and 8. Those can be
drawn to the left and right from the node 9 in heights 2.67 and 5.10. We continue in this way
until we obtain the dendrogram according to the following picture

If we cut the dendrogram so that we obtain three intersections, we obtain the clusters
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C1 = {1, 2} , C2 = {5} , C3 = {3, 4} .

A comparison with the data plot con�rms the clusters created.

Two clusters would be C1 = {1, 2} a C2 = {3, 4, 5} .

Program

// DM_hierAgl.sce

// Hierarchical clustering (agglomerative)

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y)

x=x(:); y=y(:);

e=x-y;

d=sqrt(e'*e);

endfunction

// ===================================================================

// SIMULATION ----------------------------------------------------------

m=list();

m(1)=[1 1]'; // centers

m(2)=[5 2]';

m(3)=[3 8]';

sd=2.5; // stdev of points

al=fnorm([1 3 2]); // switching parametwr

ny=length(m(1)); // number of variables

nc=length(al); // number of modes

nd=5; // number of data

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=m(i)+sd*rand(ny,1,'n'); // simulation

c(1,t)=i;

end

// structre variable definition

for i=1:nd

cL(i).y=y(:,i); // data point or cluster

cL(i).n=1; // numb. of points in cluster

cL(i).p=[]; // parents

cL(i).v=[]; // distance

end

// ALGORITHM

nc=nd;

cc=1:nd;

for ite=1:(nd-1)
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lc=length(cc);

d=zeros(lc,lc);

for i=1:lc

for j=1:lc

if i<j

d(i,j)=distance(cL(cc(i)).y,cL(cc(j)).y); // distances between points

else

d(i,j)=%inf; // symmetrical entries

end

end

end

// grouping points

[v,ii]=min(d); // nearest point

i1=ii(1);

i2=ii(2);

nc=nc+1;

n1=cL(cc(i1)).n;

n2=cL(cc(i2)).n;

y1=cL(cc(i1)).y;

y2=cL(cc(i2)).y;

cL(nc).y=(n1*y1+n2*y2)/(n1+n2); // joining two points (clusters)

cL(nc).n=n1+n2;

cL(nc).p=cc(ii);

cL(nc).v=v;

cc(ii)=[];

cc=[cc nc];

end

// determining clusters

C=[];

for i=(nd+1):(2*nd-1)

C=[C; [i cL(i).v cL(i).p]];

end

// RESULTS

set(scf(),'position',[800 100 600 500])

tx=['.r';'.b';'.g';'.k';'.m';'.y'];

tn=['1','2','3','4','5'];

for i=1:nd

plot(y(1,i),y(2,i),tx(i,:),'markersize',8)

end

legend(tn(1:nd),-2);

disp(' node distance p1 p2 (p = parents)')

disp(C)
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Divisive clustering

In divisive clustering we proceed from top to bottom. We start with one cluster that contains all
data points and subsequently we divide clusters so that there would be minimal point distances
in clusters and maximal distances between clusters. For a given de�nition of the distanceD (x, y)
we introduce following notions

Big cluster CT - is a cluster to be divided.

Left and right cluster CL a CR - clusters created by division

Distance between clusters CL and CR - ILR

Distance inside clusters - UL, UŔ

Distance of the divided cluster - UT = ILR + UL + UR (it is sum of distances from each point
from CL to each point from CR - it is independent on division)

Task: to �nd CL a CR so that

HLR = (1− α) ILR︸︷︷︸
H1

−α [UL + UR]︸ ︷︷ ︸
H2

→ min

This task is combinatorial and it is np-hard. For its approximative numerical solution we will
use the method called

Avalanche method.

We have a cluster CT (in the beginning the whole data sample), which is to be divided.

We introduce CL as an empty set and CR as the whole cluster CT .

1. In CR we �nd anti-medoid - i.e. the point which is maximally remote from all other points
in the cluster CR.

2. We shift anti-medoid into the cluster CL a compute the value of the criterion HLR.

3. We try to add another point that is closer to the previously added.

4. If the value of the criterion increases we leave the point in CL and we go to the point 3.
If it dos not increase, the algorithm ends.

Program

// DM_hierDiv.sce

// Hierarchical clustering (divisive)

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);
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endfunction

// ------------------------------------------

function d=distXY(X,Y,p)

// Distance of vectors X and Y

if argn(2)<3, p=1; end

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nY);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j),p);

end

end

endfunction

function h=H1(cL,cR,y)

// sum of mutual distances of points

h=0;

for i=cL

for j=cR

h=h+distance(y(:,i),y(:,j));

end

end

endfunction

// ===================================================================

// DATA

nd=120;

py=[.3 .5 .2];

th=[-2 6; 6 3; 8 15]';

cv=3;

for i=1:nd

iy=sum(rand(1,1,'u')>cumsum(py))+1;

y(:,i)=th(:,iy)+cv*rand(2,1,'n');

end

// ALGORITHM

c=list();

cL=1:size(y,2); // data indexes

for itA=1:100 // iterations between clusters

cR=[];

// initialization

D=distXY(y(:,cL),y(:,cL));

Da=sum(D,2);

[xxx,cc1]=max(Da); // cc1 - pointer to anti-medoid

c1=cL(cc1); // c1 - index of anti-meoid

ci=cc1; // ci - storing of used clusters

cL=setdiff(cL,c1); // old (all)

42



cR=union(cR,c1); // new (is added)

h2=H1(cL,c1,y);

// iterations in one cluster

for ite=1:100

Dn=zeros(cL);

for i=1:length(cL)

Dn(i)=distance(y(:,c1),y(:,cL(i)));

end

[xxx,cc2]=min(Dn);

c2=cL(cc2);

ci=[ci cc2]; // is added for trial use

cL=setdiff(cL,c2);

cR=union(cR,c2);

h1=H1(cL,cR,y);

c1=c2; cc1=cc2;

if h1<=h2

ci=setdiff(ci,cc2); // if not used, it is removed

break

end

h2=h1;

end

c(itA)=cR;

if isempty(cL), break, end

end

// RESULTS

tx=['.r';'.b';'.g';'.k';'.m';'.y';'*r';'*b';'*g'];

set(scf(),'position',[800 100 600 500])

for i=1:length(c)

plot(y(1,c(i)),y(2,c(i)),tx(i))

end

c
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5 Classi�cation

By classi�cation we mean assignment of a data record (point) to some cluster or more clusters
each with its probability. Here, we mostly assume, that clusters have already been created by
some clustering method.

5.1 K-nearest neighbour

It is a basic form of classi�cation.

We have data X = {xi}Ni=1 with detected clusters. We can get them using some method of
clustering. The task is: for a newly measured data point y, to assign it to some cluster.

The procedure of classi�cation is following:

1. Compute the distance of the point y from all points from xi ∈ X.

2. Determine k points xi, i = 1, 2, · · · , k nearest to y.

3. Assign y to the cluster to which majority of the k nearest points belongs.

Remark

If there are more than one such cluster, take the �rst of them.

Program

// DM_knearest.sce

// K nearest neighbour

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// ------------------------------------------

function d=distXY(X,Y,p)

// Distance of vectors X and Y

if argn(2)<3, p=1; end

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nY);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j),p);

end
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end

endfunction

function tx=scfmark()

// marks for plot

tx=['.b';'.r';'.g';'.k';'.m';

'xb';'xr';'xg';'xk';'xm';

'db';'dr';'dg';'dk';'dm';

'sb';'sr';'sg';'sk';'sm';

'*b';'*r';'*g';'*k';'*m';

'pb';'pr';'pg';'pk';'pm';

'+b';'+r';'+g';'+k';'+m';

'ob';'or';'og';'ok';'om'];

endfunction

function [h,f]=vals(a)

// [h f]=vals(a) find different values of a variable

// and their frequencies

// h values and frequencies [vals;abs_freq]

// f relative frequencies

a=a(:)';

b=gsort(a,'g','i');

[v,m]=unique(b);

dm=diff(m);

n1=length(b)+1;

n=[dm n1-m($)];

f=n/sum(n);

h=[v(:)';n];

if sum(n)~=max(size(a))

disp('Error: in vals.sci')

return

end

endfunction

// ===================================================================

// SIMULATION

m=list();

m(1)=[1 1]';

m(2)=[5 2]';

m(3)=[3 8]';

sd=2.5;

al=fnorm([1 3 2]);

ny=length(m(1));

nc=length(al);

nd=130;

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=m(i)+sd*rand(ny,1,'n'); // data generation
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c(1,t)=i;

end

// ALGORITHM

k=15; // k nearest neighbour (this is k)

i=sum(rand(1,1,'u')>cumsum(al))+1;

z=m(i)+sd*rand(ny,1,'n'); // choice of a point

ic=i;

d=distXY(z,y);

[ds,j]=gsort(d,'g','i');

jk=j(1:k); // the nearest k points

ck=c(jk)

v=vals(ck);

[xxx,i]=max(v(2,:));

cz=v(1,i)

// RESULTS

tx=['.r';'.b';'.g';'.k';'.m';'.y';'*r';'*b';'*g'];

scf();

for j=1:length(m)

i=find(c==j);

plot(y(1,i),y(2,i),tx(j),'markersize',3)

end

legend('1','2','3');

plot(z(1),z(2),'ko','markersize',8)

5.2 Decision trees

Let us have discrete data records xt = [x1, x2, · · · , xn]t , t = 1, 2, · · · , N and a pointer variable
ct ∈ {1, 2, · · · ,m} which is a label of the class (cluster) to which the record xt belongs.

The principle of tree construction if following:

We construct a matrix from the data records and add the pointer variable ct as its last column.
We have matrix N × (m+ 1)

X = [xti, ct] , t = 1 : N, i = 1 : m

We chose some variable xi and according to its values we sort the remaining parts of the matrix
into groups. Then, in each group we again select a variable and do the same. We repeat this
procedure until each group contains only one value of the pointer. If some �nal group has more
than one pointer value, the decision is probabilistic.

It is clear that the subsequent choice of variables is very important for a success of the task.
However, the proper choice is a combinatorial task for which we need to use some heuristic
methods. One of them is illustrated in the following example.

Example

Let us have the following data
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t x1 x2 c
1 1 1 1
2 1 2 1
3 2 1 2
4 2 2 2

where x1, x2 are data records and c is pointer variable.

It is evident, the variable x1 decides about the classi�cation (on the basis of only the variable
x1 we can decide about classes of all records). The tree for the order of variables x1 - x2 is

If we swap the order of variables to x2 - x1 we get the tree longer and more complex

However, both the trees led to deterministic decision making (the �nal percent are 100%).

If we supply the data by one more record (the last row of the table)
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t x1 x2 c
1 1 1 1
2 1 2 1
3 2 1 2
4 2 2 2
5 2 2 1

which is in contradiction with the others, the thee will be like this

In the second layer, the decision is probabilistic..

Implementation of the task in KNIME

We take an example from web https://tanthiamhuat.�les.wordpress.com/2015/10/decision-tree-
tutorial-by-kardi-teknomo.pdf

Example

The data bring information about the ways in which people go to work.
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(5.1)

sex has a car? fare income way

M 0 L N B

M 1 L S B

Z 1 L S V

Z 0 L N B

M 1 L S B

M 0 S S V

Z 1 S S V

Z 1 D V A

M 1 D S A

Z 1 D V A

kde �sex�, �car�, �fare� and �income� data records and �way� is a value of the pointer variable.

The values of variables are:

sex: M = man, Z = woman;

car: 0 - does not have, 1 - has

fare: L - low, S = medium, V - high;

way: B - bus, V - train, A - car.

The task is to decide about the way (B, V, A) on the basis of the values in data records.

We are going to show the solution in KNIME.

1. Data can be set into table e.g. in EXCEL and exported as csv table to disk.

2. In KNIME we open a New KNIME work�ow (icon new).

3. In KNIME in the left side there is a window Node Repository (here icons of various tasks
are found).

(a) In IO we �nd Read and File reader and drag it by mouse to the working area. An
icon of the Reader appears. We click on it by left mouse button (or twice by the
right) and we obtain menu Con�guration
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Here (up) we can set the name of the data csv �le. Most of the rest is set automati-
cally.
But important !!!

• The pointer variable must be set as string. The rest of variables can stay as they
are.

• Strings are sorted by values the other by intervals.

• The change of the variable type can be done in the menu which can be obtained
by clicking at the title of the variable in the data table below. After a click a
menu window appears in which the type can be selected.

• W click once again at the icon of the task and select Execute (or press F7).

(b) Next, in the window Node Repository open the folder Analytics and Mining and
select the tool Decision Tree Learner, drag it to working area and by mouse connect
it with the Reader (by the black small triangles).
Press F7.

(c) Further, we can choose the tool Decision Tree Prediction, and possibly Decision Tree
to Ruleset. The small triangles are always connected to Reader, small blue rectangles
subsequently with the new tool (they generate the model of the task).

4. The results can be stored by the tool IO/Write/CCVWriter or directly checked by clicking
by the left mouse and opening
in Learner the menu Decision tree view
in Prediction the menu Classi�ed Data
in Ruleset the menu Rules table

The overall view on the task in KNIME is following
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Remark

If the tree ends prematurely, it is necessary to set Number of records per node = 1 in the menu
Con�gure in the tool Decision Tree Learner. It means that the decision rule can be derived from
only one data record.

5.3 Support vector machines

In this task, we are going to �nd hyperplane in the data space that separates the space into two
sub-spaces, one with y = 1 and second with y = −1. If the points are linearly separable, the
result will be without errors. In addition, we demand so that the hyperplane would separate the
points optimally. It means that the points should lay as far as possible from the hyperplane.

Theory

We will demonstrate the task in a plane (with two variables). The data sample is X =
{x1, x2, · · · , xN} where xi = [x1, x2]i is i-th data record. In this case, the hyperplane will
be a line as indicated in the picture

B+

B−

x1

x2

x1
x3

x4

x5

Here we have a sample of �ve points x1, x2, x3, x4 and x5. The separating line is drawn dashed
and it separates the points whose attributes are �circles� (up the line) and �squares� (down the
line). The attributes can be expressed numerically by 1 and -1 as values of a variable y
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x x1 x2 x3 x4 x5

y 1 -1 1 1 -1

The points with y = 1 form the set B+, those with y = −1 the set B−. So, it is

B+ = {x1, x3, x4} , and B− = {x2, x5} .

The task is to �nd a line which separates the points and maximizes the distance of points from
itself.

Let us denote the separating line as α′x + β = 0. The parallel line above it is α′x + β + δ = 0
and below it α′x+ β − δ = 0 for any δ > 0. All these equations are over-parameterized, i.e. can
be divided by some nonzero number. We will divide them by δ and get

separating line
w′x+ b = 0

lines above and below
w′x+ b± 1 = 0

For all x1 above the above line we have the condition

w′x+ b+ 1 > 0

and below the below line the condition is

w′x+ b− 1 < 0.

The second condition can be multiplied by -1

− (w′x+ b) + 1 > 1

and using the fact that yi = −1 for all xi below and yi = 1 for xi above, we have

yi (w′xi + b) + 1 > 0

this single condition for all the points xi (compare the original condition above and the modi�ed
condition below). The equality holds for parallels as borders of the above and below area.

Now, we want the above and below lines would be as far as possible one from the other. The
distance of parallel lines is measured as a distance of intersections of the lines and a vertical to
them. Such a vertical has equation

x = m+ t
w

|w|
where m is a �xed point, x is arbitrary point on the vertical and t is a parameter. |w| is the
length of w and thus w

|w| is a unit vector. In this case the distance of the points x and m is

|x−m| = t
|w|
|w|

= t,
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and it is directly equal to t. Now, we choose that x is a point on the parallel and m lies on the
separating line. Then x must ful�ll the equation for the parallel and m for the separating line.
Tu this end we multiply the previous equation by w′, add b to both sides and we obtain

| w′x+ b+ 1︸ ︷︷ ︸
=0 (parallel)

−1− w′m+ b︸ ︷︷ ︸
=0 (separ.)

| = +t
w′w

|w|

and the result is

1 = t
w′w

|w|
= t|w|

The distance is

t =
1

|w|

which is to be maximized. From it the task is

|w| → min

on condition that
yi (w′xi + b) + 1 > 0

As both w and b are to be optimized, the task is nonlinear and the solution rather complex.

Program KNIME

Create tho following program scheme

Block 1: Reading data.

Block 6: Division of data to learning and training parts.

Block 2: Estimation (learning).

Block 3: Prediction (classi�cation).

Block 15: Frequencies of classi�cation (table: from / to).

Block 16: Write results to disk.

Block in the yellow frame: Show graph of the found clusters .

Remarks

1. The results can be found after clicking on the task icon down in the menu.
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2. The data �le can be changed directly on disk. If there are new variables (not only values),
it is necessary to perform new Con�guration otherwise only to run Execute.

3. If the results are stored on disk, we have a possibility to investigate them in some other
program - probably in Excel. To this end it is necessary to:

(a) Set semicolon as data delimiter - in menu menu of the icon of CSV Writer, in the
item Con�gure / Advanced.

(b) In the menu Con�gure / Settings it is good to set Overwrite in the item If �le exists
...

Scatter plot

Table of classi�cations
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Part II

Supplements

5.4 Bayes rule

Derivation

f (A,B|C) =

{
f (A|B,C) f (B|C) z jedné strany, nebo

f (B|A,C) f (A|C) z druhé strany.

By comparison of both right hand sides we get

f (A|B,C) f (B|C) = f (B|A,C) f (A|C) .

From it

f (B|A,C) =
f (A|B,C) f (B|C)

f (A|C)
. (5.2)

which can also be written as

f (A|B,C) ∝ f (A|B,C) f (B|C)

where the constant is hidden in the proportional sign ∝ .

Application

In estimation we have

• A is the output yt,

• B are parameters Θ and

• Cold data d (t− 1) (or {ut, d (t− 1)}).

In this way, the Bayes rule reads

f (Θ|d (t)) =
f (yt|ψt,Θ) f (Θ|d (t− 1))

f (yt|d (t− 1))

Remarks

1. For model it holds f (yt|ut, d (t− 1) ,Θ) = f (yt|ψt,Θ) .

2. The natural conditions f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1)) are applied.
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5.5 Categorical distribution

The probability function of categorical distribution is

y 1 2 · · · nl
f (y) p1 p2 · · · pnl

,

where pi are probabilities, pi ≥ 0, i = 1, 2, · · · , nl a
∑nl
i=1 pi = 1.

Alternative form for the pf is
f (y) = py, y = 1, 2, · · · , nl.

Model of discrete system is
f (y|ψ,Θ) = Θy|ψ.

and it can be expressed in the form of table (for y ∈ {1, 2} and ψ = [u, v]
′
, where u, v ∈ {1, 2}

f (y|u, v)

[u, v] y = 1 y = 2
1, 1 Θ1|11 Θ2|11

1, 2 Θ1|12 Θ2|12

2, 1 Θ1|21 Θ2|21

2, 2 Θ1|22 Θ2|22

,

Θi|jk are conditional probabilities Θi|jk ≥ 0, ∀i, j, k,
∑2
i=1 Θi|jk = 1, ∀j, k.

For the purpose of estimation it is useful to express the model in so called product form

f (y|ψ,Θ) =
∏
i∈y∗

∏
ϕ∈ψ∗

Θ
δ(i|ϕ,y|ψ)
i|ϕ , (5.3)

where i is index, ϕ is multiindex (vector index), y∗, ψ∗ domains of variables and δ (i|ϕ, y|ψ) is
Dirac function, i.e. it is one for i|ϕ = y|ψ and zero otherwise.

5.6 Dirichlet distribution

A suitable distribution of model parameters in the case when model is categorical, is the Dirichlet
one.

f (Θ|d (t)) =
1

B (νt)

∏
i∈y∗

∏
ϕ∈ψ∗

Θ
νi|ϕ;t

i|ϕ , (5.4)

Here

νt is the statistics (with the same structure as the model has) ,
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B (ν) is a multivariate beta function

B (ν) =
∏
ϕ∈ψ∗

∏
i∈y∗ Γ

(
νi|ϕ

)
Γ
(∑

i∈y∗ νi|ϕ

) , (5.5)

where Γ (·) is gamma function de�ned by the formula

Γ (x) =

∫ ∞
0

tx−1 exp (−t) dt, (5.6)

for which it holds
Γ (x+ 1) = xΓ (x) , x ∈ R+. (5.7)

5.7 Normal distribution

We have normal regression model with regression vector ψt, regression coe�cients θ and noise
variance r, We denote Θ = {θ, r} . The model equation is

yt = ψ
′

tθ + et, et ∼ N (0, r) .

The conditional pdf of the model is

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r

(
yt − ψ

′

tθ
)2
}
. (5.8)

Expectation
E [yt|ψt,Θ] = ψ

′

tθ,

variance
D [yt|ψt,Θ] = r.

For the purpose of estimation it is advantageous to modify the model in the following way:

• exponent is divided as follows

yt − ψ
′

tθ = − [−1 θ′]

[
yt
ψt

]
= − [yt ψt]

[
−1
θ

]
(the sign minus is formal).

• the square in the exponent is written as row times column

(
yt − ψ

′

tθ
)2

=
(
yt − ψ

′

tθ
)(

yt − ψ
′

tθ
)

=

= [−1 θ′]

[
yt
ψt

]
[yt ψt]

[
−1
θ

]
= [−1 θ′]Dt

[
−1
θ

]
,

where Dt =

[
yt
ψt

]
[yt ψt] is so called data matrix.

Model (5.8) now has the form

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r
[−1 θ′]Dt

[
−1
θ

]}
. (5.9)
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5.8 Inverse Gauss-Wishart distribution

Its abbreviation is GiW

The distribution has the form

f (Θ|d (t)) ∝ r−0.5κt exp

{
− 1

2r
[−1 θ′]Vt

[
−1
θ

]}
, (5.10)

where κt and Vt are statistics (κt is the counter, Vt is the information matrix).

Matrix Vt is symmetric and positive de�nite and for computation of parameter point estimates
it can be decomposed to sub-matrices

Vt =

[
Vy V

′

yψ

Vyψ Vψ

]
, (5.11)

where (for yt scalar) Vy is a number, Vyψ is a column vector and Vψ is a rectangle matrix.

5.9 Point estimate with quadratic criterion

The optimal point estimates must minimize the posted criterion. Here it is quadratic one

min
Θ̂t

E

[(
Θ− Θ̂t

)2

|d (t)

]
. (5.12)

We perform the square and than apply the expectation. Then we are going to use completion
to square in Θ̂

min
Θ̂t

E
[
Θ2 − 2Θ̂tΘ + Θ̂2

t |d (t)
]

=

= min
Θ̂t

{
E
[
Θ2|d (t)

]
− 2Θ̂tE [Θ|d (t)] + Θ̂2

t

}
= ∗1∗

Θ̂t is a deterministic number

∗1∗ = min
Θ̂t

{
E
[
Θ2|d (t)

]
− E [Θ|d (t)]

2
+ E [Θ|d (t)]

2 − 2Θ̂tE [Θ|d (t)] + Θ̂2
t

}
= ∗2∗

we used the formula D [Θ] = E
[
Θ2
]
− E [Θ]

2
valid for the variance

∗2∗ = min
Θ̂t

{
D [Θ|d (t)] +

(
Θ̂t − E [Θ|d (t)]

)2
}

= D [Θ|d (t)]

the minimum is
Θ̂t = E [Θ|d (t)]

as D [Θ|d (t)] is a constant with respect to Θ̂t.
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5.10 Point estimates of regression model parameters

MAP (Maximum Aposteriori Probability) estimation for normal regression model practically
corresponds to minimization of quadratic criterion.

We look for maximum posterior pdf (which is a result of Bayesian estimation) (5.10)

f (Θ|d (t)) ∝ r−0.5κ exp

{
− 1

2r
[−1 θ′]V

[
−1
θ

]}
=

= r−0.5κ exp

{
− 1

2r
(Vy − 2θ′Vyψ + θ′Vψθ)

}
,

where we used the division of information vector V according to (5.11).

First we age going to estimate θ, i.e. to di�erentiate with respect to θ and lay the result equal
to zero. It is a derivation of vectors according to vectors.

∂f ({θ, r} |d (t) , r)

∂θ
∝ r−0.5κ exp

{
− 1

2r
[−1 θ′]V

[
−1
θ

]}(
−1

2r

)
(−2Vyψ + 2Vψθ) = 0.

From it he get
θ̂ = V −1

ψ Vyψ. (5.13)

We substitute the result into the posterior pdf and we obtain

Λ = Vy − 2θ̂′Vyψ + θ̂′Vψ θ̂ =

= Vy − 2V
′

yψV
−1
ψ Vyψ + V

′

yψV
−1
ψ VψV

−1
ψ Vyψ,

and
Λ = Vy − V

′

yψV
−1
ψ Vyψ. (5.14)

The posterior pdf with the optimal point estimate of regression coe�cient is(5.13)

f (r|d (t)) ∝ r−0.5κ exp

{
− Λ

2r

}
.

We di�erentiate it and lay equal to zero

−κ 1

2r
+ Λ

1

r2
= 0,

From it we have

r̂ =
Λ

κ
. (5.15)

θ̂ a r̂ are point estimates which we are seeking for.
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5.11 Point estimates of categorical model parameters

Here, the point estimates of parameters are given by a mere normalization of rows of or the
statistics matrix νt

Θ̂y|ψ;t =
νy|ψ;t∑
i∈y∗ νi|ψ;t

, ∀y ∈ y∗ aψ ∈ ψ∗. (5.16)

The point estimate is an expectation of parameter with posterior pdf (5.4) - for lucidity we skip
the time index t

Θ̂y|ψ = E
[
Θy|ψ|d (t)

]
=

∫ ∞
0

Θy|ψf (Θ|d (t)) dΘ =

=
1

B (ν)

∫ ∞
0

Θy|ψ
∏
i∈y∗

∏
ϕ∈ψ∗

Θ
νi|ϕ
i|ϕ dΘ = ∗1∗,

where beta function B is given in (5.5). Formally we express the model in a product form (5.3)

Θy|ψ =
∏
i∈y∗

∏
ϕ∈ψ∗

Θ
δ(i|ϕ,y|ψ)
i|ϕ

and substitute. We continue

∗1∗ =
1

B (νt)

∫ ∞
0

∏
i∈y∗

∏
ϕ∈ψ∗

Θ
νi|ϕ+δ(i|ϕ,y|ψ)

i|ϕ dΘ =

=
1∏

ϕ∈ψ∗ B (νϕ)

∏
ϕ∈ψ∗

∫ ∞
0

∏
i∈y∗

Θ
νi|ϕ+δ(i|ϕ,y|ψ)

i|ϕ dΘy|ψ = ∗2∗,

where

B (νϕ) =
∏
i∈y∗ Γ(νi|ϕ)

Γ(
∑
i∈y∗ νi|ϕ)

according to (5.5)

we use the assumption of independence between parameters from di�erent components.

For individual components it holds

∫ ∞
0

∏
i∈y∗

Θ
νi|ϕ+δ(i|ϕ,y|ψ)

i|ϕ dΘy|ψ =

{
B (νϕ) pro δ = 0,

B (νψ + 1) pro δ = 1.

The terms with δ = 0 are canceled

∗2∗ =
B (νψ + δ (i, y))

B (νψ)
=

∏
i∈y∗ Γ(νi|ψ+δ(i,y))
Γ(

∑
i∈y∗ νi|ψ+1)∏
i∈y∗ Γ(νi|ψ)

Γ(
∑
i∈y∗ νi|ψ)

= ∗3 ∗ .

and again the terms for which y 6= i are canceled, too, and we get
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∗3∗ =

Γ(νy|ψ+1)
Γ(

∑
i∈y∗ νi|ψ+1)
Γ(νy|ψ)

Γ(
∑
i∈y∗ νi|ψ)

=

νy|ψ∑
i∈y∗ νi|ψ

Γ(νy|ψ)
Γ(

∑
i∈y∗ νi|ψ)

Γ(νy|ψ)
Γ(

∑
i∈y∗ νi|ψ)

=
νy|ψ∑
i∈y∗ νi|ψ

.

In the above derivation we also have used the properties of the gamma function (5.7).

This completes the proof of (5.16).

5.12 Logistic regression in details

Derivative of likelihood for logistic regression

Derivative of logarithm for likelihood lnL with the model(??) with respect to Θ is

∂

∂Θ
lnL (Θ) =

t∑
τ=1

[
yτψτ −

exp (zτ )

1 + exp (zτ )
ψτ

]
=

t∑
τ=1

(yτ − pτ )ψτ ,

where according to (??) zτ = ψτΘ a and sodzτ/dΘ = ψτ . Further we denote

pτ =
exp (zτ )

1 + exp (zτ )
= P (yt = 1|ψτ ,Θ) .

The second derivativelnL with respect to Θ is

∂2

∂Θ2
lnL (Θ) =

∂

∂Θ

t∑
τ=1

(yτ − pτ )ψτ =

t∑
τ=1

∂

∂Θ
pτψτ =

t∑
τ=1

pτ (1− pτ )ψ
′

τψτ ,

as
∂

∂Θ
pτ =

∂

∂Θ

exp (zτ )

1 + exp (zτ )
=

exp (zτ )ψ
′

τ (1 + exp (zτ ))− exp (zτ ) exp (zτ )ψ
′

τ

(1 + exp (zτ ))
2 =

=
exp (zτ )ψ

′

τ

(1 + exp (zτ ))
2 =

(
exp (zτ )

1 + exp (zτ )

1

1 + exp (zτ )

)
ψ
′

τ = pτ (1− pτ )ψ
′

τ .

For numerical maximization it is advantageous to use Newton algorithm (both the derivatives
are analytical).

Newton algorithm

Let us denote g (x) the function to be minimized; here x = [x1, x2 · · ·xn]
′
. The gradient g′ and

Hess matrix g′′ are

g′ (x) =


∂g
∂x1
∂g
∂x2

· · ·
∂g
∂xn


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g′′ (x) =


∂2g
∂x2

1

∂2g
∂x1∂x2

· · · ∂2g
∂x1∂xn

∂2g
∂x2∂x1

∂2g
∂x2

2
· · · ∂2g

∂x2∂xn

· · · · · · · · · · · ·
∂2g

∂xn∂x1

∂2g
∂xn∂x2

· · · ∂2g
∂x2
n

 .

The algorithm starts at the point x(0) and generates further points x(1), x(2), · · · as follows:

We take Taylor expansion of g at x(i) and use its �rst three terms (quadratic function)

g (x)
.
= g

(
x(i)
)

+ g′
(
x(i)
)(

x− x(i)
)

+
1

2
g′′
(
x(i)
)(

x− x(i)
)2

.

For the next point x(i+1) we minimize this quadratic function

g′
(
x(i)
)

+ g′′
(
x(i)
)(

x(i+1) − x(i)
)

= 0

from which we have

x(i+1) = x(i) −
g′
(
x(i)
)

g′′
(
x(i)
) .

We repeat it till the estimates stabilize.
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