
Theory of marginal mixture estimation

Marginal mixture estimation deals with explanatory variables x = [x1, x2, · · ·xn] a�ecting the target (modeled) variable

y. It performs an analysis of the space of explanatory variables x to build local models describing the dependence of y

on x. To this end, we consider the full model of data in the form of joint distribution with its factorization according

to the chain rule

f (y, x) = f (x) f (y|x) .

The �rst distribution on the right hand side describes the space x which is analyzed by clustering. Based on this

analysis, the model describing the in�uence of x on y is constructed. It is represented by the second distribution

The main assumption is that the variables in x can be modeled as independent mixtures interconnected only by their

pointers.

The method has three parts

1. Mixture estimation of the model f (x) creating clusters in the space x. These clusters are covered by compo-

nents fi,j (x) where i denotes the variable xi and j denotes the j-th component. This part runs on-line.

2. Construction of local models in each variable xi and each cluster Ci,j of this variable. The local model is

based only on the data from the cluster, i.e. on the data which are classi�ed to the corresponding component.

This part can be accomplished o�-line.

3. Classi�cation of a newly coming data record xt into the classes given by the values of y. This is performed

as zero-step prediction of yt corresponding to the measured data xt. The value ŷt of the point estimate yt

determines the class into which the xt is classi�ed.



Now we show the background of individual steps in comparison with the standard way of mixture estimation.

Part 1

Clustering in the space of data x

Standard mixture estimation

Let us recall. The weights for statistics update are proportional to the component with inserted measured data xt

and the actual value of the point estimate θ̂j;t−1 of component parameter θj .

w ∝ qj = f
(
xt|θ̂j;t−1

)
(1)

The update of statistics (e.g. for S = sum (y) and κ = count (y)) is

Sj;t = Sj;t−1 + wjyt (2)

κj;t = κj;t−1 + wj

From the updated statistics we construct the updated values of parameters.



Estimation of marginal mixtures

It copies the standard way with some di�erences. And these are speci�c for both the suggested methods: common

and di�erent components.

The common feature is that (for multivariate x) we work with local components

fj (xi|θij)

where j denotes the component and i variable the xi.

The main di�erence between the introduced methods (common and di�erent) is that with common components, there

exist co called overall components composed of the local ones

fj (x|θj) =
nc∏
i=1

fj (xi|θij)

on condition of independency of variables xi. In the method with di�erent components, the overall component can be

composed from arbitrary combination of local components from individual variables.

From it follows that with common method, the number of components in each variable must be the same. The di�erent

method can have di�erent numbers of local components in each variable.

The di�erences between the methods are shown in the following table:



Common components Di�erent components

Proximities in both cases are computed from the local models, for

each variable and each its component

qij = fj

(
xi|θ̂ij;t−1

)

The overall component weight are

Wj ∝
n∏

i=1

qij

We work with the local proximities

wij ∝
qij∑
k qik

for each i normalized over j.

Update of the statistics (for S and κ)

Sij;t = Sij;t−1 +Wjyt

κij;t = κij;t−1 +Wj

Update of the statistics (for S and κ)

Sij;t = Sij;t−1 + wijyt

κij;t = κij;t−1 + wij

Graphical illustration of both methods is here



Part 2

Local explanatory models

Construction of local explanatory models fj (xi|ϑij) to be used for prediction f (y|x) via Naive Bayes methodology.

Each local component de�nes its data cluster in the respective variable. It is formed by records xi for which the

component was active (had the greatest weight) and corresponding values of the target variable y . On the data from

these clusters we estimate o�-line (as a normalized frequency table) the categorical local models.

From the variable y we determine the probability function f (y) , simply as a normalized histogram.

Part 3

Classi�cation

Here, we practically repeat the procedure from estimation (Part 1) with the only di�erence that we do not update the

component statistics and use the models estimated in Part 1. I.e. for the measured data record x = [x1, x2, · · ·xi, · · ·xn]
we determine the actual weights wij using the local models fj (xi) from Part 1 with the �xed parameters. Then, using

the constructed weights and local models from Part 2, we construct the predictive probability function f (y|xt) for
measured value xt. Again, the methods (common and di�erent) a bit di�er.



Common components Di�erent components

We measure a new value xt (which will be classi�ed into the class

given by the value of y)

The overall component weight are

Wj ∝
n∏

i=1

qij

We work with the local proximities

wij ∝
qij∑
k qik

for each i normalized over j.

Predictive pf construction

fj (y|xt) ∝
∏
i

fj (xi;t|y) f (y)

f (y|xt) =
nc∑
j=1

fj (y|xt)

i.e. �rst we construct overall

components over all variables

applying Naive Bayes and then we

combine mixture .

Predictive pf construction

f (xi;t|y) =
nc(i)∑
j=1

wijfj (xi|y)

f (y|xt) ∝
∏
i

f (xi;t|y) f (y)

i.e. �rst we construct the mixture

of components within each variable

and then we use Naive Bayes over

variables.



Program to estimation of mixtures with common components

Program and its description

Program to estimation of mixtures with di�erent components

Program and its description


