1 Lecture: Intro, models

Repetition of probability notions
Random variable

— discrete: finite number of realizations (coin, dice, level of service)

— continuous: infinite amount of realizations (car speed, intensity of traffic)

Probability function (discrete variable)

Density function (continuous variable)

P(X € (a,b)) :/ f(x)dz



Examples

- discrete categorical rv

f (33175172)

1'1\172 1 2 f (ZL‘Q)
1 0.4 0.2 0.6
2 0.3 0.1 0.4

fla) |07 03] =

- continuous rv
fx)=ae"" 2>0,a>0

*© _ _ [e—ax]oo — e @

P(X >1)= [T aedx = a |[ZLe *]] ;



Random process

Random variable with time index x;. Discrete time — random sequence.

L1, X2,T3," "

- discrete random process (with discrete time)

- continuous random process (with continuous time)

Ty




System and its variables

€4 noise

input
-

.”i

SYSTEM L e

‘."!
E—— T L output
disturbance

slate



Bayesian models

Stochastic description of the output y; in dependence on variables in regression vector ¢,. The specific

relation is given by the parameter ©. It is in the form of conditional distribution

f(yt|wt7@)

Discrete categorical model

f (yt|¢ta @) = ®yt"¢’t

Example for ¢, = [u, y;_1], all binary

Ut 1 1 2 2 Ut 1 1 2 2
Yi—1 1 2 1 2 . Yi—1 1 2 1 2
Yy =1 @1|11 61|12 @1\21 @1|22 yy=1102 09 05 1
Yy = 2 92|11 @2|12 @2\21 @2|22 y=2108 01 05 0

For [us, y+—1] = [1, 2] the prob. of y, = 1is 0.9 and y, = 2 is 0.1.



Continuous regression model

Y = bouy + a1yi—1 + by + -+ ApYe—n + Opup—p +k+ep =
=0 + ¢
where noise e ~ N (0,r), y; is output, u, is input and

7

¢t = [uta Yt—1,Ut—1," " s Yt—n, Ut—n, 1]

0= [bo,al,bl, e an7bn> k]/ ; 0= {97T}
n is model order.
If a; =as =---=a, =0 the model is static. Otherwise, it is dynamic.

Distribution

Fwlon©) = N (i.r) = 2o {5t~ vio}



State-space model

The state model is
Ty = Ml't,1 + Nut + Wy

Yy = Axy + Buy + vy
Transformation of 2nd order model regression model to state-space form

Yr = bouy + aryp—1 + b1up—1 + agyy—o + boup_o + k + e

The state model is

[ Yt | I ap by ax by k 17 Yt—1 | [ bo | [
Uy 0O 0 0 0 O Up_ 1 1
w1 | =1 0 0 0 O Yo | + | O | wp+
U1 0O 1 0 0 O Up_o 0

1] | 00 0 0 1 [ 1 | | 0 ] i

Yt = [17 07 07 07 O] Ty

o O o O




Programs

1. T11simCont.sce

simulation of the second order regression model

2. T13simDisc.sce
simulation of discrete model (controlled coin with memory)
f(yt(t) | ut(t),yt(t-1) ), yt,ut=1.2

3. T15simState.sce

simulation with regression model in a state-space form



2 Lecture: Estimation

Description of model parameters is given by parameter distribution
f(©ld(t))

where d; = {y;,u;} and d (t) = {do,dy,ds, - ,di}; do = d (0) prior data.

Evolution of this distribution is based on the Bayes rule.



Bayes rule

BJA,C) f (AlC)

7m0 = HEEE

o f(B|A,C) f(A[C)
where

A is what we estimate - parameter ©

B is what we monitor - new data y;, u;

C'is old data d (t — 1)
S (Old(t) o f(plve,©) f(Od(t—1))
—_—— —_—
posterior pdf prior pdf

under natural conditions of control

f(Olu, d(t—1)) = f(Old(t - 1))

Comments

1. Recursion: prior — posterior starts with the very prior f (©d(0))

2. The computations are recursive - the complexity of parameter distribution must not increase -

conjugate distribution (Gauss-Wishart, Dirichlet)



. Recursion on functions - unfeasible. For specific model (categorical, regression) the recursion

can be converted to that on statistics, which gives algebraic recursion.

. Batch estimation (for t =1,2,--- | N)

N

f(©ld(N)) o £ (81d(0) T f (welr. ©)

prior pdf Z

likelihood

. Results of estimation

(a) posterior distribution f(O|d (t))
(b) point estimates ©, = E [O]d ()] = Jo. ©F (©]d (1)) d©



Estimation of discrete model

Model (for binary f (y¢|us, yi—1)) Statistics S;
Uy 1 2 2 Uy 1 1 2 2
Ye—1 1 2 1 2 Yi—1 1 2 1 2
vy, =102 09 05 1 Y Syt Sz Sipr Sipee
=208 0.1 05 0 Yye =2 | Soyur Sopnz Sopr Soyze

Update - for measured v, us, y;—1 recompute

Syt‘ut,ytfﬁt = Syt\ut,ytA;t—l +1
which means: the combination [y, u;, y;—1] has been once more measured.
It is similar to the coin.

Program (est categ.sce)



Estimation of regression model

Model
Flod®) = = exp {5~ 010"}
= ——expy —— — X
yt t \/ﬁ p 27" yt t
_ 1 Yt —1
0.5 e _ _1, 0/ 7
xXTr XpP 2[ ][wt][yt%]lel
——— ———
D, data matrix
Statistics

‘/t7 Rt

where V} is a square positive definite matrix with the dimension of D;, information matrix and x;

is a scalar counter of data samples.

Statistics update

Vi=Viai+ Dy

Kt = Ki—1 + 1



Point estimates

0= (Vy) "V
— v
P = V;J yy
K

where V, =V (1,1), Vyy =V (2:end, 1), V;, =V (2 : end, 2 : end).

Program (est regr.sce)



Batch estimation
According to (1), the estimation can be performed in an off-line mode for the whole measured dataset
at once.

Example with
Y = bous + arye—1 +brus—1 + k + e

fort=1,2,---,N

Y=X0+F
% ur Yo ug 1
v | ¥ X = Uz Y w1
- 1
YN uy Yn-1 uy—p 1

0=(X'X)"'XY
Program (est_regrBatch.sce)

// Batch estimation of 2ne order regression model



nd=200; // number of data
r=.1; b0=1, al=.3, bl=-.6, a2=.3, b2=.1, k=1 // parameters
y=zeros(1,nd); // output
u=rand(1,nd,’n’); // input

// simulation
for t=3:nd

y(t)=bO*u(t)+al*y(t-1)+bl*xu(t-1)+a2*y(t-2)+b2*u(t-2) +k+sqrt(r)*rand(1,1,’n’);
end

// estimation

Y=y(3:$)’;
X=[u(3:$)’ y(2:8-1)> u(2:$-1)’ y(1:$-2)’ u(1:$-2)’ ones(nd-2,1)];

th=inv (X’ *X) %X’ *Y; // point estimates
bOE=th(1), alE=th(2), blE=th(3), a2E=th(4), b2E=th(5), kE=th(6)



Prior information

Example (coin)

r=1,1,21,22,--

1. S =10,0]
r 1 2 1 2 2
s L 0 2,1 B 32 3.3
6 [Lo] (Lol [33] (34 53 [543
2. S = [10,10]
r 1 1 2 1 2 2
S [11,10] [12,10] [12,11] [13,11] [13,12] [13,13]

>

)
Lol [mnl sl Beal el el

Comparison of estimation without and with prior information




Program (est_init.sce) - try various setting.0



Generally to initialization

Let us have a statistics: Sy = S;_1+y, (sum) and k; = k;_1+1 (count). Let the estimate is 0, = Sy /K.

Let our prior knowledge is 6o = 6. Then we set:
ko = N, So = robo,

where N expresses the strength of the prior information.

Then: 6 = (kobo) /Ko = 6y and the prior information is obtained as if from N data records. This is

why the several first measured records cannot change it so easy.

and for static regression model

To introduce 6, we set

1 0,
1 0 0
ko =N, Vo =Ko
6|0 1 0
0 0 1

Program (est init2.sce)



Programs

1. T21estCont LS.sce
estimation of 2nd order regression model

— least squares estimation (off-line)

2. T22estCont _B.sce
estimation of 2nd order regression model

— Bayesian on-line estimation with statistic update

3. T22estCont _B2.sce
estimation of 2nd order regression model
— the model for simulation differs from that for estimation

-- Bayesian on-line estimation with statistic update

4. T22estCont_B3.sce

— like the previous one but model order ord can be set

5. T22estCont B4.sce
estimation of 2nd order regression model
Estimation with REAL DATA (intensities of traffic in Strahov tunnel)



6. T23estDisc.sce
estimation of discrete model f(y(t)|u(t),y(t-1)) with y,u from {0,1}



3 Lecture: Prediction

Estimation of the value of future output.

— predictive pdf

fekly(t—1)), k=0,1,2,---

— point prediction

Gev = Elyesly (6 — 1)] = / yersf Granly (£ — 1)) dyere
y*



Case 1 k =0 - output estimation

We are at time ¢, y,; is not measured, yet and we estimate it on the base of past data.

e model with known parameters

f (yely (t — 1)) = model

U = /* yef (yely (t — 1)) dy;

e model with unknown parameters

fuly (t—1)) = /@ f (e, ©ly(t—1))de =

~~

- [ fwle=n.0) f@We-1) @

model parameter estimate



Case 2 k > 0 - time prediction (for £ = 1)
Pty =)= [ [ 7w ly ¢~ 1) doy. =
://@f<yt+1ry<t>,@>f<ytry<t—1>,@>f<@|y<t—1>>d@dyt:

Point prediction of © : [ (Oly(t —1)) =4 (@, éH)
= flyesly (1), ét—l fludy (t—1), ét—l dyy =
/i )£ ( )

and for gy, : f <yt|y (t—1), ét—l) =6 (Ye, Ut)

=f (yt+1| [e,y (t —1)] 7ét71)

It holds



Point prediction with regression model

The 1st order regression model y; = a1y;—1 + asy;_o + bu; + e; with known parameters aq, as, b.
We are at time t and know all u;, and y(t — 1).

The prediction is expectation and unknown values are replaced by their predictions (expectations)

Y = Q1Yi—1 + QYo + buy + €

U = 1Y—1 + agyi—2 + buy
Uey1 = @Y + aolp—1 + bugq

Urvo = @Y1 + a2le + buyio



Full prediction under condition of normality

Prediction with normal model with known parameters preserves normality. If e; is normal, all

predictions are normal, too.

Y = ayi1+bu+e
Yeo1 = QY + D1 + 1 =
= a(aye1+bus +ep) +bugy + e =
= a’yi_1 + abuy + bugsy + ae; + €4
Y2 = QY1+ OUp + €40 =

3 2 2
= a'Yyi—1ta but + abutﬂ + bqu +a e + aegy1 + €149

%
E [yt+2’y (t — 1)] = agyt,l -+ CLQbUt + abutﬂ + but+2
D [yoly (t = 1)] = D[a’e; + aer1 + eryo] = (a* +a® + 1)1

Predictive pdf
f (yt+2’y (t - 1)) = Nyz+2 (E [yt+2’y (t - 1)] , D [yt+2’y (t - 1)])



Programs

1. T31preCont.sce

np-step prediction with continuous model (known parameters)

2. T32preCont__Adapt.sce

n-step prediction with continuous model (with estimation)

3. T32preCont Adapt2.sce
n-step prediction with continuous model (with estimation)

— the model for simulation differs from that for estimation

4. T32preCont_Adapt3.sce
np-step prediction with continuous model (with estimation)

— real data (intensity) from Strahov tunnel are used

5. T33preCat_Off.sce

prediction with discrete model (off-line), known parameters

6. T34preCat OffEst.sce

prediction with discrete model (off-line), unknown parameters

7. T35preCat _OnkEst.sce

prediction with discrete model (on-line)



4 Lecture: State-space model

Model

I (|1, up) model of the state

I (el e, ug) model of the output
is generated by the equations

Ty — M.Tt,1+NUt+wt
ye = Axy+ Buy + vy

where M, N, A, B are matrices, w; and v; white noises with covariance matrices r,, and 7.



Estimation

State description

floaldt=1) o flldi=1) o fwld@)

prediction filtration

Evolution

flzld(t—1)) = / f(xe|lei—1,up) f (x4—1|d (t — 1)) prediction

f (t) o f (yelwe, u) f \37/15_/|d(t —1) Bayes

S}

T |d
<~

© model

! In the above derivation Natural Conditions of Control are used !



Kalman filter

For normal model and normal prior

Notation

f(zlai—y,u) = Ny (Mziy + Nug, )
f (yt|$t7Ut) = Nyt (A%f + Buy, Tu)

and

f(@ald(t—=1)) = Ny, (fl?t—1|t—1, Rt71|t71>
f (fl’t|d(t - 1)) = N, (l’t\t, Rt|t)
flad(t)) = Nu (2o, Rys)

Substitution into the evolution equations gives Kalman filter (KI)



Kalman filter

Ty = Mxy_1p—1 + Ny state prediction

Ryt—1 =1y + MRy_yp— M’

Yp = Azyp—1 + Buy output prediction
R, =1y + ARy A

Ryt = Ryr—1 — Rip1 A'RVARy

K = Ry A'r)! Kalman gain

Top = Top—1 + K (e — yp) state correction




Nonlinear model

= g (Te_1,u) + wy

yr = h (2, up) + v

EXAMPLE

For

T
Ty = y Uty Yt
) '

the model is

Ty = exXp{—Tig—1 — Tog—1} + U + Wy
Toy = Tig—1 — 0.3uy + woy
Y = Tog T+ U

Linearization

Is done using first two terms of Taylor expansion of nonlinear functions at the point of last point

estimate. For the state equation it is Z;_; and for the output equation it is Z;.



Generally, i.e. for a general value = the expansion reads
9w u) =g (Ee-1,u) + g (B, w) (T — T41)
ho(x,ug) = h (@, ug) + 1 (T, up) (7 — )
Remarks

1. z; and x;_, are random variables. x is their general value, Z; and Z;_; are special values: z; is

the point estimate of x; and Z;_; is point estimate of x;_;.

2. Linearization can be applied only to nonlinear parts of the model. The linear parts can stay as

they are.

The derivatives ¢’ and h' are

91 9q1 ., O¢1 ohy  Oh . Omy
o1 0z OTn o1 Oz OTn
Lo e e e e o
g (fft—hut) = , h (xtaut) =
Ox1 Oxp le=d¢ 1 Ox1 Oxn |e=d

After substitution the linearization into the model, we have (for x = z;, 1 in the case of the state



equation and x = x; for output equation) we obtain the linearized model

v, = Mz, +F +uw
v, = Ax+ G+

where

M = gl ('fi‘tfla ut) ) F=g (i‘tflu Ut) - g’ (i‘tflu Ut) Ty_1,
—
M

A =h (jjt, Ut) s G=h (:ﬁt,ut) — h/ (:i"t,ut) jjt-
v
A

EXAMPLE (continuation) - - - - only first equation is nonlinear

g1 (z,uy) = exp{—x1 — zo} + 1y

92 (r,uy) = x1 — 0.3y

dg1 Oq

i (o) = [ 22, P — [ enp (s — 2}, —esp (s — )



/ dgy 0Jg
gy (o) = | 52 52| =110

W - —exp{—x; — 22}, —exp{—x1 — a2}
1 0
F = eXp {_xl N 372} + t — ]\7[$t,1

r1 — 0.3u;

The output equation is linear with A = [0, 1]

Fully linearized model is

Ty = MIt_1+F+wt
v = Az +

With

we can use subroutine Kalman

[xt,Rx,yp]=Kalman(xt,yt,ut, M ,N,F,A,B,G,Rw,Rv,Rx)



Programs

1. T46statEst KF.sce

state estimation (KKalman filter)

2. T47statEst Noise.sce

Kalman as a noise filter

3. T48statEst NL.sce

nonlinear model estimation (T48statEst_L.sce - linear version)

4. T48statEst Par.sce

unknown parameters



5 Lecture: Control

Minimum variance control - in each step ¢ minimizes F [y?].
Model (e.g. first order)
Yr = bour + aryi—1 + brug—1 + k + e

Ey?] = (bous + arye—1 + brug—1 + k)2 + 7 — min
— bous + aryi—1 + by + k=0

1

Uy = =~ (a1ys—1 + brugy + k)
0

Often unstable !



Derivation of optimal control

Model
Y = w;ﬁ + €

Criterion

J=F

> Jt|d<0)]

where J; = y? + wul.

Bellman equations

¢r = E [p; 1 + JiJu, d(t —1)]  expectation

¢y = minp; minimization
ut

fort=N,N—1, N—-2,--- 1.



Control with regression model
Regression model in state-space form (2nd order)

a:t:Mxt,l—i—Nut—i—wt

!/
where z, = [yta Uty Yt—1, Ut—1, " " Yt—nt1, ut—n+1] .

The penalty can be written as

2 2 /
y; + wuy = 2,07,

where (2 is a diagonal matrix




. /
Bellman equations, where we guess the form of ¢}, = 7, Ry 174

E x;Rt+1$t -+ x;th]ut, d (t — 1)] =F [x;Uxt]ut, d (t — 1)] =
= (Mzy_ + Nuy) UMz, + Nug) +p =
=2, MUMz,+2u, NUMz;_ +u, NUN u; + p =
c B A

= w Auy + 2u,AA ' Ba,_y + 1, S, ASyx, 1+
St
+a, Cayq — x;,ls;AStxt,lj +p=

TV
re—1Rizi—1

= (u + Spxi-1) A (ug + Sywe1) + x;_1Rt$t—1 +p

Optimal u; = Syx;_1.



Recursion

Optimization

RN+1 =0

fort=N, N—-1,---

U=Ri1+0Q
A=NUN
B=NUM
C=MUM
S, =A"'B
R, = C - S,Q8;
end
Application

fort=12--- N

u = —Siri1
Yy - -+ funct(uy)

end



Extended criterion
The penalty function can be very easily extended to the following form
(e — 50)° + wu + X (uy — w_q)?

where the first term leads to the following the output y, the prescribed set-point s, and the last term
introduces penalization of increments of the control variable. Penalizing the control increments
calms control behavior and at the same time it does not result to steady-state deviation of the output

and the set-point as it is when penalizing the whole control variable.

w+ A —A

—5 s?

with xy = [ys, g, Ye1, Ug_1, -+ , 1] the expression x;Qm gives the extended criterion.



Control with categorical model

Model

f (ytlutvyt—l) = G)yt\ut,yt—l

J = Jydﬂmytfl
model (©) penalty (J)
Uy 1 1 2 2 Uy 11 2 2
vl |12 1 2 vy |12 1 2
w=1]07 02 09 04 y=1]0 1 1 2
w=2103 08 01 06 w=2112 2 3

where each state is penalized individually. (Above - we do not want big values)

Direct use Bellman equations. Only manipulation is a bit awkward.



Programs

1. T50ctrlMinVar.sce

minimum variance control

2. T52ctrlDisc.sce

control with categorical model

3. ThH3ctrlX.sce

control with regression model

4. Th4ctrlXEst.sce

adaptive control with regression model



6 Lecture: Model based classification 1

Clustering: detecting groups (classes) of similar objects creating clusters.
Classification: assigning a new object to one of the existing classes.

Example

new point

Cluster 1

Two normal clusters with expectations [1,2] and [6, 4].

Red cross is a new measurement. It evidently belongs to Cluster 1.



Generating multimodal data

e components = models of individual clusters f; (z:|0;), 7 =1,2,--- ,v

e pointer — discrete random process ¢; whose values point at the active component

Each cluster has its own model - component.

Example

// Simulation of a mixture with regression components
S —

clc, clear, close, mode(0)

nd=500; // number of steps

th=[1 5 8]; // component expectations

sd=[1 1 1]1*.5; // component standard deviations
al=[.3 .4 .3]; // switching probabilities

for t=1:nd

c(t)=sum( cumsum(al)<rand(1,1,’u’) )+1;
x(t)=th(c(t))+sd(c(t))*rand(1,1,’n’);

end



// results

scfO;

subplot(211)

plot(x,ones(x),’x’, ’markersize’,10)
title(’Generated values’,’fontsize’,5)
subplot (212)

histplot(20,x);

title(’Histogram of generated values’,’fontsize’,5)



with the result

Generated values

18 H
X EG X X K X N X
0.5
0 T T T T T T T T T T
-1 [u] 1 2 3 4 g [} 7 = a 10
Histogram of generated values
0.3 —
0.25 4
0.2 o
0.15 4
0.1+
0.05 4
0 T T T T T T 1
[} 7 a8 a 10

-1

T
[u]

T T T
1 2 3 4 5



Classification 1 - known components

Given components f (z|c =1i),i = 1,2, - v, switching probabilities f (¢),i = 1,2, -- v and one data

record x = £, estimate the most probable value of c.
flelz=¢&) oc fz=¢le) f(o)

Example (for v = 3)

Components
f(z]le=1) =N, (1,0.5)

f (z|le =2) = N, (5,0.5)
f(z|le=3) =N, (8,0.5)

Model of switching

cl1 2 3
a\o.s 04 0.3

fle) = ac

Measurement
r=¢6=21



Classification — weights

w X fle=1¢) x f(x=21lc=1)f(c=1) =N, (1,0.5) |p—01; = 0.168 - 0.3 = 0.05
wy o< 0.00013 - 0.4 = 0.00005

ws x4-1071%.03=0

— normalization
w = [0.999, 0.001, 0]

- and we classify to the first class.



Classification 2 - known pointer for learning

— Learning with a teacher

Component and pointer models are unknown, values of the pointer are known for learning. — At

each step of estimation we update only the component indicated by the pointer.
In practice:
Learning

We divide the data sample z1, 2o, -2y into groups C,. with respect to the pointer values ¢ =

c1,Ca, -+ - cy and learn the parameters for all components individually.

Testing

Runs as in the previous case.



Classification 3 - EM-like algorithm

The ezxpectation-mazimization (EM) algorithm is an approach for performing mazimum likelihood

estimation in the presence of unknown (pointer) variables.

It starts with prior component parameters. Then it repeats the following two steps:

1. determine the values for the pointer variables,

2. estimate the component parameters,

until steady state is reached.
Using the introduced theory, the procedure is like this:
1. Take a dataset X = [z, 29, -, xx] for estimation
2. Set initial components f (z|c) and their stationary probabilities e, ¢ = 1,2, n,

3. Determine weights w = f (¢|X) o a.f (2¢|0.) and pointer estimate

Fort=1: N

wy = f(c=1|X) o< ayf (z4]01)



wy = f(c=2|X) < ayf (r:]0)

wn, = f (= ne|X) oc an, f (2:]0n.)

¢y = arg max (wy, Wa, * + -, Wy,)
4. Recompute component parameters 6 and switching probabilities «
For 5 =1:n.do

(a) select subset of dataset whose records correspond to pointer value j

(b) use this subset for estimation of parameters of the j-th component f; (z|6;)

for normal components - average and variance

(c) switching probabilities a are relative frequencies of the pointer values

5. If the pointer changes go to 3

Remark: Tt uses learning with a teacher.



Classification 4 - mixture estimation

Neither model parameters nor pointer values are known. Classification is to be performed with

on-line measured data. The procedure is as follows:
1. For each data record x; determine the weights with respect to currently estimated components
w; = f(cr = jlay).

2. Data record is added to the statistics with its weight S;,; = S;.i—1 + wj, K = Kj—1 + w; and
point estimates 0, are computed in a standard way for each component (pointer model can be

skipped).

Algorithm
Initial setting: Set initial parameters of components (6, r) and corresponding statistics .S, &.
fort=1:nd

1. measure data record x;

2. determine weights w

for j=1:n,

(a) q; = [ (z:]6;) - proximity



(b) w; = R (gje;) - where R means normalization to sum equal to 1

end

3. recompute statistics and parameters (e.g. for static normal components)

for j=1:n,

a

(
(b
(

K%

oS

jit—1 T W;Ty

5

Kjt = Kjii—1 + W;j

k}

(c
d

(e

end

Vit = Vjst—1 = W5
S

Q

J

j = ()

e

)
)
)
) 0
)

end

Remarks

1. The derivation can be found in the textbook.
2. For component parameters, the point estimates have been used.

3. There are two main points used



pointer estimation for new data record - the basis is f (c|x)

update of statistics with the weight

- standard update: S =S +x

- for two identical x and x it is: S = S + 2z (weight)

- similarly for x valid with probability w it is: S = S + wzx (again weight)
and similarly for other statistics.



Programs

1. T61lclassKn.sce

classification with known models of components

2. T62classUnKn.sce

classification with unknown models of components

3. T6BEM _C.sce

iterative estimation of pointer and components (like EM algorithm)

4. T64MixReg.sce

Bayesian mixture estimation



7 Lecture: Model based classification 11

Naive Bayes

Estimation of multivariate model can be considerable simplified by the assumption of conditional

independence of explanatory variables.

Conditional independence

Principle of naive Bayes

!l USES ONLY MODELS OF SINGLE VARIABLE !!



KNIME: Task00 NaiveBayes

Naive Bayes

Naive Bayes learner and predictor to classify shuttle data.

CSV Writer
(deprecated)
.. I Naive Bayes Learner
I - PIA) -\
|Store data for B >
' learning ®
File Reader Partitioning | Learn the naive ' Predictor Scorer (deprecated)
bayes model \
[ S — e
[=] o \ o [=]
Readdata  Split data Use naive Bayes Score of
to trainingand model to predict classes  classification
testing set '
| HiLite Table CSV Writer
. (local) (deprecated)
[=] [=]

View classification Store data for
results testing

CSV Writer
(deprecated)

Write score
on disk

HiLite Table
(local)

-

Show score
in table



Logistic regression

Used for discrete target and continuous explanatory variables.

Starts with Bernoulli model

fledp) =p* (L=p)"", ¢ =0,1
p=P(c=1).
Expectation E [¢;] = p is extended by regression V'axy = by + byz14 + -+, byt T,

To ensure borders of p € (0,1) we model logit (p) = In t5
logit (p) = V'xy
from which the model is

exp {¢,x,b} m for ¢, =0

R R

f (Ct’xtab)



Usage

2z =bxy € (—00,00)

for estimated b and measured z; compute z;

exp (z;)

PR g ()

for p>0.5set ¢; =1 else ¢; =0

Estimation by ML

Ly (b) = tl:Il % — InLy (b) = ; [cixyb — In (1 4 exp {z;b})]

and maximize numerically.



KNIME: Task01 Logistic Regression

Logistic Regression
Example to building a basic prediction / classification
model using logistic regression.
Logistic
Regression Learner
| =
» >
3
| o
Train model with
SAG and Gauss
[ prior Logistic Regression
File Reader Normalizer (PMML) Partitioning Predictor
- > —
B> viL 8l =
o o o o
Read data z-normalize the data with Partitionong of dataset Use the model to
zero mean and standard ~ 80% for training set make predictions

deviation equal to one 20% for testing set

CSV Writer
(deprecated)

[=]
Write data on disk

Scorer (deprecated)

»
v[}'
[ ]

Calculate
accuracy and
confusion matrix



Poisson regression

Starts with Poisson model

A%
f (Ct|)\) = eXp {_A} F’ Ct = Oa 17 27 e
t.
A > 0 is intensity of occurring events.

To ensure nonnegativity of A, we extend In (\) = bz = by + byx1. + - - - byt

— A =-exp (V'xy)

Model in logarithm
In (f (ct]b, ) = —exp {ab} + b — In (c4!)

Estimation by LN
Log-likelihood is
N
InLy (b) = > [~ exp{zb} + coud — In (c,))]
t=1

and it is maximized numerically.



8 Lecture: Clustering

We have multimodal data x and want to capture density clusters.

K-means clustering

0. Set n initial cluster centers (n fixed)

1. To each data point x; assign the nearest center.

The assigned points to a center form the cluster.
2. For each cluster compute its centroid (point average)
3. Shift the centers to the centroids

4. Repeat from 1 if changes occur



Example




KNIME: Task02 k-Means Clustering

k-Means clustering
Clustering of the iris dataset
Visualization of learning data clusters
Color Manager  Shape Manager
e 3
Table Reader k-Means prd ® o
., P assign colors assign shape
H' peg = == to classes to clusters
a a 1
Load data |\ Perform clustering
. Table View | Scorer
I L] L ]
‘ View data Accuracy
Histogram (local)
L

Histogram of input

Scatter Plot
{local)

create scatter
plot

Histogram (local)

i

L]
Histogram of output



K-medoids clustering

Similar to k-meauns.

0. Determine md as the desired number of clusters. Randomly select md data points as initial

centers of medoids.
0. To each medoid find the points that are closest to it. They will be initial clusters.
0. Determine overall distance of points from their medians.
1. Randomly select one medoid and one non-medoid (data point that is not a medoid).
2. Swap them and again determine overall distance of points from their medians.

3. If the distance is smaller, continue by 1. If not, algorithm ends.



KNIME: Task03 k-Medoids Clustering

k-Medoids Clustering

Clustering of the iris dataset

Visualization
Table Reader Scatter Plot
n Numeric Distances i k-Medoids Color Manager  Shape Manager (local)
> — >
» & - L L
o a —O * > o L
Load data ] ] L ] L] L]
Create distance Search for clusters assign colors assign shape create scatter

measure to classes to clusters plot



Fuzzy clustering (c-means)

In the c-means algorithm we minimize criterion

c
— m 2
J*E uinwz—CjH,mzl
i=1 j=1
where u;; is a degree of membership of the point z; to cluster ¢; and || - || is a norm.

The update of weights u;; is performed as follows

- determine the centers (weighted average - follows from the criterion)

N m
o Dot Uiy i

j = N
Do Uz}

o

- weights (are given as membership functions)

1

Usj p)

ZC lzi—ejll | ™1
k=1 \ [lzi—ck||




Algorithm
0. Set the initial matrix of membership U.
1. Compute the centers c; with existing matrix U.
2. Update the matrix U.

3. If ||Unovs — Ustara|| < €, END otherwise go to 1.



KNIME: Task04 c-Means Clustering

c-Means Clustering

Fuzzy clustering of the iris dataset

Visualization

Scatter Plot
Color Manager Shape Manager (local)

L A
P [] [ ]
File Reader Fuzzy c-Means _— e o] o]
> assign colors assign shape create scatter
F" %D 5 T~ o classes to clusters plot
[ ] ™ T

ﬂ';ema‘::;':ﬁe Exlmiakion Interactive CSV Writer
: Table (local) (deprecated)
[ ] [ ]

View resuls in table Write results to disk



Density based clustering (dbscan)

We have a set of data X = {xy,29,-+ ,xx}, where z; € R™

We define:

e Distance of two points = and y and denote it by d (z,vy) .

e-neighborhood of point x
Oc(z)={r e X : d(z,y) <e€}.

e Inner point is such one that has in its neighborhood at least given number of points.

A point y is accessible from the point z, if a sequence of inner points from x to y exists.

e A connection between points x a y exists, it both these points are accessible from some inner

point.



Algorithm of clustering

1. For each point from X find its e-neighborhood.
2. Define variables “clus” and “buff” (for storing points).
3. To “clus” put a single inner point and to “buff” its neighborhood.

4. Select one point (e.g. the first one) from “buff”. Add it to “cluss” and its neighborhood add to
“buft”.

5. From “buff” remove all points that have already been used (those that are in some cluster).
6. Repeat from 4. until “buft” is not empty. Otherwise continue.
7. Remember the created cluster “clus” and prepare the variable for new one.

8. If there exists another free inner point, put it to “clus” and go to 4. If not, stop the algorithm.

Clusters are formed by points that are connected.



KNIME: Task05 Density Clustering

DBSCAN
Density based clustering of data
File Reader
o "
Read data
Numeric Distances
e &
o

Define distance

Algoritm of
clustering

check Summary Table

Visualization

Color Manager Shape Manager

Node 5 Node 7

Scorer

HEE

- either targ (to see the input data)

- or Class (to see the result of clustering)

We have 2 variables x and y and farg- pointing at classes
DBSCAN creates Class - estimate oftarg.
The result can be seen in DBSCAN/Summary Table

Visualization: show x and y and for color (shape) choose

The variable in Select one column defines the color (shape)

Accuracy

Scatter Plot
(local)

Node 4



Hierarchical clustering (agglomerative)

1. All data points are denoted as clusters on the level 1 (with only one point).

2. Find two nearest clusters and join them together in a new point. Its level is equal to the number

of points in joined in this new point.

3. The coordinates of the cluster lie on a connecting line of the coordinates of clusters to be joined

in the proportion of their levels (the higher level the nearer).
4. Remember the clusters from which the new one has been created (hierarchy).

5. Repeat from 2 until only one cluster remains.

For more information and the divisive version of the algorithm see the textbook.



Example
The data are x = [1.4, 1.8, 2.5, 4.2, 4.7, 6.5].

Construct dendrogram.

Two clusters




KNIME: Task06 Hierarchical Clustering

Hierarchical clustering
Construction of decision tree and using it for clustering.

Hierarchical Cluster
Assigner (local)

- o

| Assignment of dusters"l

‘Hierarchical Clustering |

File Reader )
E _— (DistMatrix)
| "_. - —— — .
o ' ' 0 M
Read data y o
wm Distances | Clustering Hierarchical
Cluster View
S ! =
o T —'
Distence o
Show clusters

definition

Visualization

Color Manager Shape Manager

o
|

assign colors
to classes

CSV Writer
(deprecated)

Write data and
clusters to disk

Scatter Plot
(local)
>
8]
[ ] [=]
assign shape create scatter
to clusters plot

Produces numerical pointer



9 Lecture: Classification

K-nearest neighbour

We have data X = {xZ}N , with detected clusters. The task is: assign a newly measured point y to

1=

some cluster.

Algorithm
1. Compute the distance of the point y from all points from z; € X.
2. Determine k points x;, ¢ = 1,2,--- , k nearest to y.

3. Assign y to the cluster to which majority of the k nearest points belongs.



KNIME: Task07 k-NearNeighb

K nearest neighbour
Application of the k nearest neighour priciple for classification.

File Reader

Read data
from .csvfile

Partitioning K Nearest Neighbor

L
» Py

My —— »

[=] [=]
Divide to learn Classification
and test parts

CSV Writer

Use of new
CSV Writer
[=]

Write the
results to .csvfile

Visualization of resulting clusters

Color Manager Shape Manager

[ ] [=]
assign colors assign shape
to classes to clusters

Scatter Plot
(local)

create scatter
plot



Decision trees

We have discrete data records x; = [x1,%2,-- ,2y,),, t = 1,2,--- N and a pointer variable ¢, €
{1,2,---,m} which assigns the data records x; to one of m classes.
Example

Let us have the following data

t|xg x| cC
111 11
211 211
312 112
412 212

where x1, x5 are data records and c is pointer variable.

We chose the root cluster as x; with values {1,2}. Then,

o if x; =1 then zy € {1,2}

—ifxy;=1and 29 =1thenc=1



—ifx;=1and 29 =2 thenc=1

o if 71 =2 then z, € {1,2}

— if 2y =2 and 23 = 1 then ¢ = 2

—ifxy =2and z9 =2 then ¢ = 2

€1
1 2
ce{l,2} ce{l,2}
T2 T2
1 2 1 2
c=1 c=1 c=2 c=2

Now, we measure z; = [1,2]. Using the tree, we classify it to ¢, = 1

Problem: What order of the variables in the tree is the best one.



KNIME: Task08 Decision Tree

Decision Tree

Prediction (classification) using a decision tree.
Dataset describes wine chemical features.
Output class is wine color: red / white

Decision Tree View
Decision _l Interactive
Tree Leamner Table (local)
va.— B
® | [ ]
| Learning of the View confusion matrix
decision tree | . |
-e Scorer | nteractive
Table Reader Partitioni . Predictor f
- : \ .ﬂr Table (local)
B8l B = .m
1 =
o o ol )
T ] Scoring results
Read the data set 80% for training Computatition of Vi tatist
20 % for testing predictions 1OV JCCNTcHSERERCS
| Table View CSV Writer
B =
[ ] L ]
Write results to disk

Show data for learning



Support vector machines

We have a sequence of data points x;, ¢ = 1,2,--- ,n. Some of them have the attribute + and the
rest —. We are to separate them so that the distance of the line (hyperplane) from the +points and

—points would be maximal.

Let us denote the separating line as y = ay + f = 0. Than,we look for maximal ¢ such that two
parallel lines y = ay+ 0+ = 0 and y = ay + f — § = 0 also separate the points - i.e. the points
are separated by a strip of the width 20.

The task leads to numerical optimization of nonlinear function.



KNIME: Task09 Support Vec Mach

Support vector machine

Separation of data by a hyperplane.

SVM Learner

> \m=m
[=]
SVM learner

File Reader Partitioning

>
(ana}
»

[=] [=]
Read data Divide data to
learning and
testing part

Scorer (deprecated)

glt e

Score of results

Visualization

- ] I _ Color Manager

L] B~ .
Computation of .m

predictions ®

assign colors
to classes

CSV Writer
(deprecated)

Write score
to disk

Shape Manager

9

assign shape
to clusters

Scatter Plot
{local)

create scatter
plot
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