
1 Lecture: Intro, models

Repetition of probability notions

Random variable

� discrete: �nite number of realizations (coin, dice, level of service)

� continuous: in�nite amount of realizations (car speed, intensity of tra�c)

Probability function (discrete variable)

f (x) = P (X = x)

Density function (continuous variable)

P (X ∈ (a, b)) =

∫ b

a

f (x) dx

Examples

- discrete categorical rv

f (x1, x2)

x1\x2 1 2 f (x2)

1 0.4 0.2 0.6

2 0.3 0.1 0.4

f (x1) 0.7 0.3 = 1

- continuous rv

f (x) = ae−ax, x ≥ 0, a > 0

P (X > 1) =
∫∞

1
ae−axdx = a

[−1
a
e−ax

]∞
1

= − [e−ax]∞1 = e−a

Random process

Random variable with time index xt. Discrete time → random sequence.

x1, x2, x3, · · ·

- discrete random process (with discrete time)

t

xt

- continuous random process (with continuous time)

t

xt

System and its variables

Bayesian models

Stochastic description of the output yt in dependence on variables in regression vector ψt. The speci�c

relation is given by the parameter Θ. It is in the form of conditional distribution

f (yt|ψt,Θ)

Discrete categorical model

f (yt|ψt,Θ) = Θyt|ψt

Example for ψt = [ut, yt−1], all binary

ut 1 1 2 2

yt−1 1 2 1 2

yt = 1 Θ1|11 Θ1|12 Θ1|21 Θ1|22

yt = 2 Θ2|11 Θ2|12 Θ2|21 Θ2|22

→

ut 1 1 2 2

yt−1 1 2 1 2

yt = 1 0.2 0.9 0.5 1

yt = 2 0.8 0.1 0.5 0

For [ut, yt−1] = [1, 2] the prob. of yt = 1 is 0.9 and yt = 2 is 0.1.

Continuous regression model

yt = b0ut + a1yt−1 + b1ut−1 + · · ·+ anyt−n + bnut−n + k + et =

= ψ
′

tθ + et

where noise e ∼ N (0, r) , yi is output, ut is input and

ψt = [ut, yt−1, ut−1, · · · , yt−n, ut−n, 1]
′

θ = [b0, a1, b1, · · · an, bn, k]
′
; Θ = {θ, r}

n is model order.

If a1 = a2 = · · · = an = 0 the model is static. Otherwise, it is dynamic.

Distribution

f (yt|ψt,Θ) = N
(
ψ
′

tθ, r
)

=
1√
2πr

exp

{
− 1

2r
(yt − ψ′tθ)

2

}

State-space model

The state model is

xt = Mxt−1 +Nut + wt.

yt = Axt +But + vt

Transformation of 2nd order model regression model to state-space form

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k + et

The state model is
yt

ut

yt−1

ut−1

1

 =


a1 b1 a2 b2 k

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1




yt−1

ut−1

yt−2

ut−2

1

+


b0

1

0

0

0

ut +


et

0

0

0

0


yt = [1, 0, 0, 0, 0]xt

Programs

1. T11simCont.sce

simulation of the second order regression model

2. T13simDisc.sce

simulation of discrete model (controlled coin with memory)

f(yt(t) | ut(t),yt(t-1)), yt,ut=1,2

3. T15simState.sce

simulation with regression model in a state-space form

2 Lecture: Estimation

Description of model parameters is given by parameter distribution

f (Θ|d (t))

where dt = {yt, ut} and d (t) = {d0, d1, d2, · · · , dt} ; d0 ≡ d (0) prior data.

Evolution of this distribution is based on the Bayes rule.

Bayes rule

f (A|B,C) =
f (B|A,C) f (A|C)

f (B|C)
∝ f (B|A,C) f (A|C)

where

A is what we estimate - parameter Θ

B is what we monitor - new data yt, ut

C is old data d (t− 1)

f (Θ|d (t))︸ ︷︷ ︸
posterior pdf

∝ f (yt|ψt,Θ) f (Θ|d (t− 1))︸ ︷︷ ︸
prior pdf

under natural conditions of control

f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1))

Comments

1. Recursion: prior → posterior starts with the very prior f (Θ|d (0))

2. The computations are recursive - the complexity of parameter distribution must not increase -

conjugate distribution (Gauss-Wishart, Dirichlet)

3. Recursion on functions - unfeasible. For speci�c model (categorical, regression) the recursion

can be converted to that on statistics, which gives algebraic recursion.

4. Batch estimation (for t = 1, 2, · · · , N)

f (Θ|d (N)) ∝ f (Θ|d (0))︸ ︷︷ ︸
prior pdf

N∏
t=1

f (yt|ψt,Θ)︸ ︷︷ ︸
likelihood

(1)

5. Results of estimation

(a) posterior distribution f (Θ|d (t))

(b) point estimates Θ̂t = E [Θ|d (t)] =
∫

Θ∗
Θf (Θ|d (t)) dΘ

Estimation of discrete model

Model (for binary f (yt|ut, yt−1)) Statistics St

ut 1 1 2 2

yt−1 1 2 1 2

yt = 1 0.2 0.9 0.5 1

yt = 2 0.8 0.1 0.5 0

ut 1 1 2 2

yt−1 1 2 1 2

yt = 1 S1|11 S1|12 S1|21 S1|22

yt = 2 S2|11 S2|12 S2|21 S2|22

Update - for measured yt, ut, yt−1 recompute

Syt|ut,yt−1;t = Syt|ut,yt−1;t−1 + 1

which means: the combination [yt, ut, yt−1] has been once more measured.

It is similar to the coin.

Program (est_categ.sce)

Estimation of regression model

Model

f (yt|ψtΘ) =
1√
2πr

exp

{
− 1

2r
(yt − ψ′tθ)

2

}
∝

∝ r−0.5 exp

−
1

2
[−1, θ′]

[
yt

ψt

]
[yt, ψt]︸ ︷︷ ︸

Dt data matrix

[
−1

θ

]
Statistics

Vt, κt

where Vt is a square positive de�nite matrix with the dimension of Dt, information matrix and κt

is a scalar counter of data samples.

Statistics update

Vt = Vt−1 +Dt

κt = κt−1 + 1

Point estimates

θ̂ = (Vψ)−1 Vyψ

r̂ =
Vy − θ̂Vyψ

κ

where Vy = V (1, 1) , Vyψ = V (2 : end, 1) , Vψ = V (2 : end, 2 : end).

Program (est_regr.sce)

Batch estimation

According to (1), the estimation can be performed in an o�-line mode for the whole measured dataset

at once.

Example with

yt = b0ut + a1yt−1 + b1ut−1 + k + et

for t = 1, 2, · · · , N

Y = Xθ + E

Y =


y1

y2

· · ·
yN

 , X =


u1 y0 u0 1

u2 y1 u1 1

· · · 1

uN yN−1 uN−1 1


θ̂ = (X ′X)

−1
X ′Y

Program (est_regrBatch.sce)

// Batch estimation of 2ne order regression model

// --

clc, clear, close, mode(0)

nd=200; // number of data

r=.1; b0=1, a1=.3, b1=-.6, a2=.3, b2=.1, k=1 // parameters

y=zeros(1,nd); // output

u=rand(1,nd,'n'); // input

// simulation

for t=3:nd

y(t)=b0*u(t)+a1*y(t-1)+b1*u(t-1)+a2*y(t-2)+b2*u(t-2)+k+sqrt(r)*rand(1,1,'n');

end

// estimation

Y=y(3:$)';

X=[u(3:$)' y(2:$-1)' u(2:$-1)' y(1:$-2)' u(1:$-2)' ones(nd-2,1)];

th=inv(X'*X)*X'*Y; // point estimates

b0E=th(1), a1E=th(2), b1E=th(3), a2E=th(4), b2E=th(5), kE=th(6)

Prior information

Example (coin)

x = 1, 1, 2, 1, 2, 2, · · ·

1. S = [0, 0]

x 1 1 2 1 2 2

S [1, 0] [2, 0] [2, 1] [3, 1] [3, 2] [3, 3]

θ [1, 0] [1, 0]
[

2
3
, 1

3

] [
3
4
, 1

4

] [
3
5
, 2

5

] [
1
2
, 1

2

]
2. S = [10, 10]

x 1 1 2 1 2 2

S [11, 10] [12, 10] [12, 11] [13, 11] [13, 12] [13, 13]

θ
[

11
21
, 10

21

] [
12
22
, 10

22

] [
12
23
, 11

23

] [
13
24
, 11

24

] [
13
25
, 12

25

] [
1
2
, 1

2

]
Comparison of estimation without and with prior information

Program (est_init.sce) - try various setting.0

Generally to initialization

Let us have a statistics: St = St−1+yt (sum) and κt = κt−1+1 (count). Let the estimate is θ̂t = St/κt.

Let our prior knowledge is θ̂0 = θ0. Then we set:

κ0 = N, S0 = κ0θ0,

where N expresses the strength of the prior information.

Then: θ̂ = (κ0θ0) /κ0 = θ0 and the prior information is obtained as if from N data records. This is

why the several �rst measured records cannot change it so easy.

and for static regression model

To introduce θ0, we set

κ0 = N, V0 = κ0

1 θ
′
0

θ0

1 0 0

0 1 0

0 0 1

Program (est_init2.sce)

Programs

1. T21estCont_LS.sce

estimation of 2nd order regression model

� least squares estimation (o�-line)

2. T22estCont_B.sce

estimation of 2nd order regression model

� Bayesian on-line estimation with statistic update

3. T22estCont_B2.sce

estimation of 2nd order regression model

� the model for simulation di�ers from that for estimation

-- Bayesian on-line estimation with statistic update

4. T22estCont_B3.sce

� like the previous one but model order ord can be set

5. T22estCont_B4.sce

estimation of 2nd order regression model

Estimation with REAL DATA (intensities of tra�c in Strahov tunnel)

6. T23estDisc.sce

estimation of discrete model f(y(t)|u(t),y(t-1)) with y,u from {0,1}

3 Lecture: Prediction

Estimation of the value of future output.

� predictive pdf

f (yt+k|y (t− 1)) , k = 0, 1, 2, · · ·

� point prediction

ŷt+k = E [yt+k|y (t− 1)] =

∫
y∗
yt+kf (yt+k|y (t− 1)) dyt+k

Case 1 k = 0 - output estimation

We are at time t, yt is not measured, yet and we estimate it on the base of past data.

• model with known parameters

f (yt|y (t− 1)) = model

ŷt =

∫
y∗
ytf (yt|y (t− 1)) dyt

• model with unknown parameters

f (yt|y (t− 1)) =

∫
Θ∗
f (yt,Θ|y (t− 1)) dΘ =

=

∫
Θ∗
f (yt|y (t− 1) ,Θ)︸ ︷︷ ︸

model

f (Θ|y (t− 1))︸ ︷︷ ︸
parameter estimate

dΘ

Case 2 k > 0 - time prediction (for k = 1)

f (yt+1|y (t− 1)) =

∫
y∗

∫
Θ∗
f (yt+1, yt,Θ|y (t− 1)) dΘdyt =

=

∫
y∗

∫
Θ∗
f (yt+1|y (t) ,Θ) f (yt|y (t− 1) ,Θ) f (Θ|y (t− 1)) dΘdyt =

Point prediction of Θ : f (Θ|y (t− 1)) = δ
(

Θ, Θ̂t−1

)
=

∫
y∗
f
(
yt+1|y (t) , Θ̂t−1

)
f
(
yt|y (t− 1) , Θ̂t−1

)
dyt =

and for yt : f
(
yt|y (t− 1) , Θ̂t−1

)
= δ (yt, ŷt)

= f
(
yt+1| [ŷt, y (t− 1)] , Θ̂t−1

)

It holds ∫
δ (x, a) f (x) dx = f (a)

Point prediction with regression model

The 1st order regression model yt = a1yt−1 + a2yt−2 + but + et with known parameters a1, a2, b.

We are at time t and know all ut, and y(t− 1) .

The prediction is expectation and unknown values are replaced by their predictions (expectations)

yt = a1yt−1 + a2yt−2 + but + et

ŷt = a1yt−1 + a2yt−2 + but

ŷt+1 = a1ŷt + a2yt−1 + but+1

ŷt+2 = a1ŷt+1 + a2ŷt + but+2

Full prediction under condition of normality

Prediction with normal model with known parameters preserves normality. If et is normal, all

predictions are normal, too.

yt = ayt−1 + but + et

yt−1 = ayt + but+1 + et+1 =

= a (ayt−1 + but + et) + but+1 + et+1 =

= a2yt−1 + abut + but+1 + aet + et+1

yt+2 = ayt+1 + but+2 + et+2 =

= a3yt−1 + a2but + abut+1 + but+2 + a2et + aet+1 + et+2

→

E [yt+2|y (t− 1)] = a3yt−1 + a2but + abut+1 + but+2

D [yt+2|y (t− 1)] = D [a2et + aet+1 + et+2] = (a4 + a2 + 1) r

Predictive pdf

f (yt+2|y (t− 1)) = Nyt+2 (E [yt+2|y (t− 1)] , D [yt+2|y (t− 1)])

Programs

1. T31preCont.sce

np-step prediction with continuous model (known parameters)

2. T32preCont_Adapt.sce

n-step prediction with continuous model (with estimation)

3. T32preCont_Adapt2.sce

n-step prediction with continuous model (with estimation)

� the model for simulation di�ers from that for estimation

4. T32preCont_Adapt3.sce

np-step prediction with continuous model (with estimation)

� real data (intensity) from Strahov tunnel are used

5. T33preCat_O�.sce

prediction with discrete model (o�-line), known parameters

6. T34preCat_O�Est.sce

prediction with discrete model (o�-line), unknown parameters

7. T35preCat_OnEst.sce

prediction with discrete model (on-line)

4 Lecture: State-space model

Model

f (xt|xt−1, ut) model of the state

f (yt|xt, ut) model of the output

is generated by the equations

xt = Mxt−1 +Nut + wt

yt = Axt +But + vt

where M, N, A, B are matrices, wt and vt white noises with covariance matrices rw and rv.

Estimation

State description

f (xt−1|d (t− 1)) →︸︷︷︸
prediction

f (xt|d (t− 1)) →︸︷︷︸
�ltration

f (xt|d (t))

Evolution

f (xt|d (t− 1)) =

∫
x∗t−1

f (xt|xt−1, ut) f (xt−1|d (t− 1)) prediction

f

 xt︸︷︷︸
Θ

|d (t)

 ∝ f (yt|xt, ut)︸ ︷︷ ︸
model

f

 xt︸︷︷︸
Θ

|d (t− 1)

 Bayes

! In the above derivation Natural Conditions of Control are used !

Kalman �lter

For normal model and normal prior

Notation

f (xt|xt−1, ut) = Nxt (Mxt−1 +Nut, rw)

f (yt|xt, ut) = Nyt (Axt +But, rv)

and

f (xt−1|d (t− 1)) = Nxt−1

(
xt−1|t−1, Rt−1|t−1

)
f (xt|d (t− 1)) = Nxt

(
xt|t, Rt|t

)
f (xt|d (t)) = Nxt

(
xt|t, Rt|t

)
Substitution into the evolution equations gives Kalman �lter (KF)

Kalman �lter

xt|t−1 = Mxt−1|t−1 +Nut state prediction

Rt|t−1 = rx +MRt−1|t−1M
′

yp = Axt|t−1 +But output prediction

Rp = ry + ARt|t−1A
′

Rt|t = Rt|t−1 −Rt|t−1A
′R−1

p ARt|t−1

K = Rt|tA
′r−1
y Kalman gain

xt|t = xt|t−1 +K (yt − yp) state correction

Nonlinear model

xt = g (xt−1, ut) + wt

yt = h (xt, ut) + vt

Example

For

xt =

[
x1

x2

]
t

, ut, yt

the model is

x1;t = exp {−x1;t−1 − x2;t−1}+ ut + wt

x2;t = x1;t−1 − 0.3ut + w2;t

yt = x2;t + vt

Linearization

Is done using �rst two terms of Taylor expansion of nonlinear functions at the point of last point

estimate. For the state equation it is x̂t−1 and for the output equation it is x̂t.

Generally, i.e. for a general value x the expansion reads

g (x, ut)
.
= g (x̂t−1, ut) + g′ (x̂t−1, ut) (x− x̂t−1)

h (x, ut)
.
= h (x̂t, ut) + h′ (x̂t, ut) (x− x̂t)

Remarks

1. xt and xt−1 are random variables. x is their general value, x̂t and x̂t−1 are special values: x̂t is

the point estimate of xt and x̂t−1 is point estimate of xt−1.

2. Linearization can be applied only to nonlinear parts of the model. The linear parts can stay as

they are.

The derivatives g′ and h′ are

g′ (x̂t−1, ut) =


∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

· · · · · · · · · · · ·
· · ·

∂gn
∂x1

· · · ∂gn
∂xn


|x=x̂t−1

, h′ (x̂t, ut) =


∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

· · · · · · · · · · · ·
· · ·

∂hm
∂x1

· · · ∂hm
∂xn


|x=x̂t

After substitution the linearization into the model, we have (for x = xt−1 in the case of the state

equation and x = xt for output equation) we obtain the linearized model

xt = M̄xt−1 + F + wt

yt = Āxt +G+ vt

where

M̄ = g′ (x̂t−1, ut) , F = g (x̂t−1, ut)− g′ (x̂t−1, ut)︸ ︷︷ ︸
M̄

x̂t−1,

Ā = h′ (x̂t, ut) , G = h (x̂t, ut)− h′ (x̂t, ut)︸ ︷︷ ︸
Ā

x̂t.

Example (continuation) - · · · only �rst equation is nonlinear

g1 (x, ut) = exp {−x1 − x2}+ ut

g2 (x, ut) = x1 − 0.3ut

g
′

1 (x, ut) =

[
∂g1

∂x1

,
∂g1

∂x2

]
= [− exp {−x1 − x2} , − exp {−x1 − x2}]

g
′

2 (x, ut) =

[
∂g2

∂x1

,
∂g2

∂x2

]
= [1, 0]

M̄ =

[
− exp {−x1 − x2} , − exp {−x1 − x2}

1 0

]

F =

[
exp {−x1 − x2}+ ut

x1 − 0.3ut

]
− M̄xt−1

The output equation is linear with Ā = [0, 1]

Fully linearized model is

xt = M̄xt−1 + F + wt

yt = Āxt + vt

With

N =

[
0

0

]
, G = 0, B = 0.

we can use subroutine Kalman

[xt,Rx,yp]=Kalman(xt,yt,ut,M̄ ,N,F,Ā,B,G,Rw,Rv,Rx)

Programs

1. T46statEst_KF.sce

state estimation (Kalman �lter)

2. T47statEst_Noise.sce

Kalman as a noise �lter

3. T48statEst_NL.sce

nonlinear model estimation (T48statEst_L.sce - linear version)

4. T48statEst_Par.sce

unknown parameters

5 Lecture: Control

Minimum variance control - in each step t minimizes E [y2] .

Model (e.g. �rst order)

yt = b0ut + a1yt−1 + b1ut−1 + k + et

E [y2
t] = (b0ut + a1yt−1 + b1ut−1 + k)2 + r → min

→ b0ut + a1yt−1 + b1ut−1 + k = 0

ut = − 1

b0

(a1yt−1 + b1ut−1 + k)

Often unstable !!!

Derivation of optimal control

Model

yt = ψ
′

tθ + et

Criterion

J = E

[
N∑
t=1

Jt|d (0)

]
where Jt = y2

t + ωu2
t .

Bellman equations

ϕt = E
[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
expectation

ϕ∗t = min
ut

ϕt minimization

for t = N, N − 1, N − 2, · · · , 1.

Control with regression model

Regression model in state-space form (2nd order)

xt = Mxt−1 +Nut + wt

where xt = [yt, ut, yt−1, ut−1, · · · yt−n+1, ut−n+1]′.

The penalty can be written as

y2
t + ωu2

t = x′tΩxt (2)

where Ω is a diagonal matrix

Ω =


1

ω

0

· · ·
0



Bellman equations, where we guess the form of ϕ∗t+1 = x
′
tRt+1xt

E
[
x
′

tRt+1xt + x
′

tΩxt|ut, d (t− 1)
]

= E
[
x
′

tUxt|ut, d (t− 1)
]

=

= (Mxt−1 +Nut)
′ U (Mxt−1 +Nut) + ρ =

= x
′

t−1M
′UM︸ ︷︷ ︸
C

xt−1 + 2u
′

tN
′UM︸ ︷︷ ︸
B

xt−1 + u
′

tN
′UN︸ ︷︷ ︸
A

ut + ρ =

= u
′

tAut + 2u
′

tAA
−1B︸ ︷︷ ︸
St

xt−1 + x
′

t−1S
′

tAStxt−1+

+x
′

t−1Cxt−1 − x
′

t−1S
′

tAStxt−1︸ ︷︷ ︸
xt−1Rtxt−1

+ρ =

= (ut + Stxt−1)′A (ut + Stxt−1) + x
′

t−1Rtxt−1 + ρ

Optimal ut = Stxt−1.

Recursion

Optimization

RN+1 = 0

for t = N, N − 1, · · · , 1

U = Rt+1 + Ω

A = N ′UN

B = N ′UM

C = M ′UM

St = A−1B

Rt = C − S ′tQSt
end

Application

for t = 1, 2, · · · , N

ut = −Stxt−1

yt · · · funct(ut)
end

Extended criterion

The penalty function can be very easily extended to the following form

(yt − st)2 + ωu2
t + λ (ut − ut−1)2

where the �rst term leads to the following the output yt the prescribed set-point st and the last term

introduces penalization of increments of the control variable. Penalizing the control increments

calms control behavior and at the same time it does not result to steady-state deviation of the output

and the set-point as it is when penalizing the whole control variable.

Ω =



1 −st
ω + λ −λ

0

−λ λ

· · ·
0

−st s2
t


with xt = [yt, ut, yt−1, ut−1, · · · , 1] the expression x

′
tΩxt gives the extended criterion.

Control with categorical model

Model

f (yt|ut, yt−1) = Θyt|ut,yt−1

J = Jyt|ut,yt−1

model (Θ) penalty (J)

ut 1 1 2 2

yt−1 1 2 1 2

yt = 1 0.7 0.2 0.9 0.4

yt = 2 0.3 0.8 0.1 0.6

ut 1 1 2 2

yt−1 1 2 1 2

yt = 1 0 1 1 2

yt = 2 1 2 2 3

where each state is penalized individually. (Above - we do not want big values)

Direct use Bellman equations. Only manipulation is a bit awkward.

Programs

1. T50ctrlMinVar.sce

minimum variance control

2. T52ctrlDisc.sce

control with categorical model

3. T53ctrlX.sce

control with regression model

4. T54ctrlXEst.sce

adaptive control with regression model

6 Lecture: Model based classi�cation I

Clustering: detecting groups (classes) of similar objects creating clusters.

Classi�cation: assigning a new object to one of the existing classes.

Example

Two normal clusters with expectations [1, 2] and [6, 4].

Red cross is a new measurement. It evidently belongs to Cluster 1.

Generating multimodal data

• components = models of individual clusters fj (xt|θj) , j = 1, 2, · · · , ν

• pointer = discrete random process ct whose values point at the active component

Each cluster has its own model - component.

Example

// Simulation of a mixture with regression components

// --

clc, clear, close, mode(0)

nd=500; // number of steps

th=[1 5 8]; // component expectations

sd=[1 1 1]*.5; // component standard deviations

al=[.3 .4 .3]; // switching probabilities

for t=1:nd

c(t)=sum(cumsum(al)<rand(1,1,'u'))+1;

x(t)=th(c(t))+sd(c(t))*rand(1,1,'n');

end

// results

scf();

subplot(211)

plot(x,ones(x),'x','markersize',10)

title('Generated values','fontsize',5)

subplot(212)

histplot(20,x);

title('Histogram of generated values','fontsize',5)

with the result

Classi�cation 1 - known components

Given components f (x|c = i) , i = 1, 2, · · · ν, switching probabilities f (c) , i = 1, 2, · · · ν and one data

record x = ξ, estimate the most probable value of c.

f (c|x = ξ) ∝ f (x = ξ|c) f (c)

Example (for ν = 3)

Components

f (x|c = 1) = Nx (1, 0.5)

f (x|c = 2) = Nx (5, 0.5)

f (x|c = 3) = Nx (8, 0.5)

Model of switching

f (c) = αc
c 1 2 3

α 0.3 0.4 0.3

Measurement

x = ξ = 2.1

Classi�cation � weights

w1 ∝ f (c = 1|ξ) ∝ f (x = 2.1|c = 1) f (c = 1) = Nx (1, 0.5) |x=2.1α1 = 0.168 · 0.3 = 0.05

w2 ∝ 0.00013 · 0.4 = 0.00005

w3 ∝ 4 · 10−16 · 0.3 .
= 0

� normalization

w = [0.999, 0.001, 0]

· · · and we classify to the �rst class.

Classi�cation 2 - known pointer for learning

= Learning with a teacher

Component and pointer models are unknown, values of the pointer are known for learning. → At

each step of estimation we update only the component indicated by the pointer.

In practice:

Learning

We divide the data sample x1, x2, · · ·xN into groups Cc with respect to the pointer values c =

c1, c2, · · · cN and learn the parameters for all components individually.

Testing

Runs as in the previous case.

Classi�cation 3 - EM-like algorithm

The expectation-maximization (EM) algorithm is an approach for performing maximum likelihood

estimation in the presence of unknown (pointer) variables.

It starts with prior component parameters. Then it repeats the following two steps:

1. determine the values for the pointer variables,

2. estimate the component parameters,

until steady state is reached.

Using the introduced theory, the procedure is like this:

1. Take a dataset X = [x1, x2, · · · , xN] for estimation

2. Set initial components f (x|c) and their stationary probabilities αc, c = 1, 2, · · · , nc

3. Determine weights w = f (c|X) ∝ αcf (xt|θc) and pointer estimate

For t = 1 : N

w1 = f (c = 1|X) ∝ α1f (xt|θ1)

w2 = f (c = 2|X) ∝ α2f (xt|θ2)

· · ·

wnc = f (c = nc|X) ∝ αncf (xt|θnc)

ct = arg max (w1, w2, · · · , wnc)

4. Recompute component parameters θ and switching probabilities α

For j = 1 : nc do

(a) select subset of dataset whose records correspond to pointer value j

(b) use this subset for estimation of parameters of the j-th component fj (x|θj)
for normal components - average and variance

(c) switching probabilities α are relative frequencies of the pointer values

5. If the pointer changes go to 3

Remark: It uses learning with a teacher.

Classi�cation 4 - mixture estimation

Neither model parameters nor pointer values are known. Classi�cation is to be performed with

on-line measured data. The procedure is as follows:

1. For each data record xt determine the weights with respect to currently estimated components

wj = f (ct = j|xt) .

2. Data record is added to the statistics with its weight Sj;t = Sj;t−1 + wj, κj;t = κj;t−1 + wj and

point estimates θ̂t are computed in a standard way for each component (pointer model can be

skipped).

Algorithm

Initial setting: Set initial parameters of components (θ, r) and corresponding statistics S, κ.

for t = 1 : nd

1. measure data record xt

2. determine weights w

for j = 1 : nc

(a) qj = f (xt|θj) - proximity

(b) wj = ℵ (qjαj) - where ℵ means normalization to sum equal to 1

end

3. recompute statistics and parameters (e.g. for static normal components)

for j = 1 : nc

(a) Sj;t = Sj;t−1 + wjxt

(b) κj;t = κj;t−1 + wj

(c) γj;t = γj;t−1 = wj

(d) θj =
Sj;t

κj;t

(e) αj = ℵ (γ)

end

end

Remarks

1. The derivation can be found in the textbook.

2. For component parameters, the point estimates have been used.

3. There are two main points used

(a) pointer estimation for new data record - the basis is f (c|x)

(b) update of statistics with the weight

- standard update: S = S + x

- for two identical x and x it is: S = S + 2x (weight)

- similarly for x valid with probability w it is: S = S + wx (again weight)

and similarly for other statistics.

Programs

1. T61classKn.sce

classi�cation with known models of components

2. T62classUnKn.sce

classi�cation with unknown models of components

3. T63EM_C.sce

iterative estimation of pointer and components (like EM algorithm)

4. T64MixReg.sce

Bayesian mixture estimation

7 Lecture: Model based classi�cation II

Naive Bayes

Estimation of multivariate model can be considerable simpli�ed by the assumption of conditional

independence of explanatory variables.

Conditional independence

f (x1, x2, · · · , xn|c) =
n∏
i=1

f (xi|c)

Principle of naive Bayes

f (c|x) ∝ f (x|c) f (c) = f (x1, x2, · · · , xn|c) f (c)

= f (c)
nx∏
j=1

f (xi|c)

!! uses only models of single variable !!

KNIME: Task00_NaiveBayes

Logistic regression

Used for discrete target and continuous explanatory variables.

Starts with Bernoulli model

f (ct|p) = pct (1− p)1−ct , ct = 0, 1

p = P (ct = 1).

Expectation E [ct] = p is extended by regression b′xt = b0 + b1x1;t + · · · , bm;txm

To ensure borders of p ∈ (0, 1) we model logit (p) = ln p
1−p

logit (p) = b′xt

from which the model is

f (ct|xt, b) =
exp {ctxtb}

1 + exp {xtb}
=

 1
1+exp{xtb} for ct = 0

exp{xtb}
1+exp{xtb} for ct = 1

Usage

zt = b′xt ∈ (−∞,∞)

for estimated b and measured xt compute zt

p = P (ct = 1) =
exp (zt)

1 + exp (zt)

for p>0.5 set ct = 1 else ct = 0

Estimation by ML

LN (b) =
N∏
t=1

exp {ctxtb}
1 + exp {xtb}

→ lnLN (b) =
N∑
t=1

[ctxtb− ln (1 + exp {xtb})]

and maximize numerically.

KNIME: Task01_Logistic_Regression

Poisson regression

Starts with Poisson model

f (ct|λ) = exp {−λ} λ
ct

ct!
, ct = 0, 1, 2, · · ·

λ ≥ 0 is intensity of occurring events.

To ensure nonnegativity of λ, we extend ln (λ) = b′xt = b0 + b1x1;t + · · · bmxm;t

→ λ = exp (b′xt)

Model in logarithm

ln (f (ct|b, xt)) = − exp {xtb}+ ctxtb− ln (ct!)

Estimation by LN

Log-likelihood is

lnLN (b) =
N∑
t=1

[− exp {xtb}+ ctxtb− ln (ct!)]

and it is maximized numerically.

8 Lecture: Clustering

We have multimodal data x and want to capture density clusters.

K-means clustering

0. Set n initial cluster centers (n �xed)

1. To each data point xi assign the nearest center.

The assigned points to a center form the cluster.

2. For each cluster compute its centroid (point average)

3. Shift the centers to the centroids

4. Repeat from 1 if changes occur

Example

1

1

2

1

2

1 1

2

2

1

2

1

2

2

1

2

1 1

2

2

1

2

KNIME: Task02_k-Means_Clustering

K-medoids clustering

Similar to k-means.

0. Determine md as the desired number of clusters. Randomly select md data points as initial

centers of medoids.

0. To each medoid �nd the points that are closest to it. They will be initial clusters.

0. Determine overall distance of points from their medians.

1. Randomly select one medoid and one non-medoid (data point that is not a medoid).

2. Swap them and again determine overall distance of points from their medians.

3. If the distance is smaller, continue by 1. If not, algorithm ends.

KNIME: Task03_k-Medoids_Clustering

Fuzzy clustering (c-means)

In the c-means algorithm we minimize criterion

J =
N∑
i=1

C∑
j=1

umij‖xi − cj‖2, m ≥ 1

where uij is a degree of membership of the point xi to cluster cj and ‖ · ‖ is a norm.

The update of weights uij is performed as follows

- determine the centers (weighted average - follows from the criterion)

cj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

- weights (are given as membership functions)

uij =
1∑C

k=1

(
‖xi−cj‖
‖xi−ck‖

) 2
m−1

(3)

Algorithm

0. Set the initial matrix of membership U.

1. Compute the centers cj with existing matrix U.

2. Update the matrix U .

3. If ‖Unová − Ustará‖ < ε, END otherwise go to 1.

KNIME: Task04_c-Means_Clustering

Density based clustering (dbscan)

We have a set of data X = {x1, x2, · · · , xN} , where xi ∈ Rm

We de�ne:

• Distance of two points x and y and denote it by d (x, y) .

• ε-neighborhood of point x

Oε (x) = {x ∈ X : d (x, y) < ε} .

• Inner point is such one that has in its neighborhood at least given number of points.

• A point y is accessible from the point x, if a sequence of inner points from x to y exists.

• A connection between points x a y exists, it both these points are accessible from some inner

point.

1 2 3 4 5 6

Algorithm of clustering

1. For each point from X �nd its ε-neighborhood.

2. De�ne variables �clus� and �bu�� (for storing points).

3. To �clus� put a single inner point and to �bu�� its neighborhood.

4. Select one point (e.g. the �rst one) from �bu��. Add it to �cluss� and its neighborhood add to

�bu��.

5. From �bu�� remove all points that have already been used (those that are in some cluster).

6. Repeat from 4. until �bu�� is not empty. Otherwise continue.

7. Remember the created cluster �clus� and prepare the variable for new one.

8. If there exists another free inner point, put it to �clus� and go to 4. If not, stop the algorithm.

Clusters are formed by points that are connected.

KNIME: Task05_Density_Clustering

Hierarchical clustering (agglomerative)

1. All data points are denoted as clusters on the level 1 (with only one point).

2. Find two nearest clusters and join them together in a new point. Its level is equal to the number

of points in joined in this new point.

3. The coordinates of the cluster lie on a connecting line of the coordinates of clusters to be joined

in the proportion of their levels (the higher level the nearer).

4. Remember the clusters from which the new one has been created (hierarchy).

5. Repeat from 2 until only one cluster remains.

For more information and the divisive version of the algorithm see the textbook.

Example

The data are x = [1.4, 1.8, 2.5, 4.2, 4.7, 6.5].

Construct dendrogram.

1 2 3 4 5 6 7

Two clusters

Three clusters

KNIME: Task06_Hierarchical_Clustering

9 Lecture: Classi�cation

K-nearest neighbour

We have data X = {xi}Ni=1 with detected clusters. The task is: assign a newly measured point y to

some cluster.

Algorithm

1. Compute the distance of the point y from all points from xi ∈ X.

2. Determine k points xi, i = 1, 2, · · · , k nearest to y.

3. Assign y to the cluster to which majority of the k nearest points belongs.

KNIME: Task07_k-NearNeighb

Decision trees

We have discrete data records xt = [x1, x2, · · · , xn]t , t = 1, 2, · · · , N and a pointer variable ct ∈
{1, 2, · · · ,m} which assigns the data records xt to one of m classes.

Example

Let us have the following data

t x1 x2 c

1 1 1 1

2 1 2 1

3 2 1 2

4 2 2 2

where x1, x2 are data records and c is pointer variable.

We chose the root cluster as x1 with values {1, 2}. Then,

• if x1 = 1 then x2 ∈ {1, 2}

� if x1 = 1 and x2 = 1 then c = 1

� if x1 = 1 and x2 = 2 then c = 1

• if x1 = 2 then x2 ∈ {1, 2}

� if x1 = 2 and x2 = 1 then c = 2

� if x1 = 2 and x2 = 2 then c = 2

x1
21

x2
21

x2
21

c ∈ {1, 2}c ∈ {1, 2}

c = 1 c = 1 c = 2 c = 2

Now, we measure xt = [1, 2]. Using the tree, we classify it to ct = 1

Problem: What order of the variables in the tree is the best one.

KNIME: Task08_Decision_Tree

Support vector machines

We have a sequence of data points xi, i = 1, 2, · · · , n. Some of them have the attribute + and the

rest −. We are to separate them so that the distance of the line (hyperplane) from the +points and

−points would be maximal.

Let us denote the separating line as y = αy + β = 0. Than,we look for maximal δ such that two

parallel lines y = αy + β + δ = 0 and y = αy + β − δ = 0 also separate the points - i.e. the points

are separated by a strip of the width 2δ.

The task leads to numerical optimization of nonlinear function.

KNIME: Task09_Support_Vec_Mach

	Lecture: Intro, models
	Lecture: Estimation
	Lecture: Prediction
	Lecture: State-space model
	Lecture: Control
	Lecture: Model based classification I
	Lecture: Model based classification II
	Lecture: Clustering
	Lecture: Classification

