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1 Introduction, probability, system

www.fd.cvut.cz/personal/nagyivan + Mathematical models · · ·

1.1 Revision of statistics

• Variable × Random variable (continuous, discrete)

Remark: Variables are (i) continuous, (ii) discretized (ordinal), (iii) discrete (nominal) -
can be ordered according to something (frequently money, some loss).

• Distribution (pf, pdf)

� discrete: f (x) ≡ P (X = x)

� continuous: f (x) ≡ limP (Ox) /m (Ox) for m (Ox) → 0, where m (Ox) is a measure
of the neighborhood Ox around the point x

• Random vector, joint; marginal; conditional distribution
draw continuous and discrete uniform distribution for X = [x1, x2]

f (x1, x2) = f (x1) f (x2|x1) = f (x2) f (x1|x2)

Example

Discrete case
f (x1, x2)
x1\x2 1 2 f (x1)
1 0.1 0.3 0.4
2 0.4 0.2 0.6

f (x2) 0.5 0.5

f (x2|x1)
1
4

3
4

2
3

1
3

f (x1|x2)
1
5

3
5

4
5

2
5

f (x1) f (x2)
0.2 0.2
0.3 0.3

Continuous case
f (x1, x2) = 6x2

1x2, x1, x2 ∈ (0, 1)

f (x1) =

∫ 1

0

6x2
1x2dx2 = 3x2

1

f (x2) =

∫ 1

0

6x2
1x2dx1 = 2x2

f (x1|x2) =
6x2

1x2

2x2
= 3x2

1

f (x2|x1) =
6x2

1x2

3x2
1

= 2x2

As it is f (x1, x2) = f (x1) f (x2) the variables are independent.
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• Characteristics

E [X] =

[
E [x1]
E [x2]

]
, C [X] =

[
D [x1] cov [x1, x2]

cov [x1, x2] D [x2]

]
• Random process is random variable indexed by time

time \ values discrete continuous
discrete Markov chains random sequences

continuous queues x

• Categorical distribution

x 1 2 · · · n
f (x) p1 p2 · · · pn

where p1 ≥ 0,
∑
pi = 1. Each realization has its probability.

• Normal distribution

f (X) =
1√

(2π)
n |R|

exp

{
−1

2
(x− µ)

′
R−1 (x− µ)

}

1.2 System and its variables

System is a part of reality we are interested in, on which we measure data and which we want
to learn about to be able to predict its behavior or in�uence it.

SYSTEM

xt state

ut input

vt disturbance

et noise

yt output

• output - the modeled variable, after application of the control it can be measured

• input - variable that in�uences the output and that can be fully manipulated by us

• disturbance - can be measured, cannot be in�uenced

• state - is in�uenced by input, in�uences output, cannot be measured

• noise - can be neither measured nor predicted
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Part I

Stochastic Systems
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2 Regression and categorical models

2.1 Regression model

yt = ψ
′

tΘ + et

• yt modeled variable (output) at time t

• ψt regression vector, containing samples of variables in�uencing the output

• Θ model parameters (regression coe�cients θ and noise variance r)

• et noise, with zero expectation, constant variance, independent of variables in regression
vector = sequence of independent and identically distributed r.v. = i.i.d.

ψt = [ut, yt−1, ut−1 · · · yt−n, ut−n, 1]
′

θ = [b0, a1, b1, · · · an, bn, k]
′
,

Model in detail

yt = b0ut + a1yt−1 + b1ut−1 + · · ·+ anyt−n + bnut−n + k + et

Remarks

1. Number of delayed y and u can be di�erent. Number of delayed y is called model order.

2. The term ψ
′

tθ is at time t known constant. Model represents a transformation of et to yt
according to the model equation.

3. If ψt contains no delayed outputs, the model is static. Otherwise, it is dynamic.

4. yt = ψ
′

tθ represents a di�erence equation.

A general description of the model as a tool, describing yt as random variable is model distri-
bution

f (yt|ψt,Θ)

Moments of the model are

E [yt|ψt,Θ] = E
[
ψ
′

tθ + et

]
= ψ

′

tθ ≡ ŷt

D [yt|ψt,Θ] = D
[
ψ
′

tθ + et

]
= D [et] = r

Normal regression model

f (et) =
1√
2πr

exp

{
− 1

2r
e2
t

}
transformation: yt = ŷt + et → et = yt − ŷt , Jacobian is 1

f (yt|ψt,Θ) =
1√
2πr

exp

{
− 1

2r

(
yt − ψ

′

tθ
)2
}

8



Regression model in the state-space form

The state model is
xt = Mxt−1 +Nut + wt.

We will demonstrate the transformation for the 2nd order model

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k + et

The state model is
yt
ut
yt−1

ut−1

1

 =


a1 b1 a2 b2 k
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1



yt−1

ut−1

yt−2

ut−2

1

+


b0
1
0
0
0

ut +


et
0
0
0
0


The �rst row is the regression model, the rest is only one-step time shift.

The advantage of the state-space model lies in recurrent computations. Its memory is only one.

Example

Compute y3

y1 = b0u0 + a1y0 + a2y−1

y2 = b0u2 + a1 (b0u0 + a1y0 + a2y−1) + a2y0

y3 = · · ·

x1 = Mx0 +Nu1

x2 = M (Mx0 +Nu1) +Nu2 = M2x0 +MNu1 +Nu2

x3 = M3x0 +M2Nu1 +MNu2 +Nu3

In the state form we even can write a general recurrent formula

xk = Mkx0 +

k∑
i=2

Mk−iui

2.2 Categorical model

All variables are discrete - there is a �nite number of con�gurations of data vector
[
y
′

t, ψ
′

t

]′
. In

the model, each data con�guration is assigned its own probability (categorical distribution)

f (yt|ψt,Θ) = Θyt|ψt

yt - output, ψt - regression vector, Θ parameter.

For two-valued variables and ψt =
[
u
′

t, y
′

t−1

]′
the parameters are Θyt|ut,yt−1

. The model can be

given a form of a table
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[ut, yt−1] yt = 1 yt = 2
1, 1 Θ1|11 Θ2|11

1, 2 Θ1|12 Θ2|12

2, 1 Θ1|21 Θ2|21

2, 2 Θ1|22 Θ2|22

In the left, there are all con�gurations of the regression vector. The entries of the table denote
all con�gurations of the data vector, each of them contains its parameter.

It holds:
Θi|jk ≥ 0,

∑
i

Θi|jk = 1, ∀jk

Remarks

1. The structure of the model is practically general. It is dynamic and possesses control
variable.

2. The number of all data con�gurations is always �nite. However, with increasing number
of variables and number of values of the variables, its dimension rapidly grows.

Examples

1. Coin

yt = 1 yt = 2
Θ1 Θ2

1. Coin with memory
f (yt|yt−1) , y ∈ {1, 2}

yt−1 yt = 1 yt = 2
1 Θ1|1 Θ2|1
1 Θ1|2 Θ2|2

Uncertainty of the regression model is given by the noise variance. Here, it is given by Θ. If its
entries are close to 0 or 1, the model is almost deterministic. If they are near to 0.5, the model
is very uncertain. E.g.[

0.1, 0.9
0.9, 0.1

] [
0.4, 0.6
0.6, 0.4

]
or

[
1, 0
0, 1

] [
0, 1
1, 0

]

1. Controlled coin
f (yt|ut) , y, u ∈ {1, 2}

2. Controlled coin with memory

f (yt|ut, yt−1) , y, u ∈ {1, 2}

10



[ut, yt−1] yt = 1 yt = 2
1, 1 0.8 0.2
1, 2 0.7 0.3
2, 1 0.25 0.75
2, 2 0.1 0.9

where yt mostly obeys ut

Other examples


1 0
0 1
0 1
0 1




0 1
0 1
1 0
1 0


First: yt is the bigger from ut and yt−1, second: yt is the opposite to ut.

2.3 Scilab generations

• generate y∈ {1, 2} so that P (y = 1) = 0.3

y=(rand(1,1,'u')>0.3)+1 (one value);

y=(rand(1,nd,'u')>0.3)+1 (nd values);

• generate y ∈ {1, 2, · · · , n} so that P (y = i) = pi; p =[p1 · · · pn]

pp=cumsum(p);

y=sum(rand(1,1,'u')>pp)+1;

• number of the row i in the table for combination ut, yt−1 ∈ {1, 2}

i=2*(u(t)-1)+y(t-1);

• generate output yt from the model f (yt|ut, yt−1)

i=2*(u(t)-1)+y(t-1);

pp=cumsum(th(i,:));

y(t)=sum(rand(1,1,'u')>pp)+1;
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3 Bayes rule

Notation: yt, dt = {yt, ut} , d (t) = {d0, d1, d2, · · · , dt} ; where d0 is prior, the rest are measure-
ments.

pdf - probability density function (used for both discrete and continuous random variables).

Bayesian estimation

• classical statistics - parameters are unknown constants
Bayesian statistics - parameters are random variables (their description is a distribution)

• distributions
model description f (yt|ψt,Θ)

parameter description f (Θ|d (t− 1)) , f (Θ|d (t))

• evolution of parameter pdf

f (Θ|d (0)) →︸︷︷︸
d1={u1,y1}

f (Θ|d (1)) →︸︷︷︸
d2={u2,y2}

· · · →︸︷︷︸
dt={ut,yt}

f (Θ|d (t))

• The evolution is governed by the Bayes rule

f (Θ|d (τ)) ∝ f (yτ |ψτ ,Θ) f (Θ|d (τ − 1))

starting from prior pdf f (Θ|d (0)) .

Comments

1. Derivation of Bayes rule

f (A,B|C) = f (A|B,C) f (B|C)

= f (B|A,C) f (A|C)

→ f (A|B,C) = f(B|A,C)f(A|C)
f(B|C)

where
A→ Θ, B → dt, C = d (t− 1)

and {B,C} = {dt, d (t− 1)} = d (t) .

2. Natural conditions of control: The person that estimates also controls. For both actions
he uses only information from d (t− 1) .

→
f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1)) and conversely

f (ut|d (t− 1) ,Θ) = f (ut|d (t− 1))

It applies in estimation with controlled model

f (Θ|d (t)) ∝ f (yt|ψt,Θ) f (ut|d (t− 1) ,ΘX) f (Θ|d (t− 1))

which means that f (ut| · · · ) goes to constant.
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3. Self reproducing form of Bayes rule
B.r. is recursive for functions. To be able to manage functions it is necessary express the
pdfs through statistics - e.g. normal distribution is given just by two numbers - expectation
and variance, for which the statistics are sum and count. Recursivity requires so that the
form of prior pdf (after multiplication by the model) is reproduced in the posterior pdf.
E.g. normal pdf → normal pdf, with only statistics recomputed.

Example (not recursive)

f (yt|a) =
a

1 + a

(
1

y2
t

+ exp {−ayt}
)

or

f (yt|a) =
1

2 + πa
(sin (yt) + a)

when computing product of models in measured yt the number of di�erent terms grows.

Example (recursive)
f (yt|a) = a exp {−ayt}

Posterior
f (a|y1, y2, y3) ∝ a3 exp {−a (y1 + y2 + y3)} =

aκ3 exp {−aS3}

where κ and S are statistics, evolving as follows

κt = κt−1 + 1

St = St−1 + yt

with initial stats κ0 and S0 with the meaning:

• κ0 is a virtual number of data samples, from which the prior statistics is constructed.

• S0 =
∑κ0

i=1 yi from which we have ȳ = S0

κ0
i.e. we say that average output is S0/κ0.

• Batch estimation

From Bayes rule it follows
f (Θ|d (t)) ∝ Lt (Θ) f (Θ)

where Lt (Θ) =
∏t
τ=1 f (yτ |ψτ ,Θ) is likelihood and f (Θ) ≡ f (Θ|d (0)) is the very prior

pdf.

• Results of estimation

(i) posterior pdf f (Θ|d (t)) which brings full information and sometimes can be used as
it is - e.g. in prediction

f (yt|d (t− 1)) =

∫
Θ∗
f (yt,Θ|d (t− 1)) dΘ =

∫
Θ∗
f (yt|ψt,Θ) f (Θ|d (t− 1)) dΘ

(ii) point estimates computed using posterior pdf

Θ̂t = E [Θ|d (t)] =

∫
Θ∗

Θf (Θ|d (t)) dΘ
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ŷt = E [yt|d (t− 1)] =

∫
y∗
yt f (yt|d (t− 1)) dyt =∫

y∗
yt

[∫
Θ∗
f (yt|ψt,Θ) f (Θ|d (t− 1)) dΘ

]
dyt

• Point estimate with quadratic criterion

E.g. for Θ and d - data

J = E

[(
Θ̂−Θ

)2

|d (t)

]
→ min

We derive

min
Θ̂

E

[(
Θ̂−Θ

)2

|d
]

= min
Θ̂

E
[
Θ̂2 − 2Θ̂Θ + Θ2|d

]
=

= min
Θ̂

{
Θ̂2 − 2Θ̂E [Θ|d] + E

[
Θ2|d

]}
=

= min
Θ̂

Θ̂2 − 2Θ̂E [Θ|d] + E [Θ|d]
2−E [Θ|d]

2
+ E

[
Θ2|d

]︸ ︷︷ ︸
D[Θ]

 =

= min
Θ̂

{
Θ̂2 − 2Θ̂E [Θ|d] + E [Θ|d]

2
}

+D [Θ] =

= min
Θ̂

{(
Θ̂− E [Θ|d]

)}
+D [Θ]

→ Θ̂ = E [Θ|d].
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4 Estimation of speci�c models

4.1 Normal static regression model

In this paragraph we are going to tackle estimation of of a static regression model whose pdf is
generated by the equation

yt = θ + et (4.1)

where θ is a constant and et is normal with zero expectation and variance r. Generally the
model has two parameters θ and r. As estimation of the noise variance is data demanding and
in some tasks it can lead to instability of the process of estimation (e.g. in mixture estimation),
sometimes r is chosen �xed and the only parameter to estimate is θ. With r known, the
estimation is very easy and the likelihood (as well as the posterior pdf) stay normal.

Direct estimation

For the model equation (4.1), we have

E [yt|θ] = E [θ + et] = E [θ] = θ

D [yt|θ] = D [θ + et] = D [et] = r

because θ is a constant and expectation of a constant is the constant itself and variance of a
constant is zero.

Now, from the classical statistics we know that expectation is estimated by sample average and
variance by sample variance. So, it holds

θ̂ =
1

N

N∑
t=1

yt = ȳ, and r̂ =
1

N − 1

N∑
t=1

(yt − ȳ)
2

= s2
y

Maximum likelihood estimation

The model pdf with the equation (4.1) is

f (yt|θ, r) =
1√
2π
r−0.5 exp

{
− 1

2r
(yt − θ)2

}
∝

∝ r−0.5 exp

{
− 1

2r

(
y2
t − 2ytθ + θ2

)}
where we omitted the pdf constant and applied the second power.

Now, the likelihood is a product of models for y1,y2, etc. It is easy to write

LN =

N∏
t=1

f (yt|θ, r) ∝
(
r−0.5

)N
exp

{
− 1

2r

N∑
t=1

(
y2
t − 2ytθ + θ2

)}
=

= r−0.5N exp

{
− 1

2r

(
N∑
t=1

y2
t − 2θ

N∑
t=1

yt +Nθ2

)}
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where we used the fact, that
∏
t exp {At} = exp {

∑
tAt}.

So, we can introduce the statistics

κt = κt−1 + 1 data counter

St = St−1 + yt sum of y

Rt = Rt−1 + y2
t sum of squares of y

and with them to write the likelihood as follows

LN = r−0.5κN exp

{
− 1

2r

(
RN − 2θSN + κNθ

2
)}

(4.2)

The estimates θ̂ and r̂ of the parameters θ and r can be found as arguments maximizing the
likelihood LN .

First, we di�erentiate with respect to θ:

dL

dθ
∝ r−0.5κN exp

{
− 1

2r

(
RN − 2θSN + κNθ

2
)}[
− 1

2r
(−2SN + 2θκN )

]
= 0

from which

SN = θκN → θ̂ =
SN
κN

=

∑N
t−1 yt

N
= ȳ

Now, we substitute θ = ȳ and di�erentiate with respect to r

dL

dr
∝ d

dr
r−0.5κN exp

{
− 1

2r

(
RN − 2ȳSN + κN ȳ

2
)}

=

=
d

dr

(
r−0.5κN

)
× exp

{
− 1

2r

(
RN − 2ȳSN + κN ȳ

2
)}

+

+r−0.5κN exp

{
− 1

2r

(
RN − 2ȳSN + κN ȳ

2
)}
× d

dr

[
− 1

2r

(
RN − 2ȳSN + κN ȳ

2
)]

=

= −0.5κNr
−0.5κN−1 × exp

{
− 1

2r

(
RN − 2ȳSN + κN ȳ

2
)}

+

+r−0.5κN exp

{
− 1

2r

(
RN − 2ȳSN + κN ȳ

2
)}
× 1

2r2

(
RN − 2ȳSN + κN ȳ

2
)

= 0

From it

κNr
−1 =

1

r2

(
RN − 2ȳSN + κN ȳ

2
)

and

r̂ =
RN
κN
− 2ȳ

SN
κN

+ ȳ2 =

∑N
t=1 y

2
t

κN
−

(∑N
t=1 yt
κN

)2

= y2 − ȳ2 = s2
y

where we used the formula D [A] = E
[
A2
]

= (E [A])
2
known from the classical statistics.

Thus we have obtained the same results as in the paragraph Direct estimation.

Another derivation
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The derivation demonstrated is rather long and cumbersome. It can be improved in the following
way. We take the quadratic form

(
RN − 2θSN + κNθ

2
)
in the exponent of the likelihood (4.2)

and complete it to the square

(
RN − 2θSN + κNθ

2
)

= κN

(
θ2 − 2θ

SN
κN

+
RN
κN

)
=

= κN

(
θ2 − 2θ

SN
κN

+

(
SN
κN

)2

−
(
SN
κN

)2

+
RN
κN

)
=

= κN

[(
θ − SN

κN

)2

+

(
RN
κN
−
(
SN
κN

)2
)]

=

= κN

(θ − ȳ)
2

+ y2 − ȳ2︸ ︷︷ ︸
s2y

 .
Then the likelihood (4.2) is

LN = r−0.5κN exp

{
− 1

2r
κN

[
(θ − ȳ)

2
+ s2

y

]}
.

To maximize it according to θ we look for minimum of the quadratic form which is evidently
achieved for θ̂ = ȳ and we get the partially maximized likelihood

LN = r−0.5κN exp

{
− 1

2r
κNs

2
y

}
.

Now we di�erentiate according to r (in the same way as we already did)

dL

dr
= −0.5κNr

−0.5κN−1 exp

{
− 1

2r
κNs

2
y

}
+ r−0.5κN exp

{
− 1

2r
κNs

2
y

}
1

2r2
κNs

2
y

from which we obtain the result
r̂ = s2

y.

Both the results correspond those previously derived.

The resulting lesson

To estimate the static regression model (even in the multivariate form for vector yt) the regression
coe�cients can be estimated as the averages of the variables entering the regression and the
covariance matrix of noise as their sample covariance matrix.

Example

Let us have the model

yt =

[
y1;t

y2;t

]
=

[
θ1

θ2

]
=

[
e1;t

e2;t

]
with the dataset
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y1 2.3 3.1 5.6 4.2 8.1 1.3
y2 12.5 18.3 15.7 17.1 16.5 14.7

Estimate its parameters θ =

[
θ1

θ2

]
and r =

[
σ2

1 σ12

σ12 σ2
2

]
.

We have

θ̂ =

[
ȳ1

ȳ2

]
=

[
4, 1
15.8

]
and

r̂ =

[
var (y1) cov (y1, y2)

cov (y1, y2) var (y2)

]
=

[
5.06, 1.55
1.55 3.42

]
And that is all :-)

4.2 Normal regression model

Model

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r

(
yt − ψ

′

tθ
)2
}

For 1st order yt = but + ayt−1 + et it is ψt = [ut, yt−1]
′
. The square in the exponent can be

written
(yt − but − ayt−1) (yt − but − ayt−1) =

= (−1) [−1, b, a]

 yt
ut
yt−1

 (−1) [yt, ut, yt−1]

 −1
b
a

 =

= [−1, θ′]

[
yt
ψt

] [
yt, ψ

′

t

]
︸ ︷︷ ︸

Dt

[
−1
θ

]

where Dt is data matrix.

Model (in modi�cation)

f (yt|ψt,Θ) ∝ r−0.5 exp

{
− 1

2r
[−1, θ′]Dt

[
−1
θ

]}

Prior pdf

In the same form as model

f (Θ|d (0)) ∝ r−0.5κ0 exp

{
− 1

2r
[−1, θ′]V0

[
−1
θ

]}
Bayes

f (Θ|d (1)) ∝ r−0.5 exp

{
− 1

2r
[−1, θ′]Dt

[
−1
θ

]}
r−0.5κ0 exp

{
− 1

2r
[−1, θ′]V0

[
−1
θ

]}
=

= r−0.5κ1 exp

{
− 1

2r
[−1, θ′]V1

[
−1
θ

]}
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Posterior pdf

f (Θ|d (t)) ∝ r−0.5κt exp

{
− 1

2r
[−1, θ′]Vt

[
−1
θ

]}

Recursion for statistics

κt = κt−1 + 1

Vt = Vt−1 +Dt

with κ0 and V0 as prior statistics.

Results

(a) Posterior - GiW with statistics κt and Vt.

(b) Point estimates of parameters

Vt =

[
Vy Vyψ
Vyψ Vψ

]
· · ·
[
• −−
| �

]

θ̂t = V −1
ψ Vyψ regression coe�cients

r̂t =
Vy − V

′

yψV
−1
ψ Vyψ

κt
noise variance

Point estimate of output
ŷt = ψtθ̂t−1 (θ → θ̂t−1, et → 0)

Batch estimation

yt = b0ut + · · · anyt−n + bnut−n + k + et

for t = 1, 2, · · · , N

y1 = b0u1 + · · · any1−n + bnu1−n + k + e1

y2 = b0u2 + · · · any2−n + bnu2−n + k + e2

· · ·

yN = b0uN + · · · anyN−n + bnuN−n + k + eN

→ matrix form
Y = Xθ + E
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where (for n = 1) Y and X are

Y =


y1

y2

· · ·
yN

 , X =


u1 y0 u0 1
u2 y1 u1 1
· · · · · · · · · · · ·
uN yN−1 uN−1 1


Optimization - least squares

J =
∑

e2
i = E′E = (Y −Xθ)′ (Y −Xθ) = Y ′Y − 2θ′X ′Y + θ′X ′Xθ

∂

∂θ
J = −2X ′Y + 2X ′Xθ

X ′Xθ = X ′Y → θ̂t = (X ′X)
−1
X ′Y

4.3 Categorical model

Product form of the model

f (yt|ψt,Θ) = Θyt|ψt =
∏
y|ψ

Θ
δ(y|ψ; yt|ψt)
y|ψ

i.e. product over all possible con�gurations of y|ψ; but only yt|ψt is chosen.

Prior / posterior pdf

f (Θ|d (t)) ∝
∏
y|ψ

Θ
νy|ψ;t

y|ψ

where νy|ψ;t for all con�gurations of y|ψ is statistics; νy|ψ;0 is the prior one.

Statistics update

From Bayes rule
νy|ψ;t = νy|ψ;t−1 + δ (y|ψ; yt|ψt)

for all con�gurations of y|ψ (or νyt|ψt;t = νyt|ψt;t−1 + 1 for actual data)

Point estimate

θ̂y|ψ;t =
νy|ψ;t∑
i νi|ψ;t

which is normalization of the statistic matrix in rows.
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Example

Model (of a coin)
f (y|p) = py, y = 1, 2 ; p = [p1, p2]

′

Product form
f (y|p) = p

δ(y,1)
1 p

δ(y,2)
2

Posterior
f (p|d (t)) ∝ pν1;t1 p

ν2;t
2

Statistics
νt = [ν1;t, ν2;t]

Update

� for y = 1
ν1;t = ν1;t−1 + 1

� for y = 2
ν2;t = ν2;t−1 + 1

For the data
t 1 2 3
yt 1 1 2

and zero initial statistics

t 0 1 2 3
ν1 0 1 2 2
ν2 0 0 0 1
p1 x 1 1 2

3
p2 x 0 0 1

3

With initial statistics 10

t 0 1 2 3
ν1 10 11 12 12
ν2 10 10 10 11
p1 x 0.524 0.546 0.522
p2 x 0.476 0.454 0.478

The ratio
ν1;0

ν1;0+ν2;0
expresses the value of p1

The magnitude of ν expresses our belief in .our guess.

Output estimate

f (yt|d (t− 1)) = f
(
yt|ψt,Θ = Θ̂t−1

)
yt 1 2 3 · · · n

f
(
yt|ψtΘ̂t−1

)
P (yt = 1) P (yt = 2) P (yt = 3) P (yt = n)

Point estimate is the value of yt with the biggest probability.
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5 Output prediction

Estimation of the future output yt+k with the knowledge of data up to t − 1 for k = 0, 1, · · · .
For k = 0 we speak about output estimation or zero-step prediction.

5.1 Output estimation

It can be also called zero-step prediction. Here we estimate yt at time t which, however, was not
yet measured. E.g. for the 1st order regression model without control variable f (yt|yt−1,Θ)

f (yt|y (t− 1)) =

∫
Θ∗
f (yt,Θ|y (t− 1)) dΘ =

(i) =

∫
Θ∗
f (yt|yt−1,Θ) f (Θ|y (t− 1)) dΘ posterior of Θ

(ii)
.
= f

(
yt|yt−1, Θ̂t−1

)
point estimate of Θ

where (ii) is achieved by replacing f (Θ|y (t− 1))→ δ
(

Θ, Θ̂t−1

)
and∫

Θ∗
f (yt|yt−1,Θ) f (Θ|y (t− 1)) dΘ

.
=

.
=

∫
Θ∗
f (yt|yt−1,Θ) δ

(
Θ, Θ̂t−1

)
dΘ = f

(
yt|yt−1, Θ̂t−1

)
where Θ̂t−1 = E [Θ|y (t− 1)] =

∫
Θ∗

Θf (Θ|y (t− 1)) dΘ is point estimate of Θ based on the data
y (t− 1) .

Remarks

1. In f (yt|y (t− 1)) the parameter Θ is missing. We need to supply it.

2. This type of prediction is useful for validation of estimated model. After prediction ŷt we
measure the value of the true output ytand compute prediction error êt = yt− ŷt, ∀t. Good
model should have the sum of prediction errors small.

5.2 One step prediction

f (yt+1|y (t− 1)) =

∫
Θ∗

∫
y∗t

f (yt+1, yt,Θ|y (t− 1)) dytdΘ =

(i) =

∫
Θ∗

∫
y∗t

f (yt+1|y (t) ,Θ) f (yt|yt−1,Θ) f (Θ|y (t− 1)) dytdΘ

(ii)
.
= f

(
yt+1|ŷt, Θ̂t−1

)
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where for (ii) we lay f (Θ|y (t− 1)) → δ
(

Θ, Θ̂t−1

)
and f (yt|y (t− 1)) → δ (yt, ŷt) with Θ̂t−1

and ŷt being point estimates.

Remark

• Here, both Θ and yt are missing. We must supply both.

• Comparing (i) and (ii) we can see the basic principle of Bayesian estimation. Basically,
value of the missing unknown variable (Θ and yt) is substituted (into the pdfs) and it is
weighted by its probability (prior pdf + integration). In the second variant (ii) �rst point
estimates are computed and then substituted for the unknown variables.

5.3 Multi-steps prediction

Regression model with known parameters and point estimation

For a 1st order regression model yt = ayt−1+but+et with known parameters and point prediction
we have

yt = ayt−1 + but + et

ŷt = ayt−1 + but

ŷt+1 = aŷt + but+1 = a (ayt−1 + but) + but+1 =

= a2yt−1 + abut + but+1

ŷt+2 = aŷt+1 + but+2 =

= a3yt−1 + a2but + abut+1 + but+2

etc.

The point prediction can be achieved by a simple repetitive substitution of the model. For
simulation, directly last estimates can be used.

Full prediction with regression model under condition of normality

Prediction with normal model with known parameters preserves normality. If et is normal, all
predictions are normal, too.

yt = ayt−1 + but + et

yt−1 = ayt + but+1 + et+1 =

= a (ayt−1 + but + et) + but+1 + et+1 =

= a2yt−1 + abut + but+1 + aet + et+1

yt+2 = ayt+1 + but+2 + et+2 =

= a3yt−1 + a2but + abut+1 + but+2 + a2et + aet+1 + et+2

→
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E [yt+2|y (t− 1)] = a3yt−1 + a2but + abut+1 + but+2

D [yt+2|y (t− 1)] = D
[
a2et + aet+1 + et+2

]
=
(
a4 + a2 + 1

)
r

Predictive pdf

f (yt+2|y (t− 1)) = Nyt+2
(E [yt+2|y (t− 1)] , D [yt+2|y (t− 1)])

Remark

• Normal distribution is preserved during computation (prove it1).

• Normal distribution is determined by its expectation and variance.

5.4 Prediction with discrete model

For a model f (yt|yt−1,Θ) we have

Zero step prediction

It is given directly by the model

f (yt|yt−1,Θ) = Θyt|yt−1

Multi-steps prediction

For the model in a form of square table (matrix), the prediction is

f (yt+k|y (t− 1)) =
(
Θk+1

)
yt+k|yt−1

Example

Two steps prediction

f (yt+2|y (t− 1)) =
∑
yt+1

∑
yt

f (yt+2|yt−1) f (yt+1|yt) f (yt|yt−1) =

=
∑
yt+1

Θyt+2|yt+1

∑
yt

Θyt+1|ytΘyt|yt−1
=
(
Θ3
)
yt+2|yt−1

For square

Θ =

[
0.4, 0.6
0.8, 0.2

]
f (yt+2|y (t− 1)) =

[
0.4, 0.6
0.8, 0.2

]3

=

[
0.544, 0.456
0.608, 0.392

]
→
for yt−1 = 1 we have f (yt+2|1) = [0.544, 0.456]

for yt−1 = 2 we have f (yt+2|2) = [0.608, 0.392]

Point prediction either can be constructed either as MAP prediction or it can be computed from
the estimated model as if in simulation.

1The computations are based on square completion in exponents of Gaussian densities.
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6 State-space model, state estimation

6.1 Model

f (xt|xt−1, ut) model of the state

f (yt|xt, ut) model of the output

is generated by the equations

xt = Mxt−1 +Nut + wt

yt = Axt +But + vt

where M, N, A, B are matrices, wt and vt white noises with covariance matrices rw and rv.

6.2 Estimation

State description

f (xt−1|d (t− 1)) →︸︷︷︸
prediction

f (xt|d (t− 1)) →︸︷︷︸
�ltration

f (xt|d (t))

Evolution

f (xt|d (t− 1)) =

∫
x∗t−1

f (xt|xt−1, ut) f (xt−1|d (t− 1)) prediction

f

 xt︸︷︷︸
Θ

|d (t)

 ∝ f (yt|xt, ut)︸ ︷︷ ︸
model

f

 xt︸︷︷︸
Θ

|d (t− 1)

 Bayes

! In the above derivation Natural Conditions of Control are used !

Kalman �lter

For normal model and normal prior state distribution the normality is preserved. Functional
recursion becomes algebraic one for expectations and covariance matrices.

Notation

f (xt|xt−1, ut) = Nxt (Mxt−1 +Nut, rw)

f (yt|xt, ut) = Nyt (Axt +But, rv)

and

f (xt−1|d (t− 1)) = Nxt−1

(
xt−1|t−1, Rt−1|t−1

)
f (xt|d (t− 1)) = Nxt

(
xt|t, Rt|t

)
f (xt|d (t)) = Nxt

(
xt|t, Rt|t

)
Substitution into the evolution equations gives Kalman �lter (KF)
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Kalman �lter
xt|t−1 = Mxt−1|t−1 +Nut state prediction

Rt|t−1 = rx +MRt−1|t−1M
′

yp = Axt|t−1 +But output prediction

Rp = ry +ARt|t−1A
′

Rt|t = Rt|t−1 −Rt|t−1A
′R−1
p ARt|t−1

K = Rt|tA
′r−1
y Kalman gain

xt|t = xt|t−1 +K (yt − yp) state correction

The �lter starts with prior x0|0 andR0|0, uses data yt, ut, t = 1, 2, · · · , N and currently computes
xt|t and Rt|t. The result is either point state estimate xt|t or the full distribution of the state

f (xt|ut, d (t)) = Nxt
(
xt|t, Rt

)
.

Program together with subroutine Kalman.sci is here

clc, clear, close

[u,t,n]=file(); // find working directory

chdir(dirname(n(1))); // set working directory

getd('.')

nd=100;

M=[.5 .4; .3 .6];

N=[1; 1];

A=[.4 1.2];

Rw=10*eye(2,2);

Rv=1;

// Simulace

xt=zeros(2,nd);

xt(:,1)=50*ones(2,1);

ut=rand(1,nd,'n');

yt=zeros(1,nd);

for t=1:nd

xt(:,t+1)=M*xt(:,t)+N*ut(t)+Rw*rand(2,1,'n');

yt(t)=A*xt(:,t)+Rv;

end

// Filtration

Rx=1e3*eye(2,2);

x=zeros(2,1);

for t=1:nd
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[x,Rx,yp]=Kalman(x,yt(t),ut(t),M,N,A,0,Rw,Rv,Rx);

xe(:,t+1)=x;

end

// Results

s=1:nd;

scf(1);

subplot(211)

plot(s,xt(1,s)',s,xe(1,s)','.')

subplot(212)

plot(s,xt(2,s)',s,xe(2,s)','.')

and the subroutine

function [xt,Rx,yp]=Kalman(xt,yt,ut,M,N,A,B,Rw,Rv,Rx)

// [xt,xf,Rx,yp]=Kalman(xt,yt,ut,M,N,A,B,Rw,Rv,Rx)

// Kalman filter for state estimtion with the model

// xt = M*xt + N*ut + w

// yp = A*xt + B*ut + e

// xt state

// Rx state estimate covariance matrix

// yp output prediction

// yt output

// ut input

// M,N state model parameters

// A,B output model parameters

// Rw state model covariance

// Rv output model covariance

// prediction

xt=M*xt+N*ut; // rime update of the state

Rx=Rw+M*Rx*M'; // time updt. of state covariance

// filtration

yp=A*xt+B*ut; // output prediction

Ry=Rv+A*Rx*A'; // noise covariance update

Rx=Rx-Rx*A'*inv(Ry)*A*Rx; // state est. coariance update

ey=yt-yp; // prediction error

KG=Rx*A'*inv(Rv); // Kalman gain

xt=xt+KG*ey; // data update of the state

endfunction
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7 Nonlinear state estimation

7.1 Nonlinear model

xt = g (xt−1, ut) + wt

yt = h (xt, ut) + vt

Example

For

xt =

[
x1

x2

]
t

, ut, yt

the model is

x1;t = exp {−x1;t−1 − x2;t−1}+ ut + wt

x2;t = x1;t−1 − 0.3ut + w2;t

yt = x2;t + vt

Linearization

Is done using �rst two terms of Taylor expansion of nonlinear functions at the point of last point
estimate. For the state equation it is x̂t−1 and for the output equation it is x̂t.

Generally, i.e. for a general value x the expansion reads

g (x, ut)
.
= g (x̂t−1, ut) + g′ (x̂t−1, ut) (x− x̂t−1)

h (x, ut)
.
= h (x̂t, ut) + h′ (x̂t, ut) (x− x̂t)

Remarks

1. xt and xt−1 are random variables. x is their general value, x̂t and x̂t−1 are special values:
x̂t is the point estimate of xt and x̂t−1 is point estimate of xt−1.

2. Linearization can be applied only to nonlinear parts of the model. The linear parts can
stay as they are.

The derivatives g′ and h′ are

g′ (x̂t−1, ut) =


∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

· · · · · · · · · · · ·
· · ·

∂gn
∂x1

· · · ∂gn
∂xn


|x=x̂t−1

, h′ (x̂t, ut) =


∂h1

∂x1

∂h1

∂x2
· · · ∂h1

∂xn
· · · · · · · · · · · ·

· · ·
∂hm
∂x1

· · · ∂hm
∂xn


|x=x̂t

After substitution the linearization into the model, we have

and for x = x̂t−1 in the case of the state equation and x = x̂t for output equation we obtain the
linearized model

xt = M̄xt−1 + F + wt

yt = Āxt +G+ vt
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where

M̄ = g′ (x̂t−1, ut) , F = g (x̂t−1, ut)− g′ (x̂t−1, ut) x̂t−1,

Ā = h′ (x̂t, ut) , G = h (x̂t, ut)− h′ (x̂t, ut) x̂t.

Example (continuation) - · · · only �rst equation is nonlinear

g1 (x, ut) = exp {−x1 − x2}+ ut

g
′

1 (x, ut) =

[
∂g1

∂x1
,
∂g1

∂x2

]
= [− exp {−x1 − x2} , − exp {−x1 − x2}]

Fully linearized model is

x1;t = g
′

1 (x̂t−1, ut)xt−1 + g1 (x̂t−1, ut)− g
′

1 (x̂t−1, ut) x̂t−1 + wt

x2;t = [1, 0]xt−1 − 0.3ut + w2;t

yt = [0, 1]xt + vt

where

M̄ =

[
g
′

1 (x̂t−1, ut)
[1, 0]

]
, F =

[
g1 (x̂t−1, ut)− g

′

1 (x̂t−1, ut) x̂t−1

−0.3ut

]
,

N =

[
0
0

]
, Ā = [0, 1] , G = 0, B = 0.

With this, we can use subroutine Kalman

[xt,Rx,yp]=Kalman(xt,yt,ut,M̄ ,N,F,Ā,B,G,Rw,Rv,Rx)

7.2 Model with unknown parameters

The unknown parameters of the model are added to the state a and estimated. However, the
model becomes nonlinear - model matrices contain state entries and they are multiplied by state.
So, the technique of linearization must be used, again.

Example

Model

xt = exp {−axt−1}+ but + wt

yt = xt + vt,

where a and b are unknown.

We de�ne new state

Xt =
[
x
′

t, a, b
]′
, Xt−1 =

[
x
′

t−1, a, b
]′
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and obtain new model

Xt =

 exp {−X2;t−1X1;t−1}+X3;t−1ut
X2;t−1

X3;t−1

+

 wt
ε2;t

ε3;t


︸ ︷︷ ︸

Wt

yt = [1, 0, 0]Xt + vt

Only the �rst equation is nonlinear, however, we will treat the whole model as nonlinear (it is
well possible)

g =

 exp {−X2;t−1X1;t−1}+X3;t−1ut
X2;t−1

X3;t−1


Xt−1=X̂t−1

g′ =

 −X2;t−1 exp {−X2;t−1X1;t−1} , −X1;t−1 exp {−X2;t−1X1;t−1} , ut
0 1 0
0 0 1


Xt−1=X̂t−1

model

Xt = g′︸︷︷︸
M̄

Xt−1 + g − g′X̂t−1︸ ︷︷ ︸
F

+Wt

yt = [1, 0, 0]︸ ︷︷ ︸
Ā

Xt + vt

and N = [0, 0, 0]
′
, B = 0, G = 0.

[x, Rx, yp] = Kalman(x, y, u, M̄ , N, F, Ā, B, G, Rw, Rv, Rx)
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8 Control with regression model

8.1 Derivation in pdf

Criterion

Optimal control needs criterion. We will use summation one

J =

N∑
t=1

Jt

where Jt is a penalization for time t. Mostly it is Jt = y2
t + ωu2

t .

We want to set ut, t = 1, 2, · · · , N that minimizes J . But, J is a random variable, due to the
output yt. As random variable can take many di�erent values it is not possible to speak about
its minimization. So, we must minimize its estimate (which is expectation). So the minimized
criterion is

E [J |d (0)] = E

[
N∑
t=1

Jt|d (0)

]
where in condition of the expectation is our preliminary knowledge - prior data.

Remark

For N = 1 we obtain one-step control. Here, we optimize control only for the next output. This
control is dangerous, because the controller does not take into account future evolution of the
system and to act best in one step it can generate too beg output. This can excite the system so
much that it is not possible even to stabilize it in the future and the control fails.

Sequential minimization

min
u1:N

E

[
ϕ∗N+1 +

N∑
t=1

Jt|d (0)

]
=

= min
u1:(N−1)

E

min
uN

E
[
ϕ∗N+1 + JN |uN , d (N − 1)

]︸ ︷︷ ︸
ϕ∗N

+

N−1∑
t=1

Jt

∣∣∣∣d (0)

 =

= min
u1:(N−1)

E

[
min
uN

ϕN +

N−1∑
t=1

Jt|d (0)

]
= min

u1:N

E

[
ϕ∗N +

N−1∑
t=1

Jt|d (0)

]
which reproduces the initial form, only with N → N − 1 and where (due to the reproduction in
general form)

Bellman equations

ϕt = E
[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
expectation

ϕ∗t = min
ut

ϕt minimization
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for t = N, N − 1, N − 2, · · · , 1. Each minimization gives the formula for optimal control -
it is ut = arg minϕt (d (t− 1)) . However, ti cannot be used immediately, because the data
d (t− 1) is not known, yet. Only at time t = 1 we need data d (0) and the control can start to
be generated.

Remark

The derivation of the control law in the operator of expectation is brief but not explicit. We will
show its integral form:

min
u1:N

E

[
ϕ∗N+1 +

N∑
t=1

Jt|d (0)

]
=

= min
u1:N

∫
· · ·
∫ (

ϕ∗N+1 +

N∑
t=1

Jt

)
f (y (N) , u (N) |d (0)) dy (N) du (N) =

= min
u1:N

∫
· · ·
∫ ∫ ∫ ([

ϕ∗N+1 + JN
]

+

N−1∑
t=1

Jt

)
f (yN |uN , d (N − 1)) f (uN |d (N − 1))×

×f (y (N − 1) , u (N − 1) |d (0)) dy (N) du (N) =

= min
u1:(N−1)

{∫
· · ·
∫

min
uN

∫ ∫ (
ϕ∗N+1 + Jt

)
f (yN |uN , d (N − 1)) dyN︸ ︷︷ ︸

ϕN (uN ,d(N−1))

f (uN |d (N − 1)) duN+

N−1∑
t=1

Jtf (y (N − 1) , u (N − 1) |d (0)) dy (N − 1) du (N − 1)

}
Minimum over uN

min
uN

∫ ∫ (
ϕ∗N+1 + Jt

)
f (yN |uN , d (N − 1)) dyN︸ ︷︷ ︸

ϕN (uN ,d(N−1))

f (uN |d (N − 1)) duN =

= min
uN

∫
ϕN (uN , d (N − 1)) f (uN |d (N − 1)) duN

→ u∗N = arg minuN ϕN - formula for optimal control law.

8.2 Derivation for regression model

Regression model can be converted to state-space form (see lecture 2 - Regression model in
state-space form).

xt = Mxt−1 +Nut + wt

where xt = [yt, ut, yt−1, ut−1, · · · yt−n+1, ut−n+1]
′
.

The penalty can be written as
y2
t + ωu2

t = x′tΩxt (8.1)
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where Ω is a diagonal matrix

Ω =


1

ω
0
· · ·

0


Now the model and criterion is used in general Bellman equations, where we guess the form of
ϕ∗t+1 = x

′

tRt+1xt

E
[
x
′

tRt+1xt + x
′

tΩxt|ut, d (t− 1)
]

= E
[
x
′

tUxt

]
=

= (Mxt−1 +Nut)
′
U (Mxt−1 +Nut) + ρ =

= x
′

t−1M
′UM︸ ︷︷ ︸
C

xt−1 + 2u
′

tN
′UM︸ ︷︷ ︸
B

xt−1 + u
′

tN
′UN︸ ︷︷ ︸
A

ut + ρ =

= u
′

tAut + 2u
′

tAA
−1B︸ ︷︷ ︸
St

xt−1 + x
′

t−1S
′

tAStxt−1+

+x
′

t−1Cxt−1 − x
′

t−1S
′

tAStxt−1︸ ︷︷ ︸
xt−1Rtxt−1

+ρ =

= (ut + Stxt−1)
′
A (ut + Stxt−1) + x

′

t−1Rtxt−1 + ρ

Optimal ut = Stxt−1.

Recursion

RN+1 = 0

for t = N, N − 1, · · · , 1

U = Rt+1 + Ω
A = N ′UN
B = N ′UM
C = M ′UM
St = A−1B
Rt = C − S′tQSt
ut = Stxt−1.

end

Remark

The penalty function (8.1) can be very easily extended to the following form

(yt − st)2
+ ωu2

t + λ (ut − ut−1)
2

where the �rst term leads to the following the output yt the prescribed set-point st and the
last term introduces penalization of increments of the control variable. Penalizing the control
increments calms control behavior and at the same time it does not result to steady-state deviation
of the output and the set-point as it is when penalizing the whole control variable.
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The solution how to introduce the above requirements for the control lies in construction of the
penalization matrix as follows

Ω =



1 −1
ω + λ −λ

0
−λ λ

· · ·
0

−1 1


which is evident if we take into account that the criterion is

x
′

tΩxt

and xt = [yt, ut, yt−1, ut−1, · · · , 1] .
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9 Control with categorical model

We will show the synthesis for the model of controlled coin with memory

model f (yt|ut, yt−1)

penalty Jyt|ut,yt−1

and for three steps control, i.e. for t = 1, 2, 3. The corresponding model and penalization are

model ( Θ )

u3, y2 y3 = 1 y3 = 2
1, 1 0.7 0.3
1, 2 0.2 0.8
2, 1 0.9 0.1
2, 2 0.4 0.6

penalty ( J )

u3, y2 y3 = 1 y3 = 2
1, 1 0 1
1, 2 1 0
2, 1 1 2
2, 2 2 1

9.1 Optimization

Step for t = 3: ϕ∗4 = 0

Expectation

ϕ3 = E [J |u3, d (2)] =

2∑
y3=1

Jy3|u3,y2Θy3|u2,y2 =

=


0
1
1
2

 . ∗


0.7
0.2
0.9
0.4

+


1
0
2
1

 . ∗


0.3
0.8
0.1
0.6

 =


0.3
0.2
1.1
1.4


· · · u3 = 1, y2 = 1
· · · u3 = 1, y2 = 2
· · · u3 = 2, y2 = 1
· · · u3 = 2, y2 = 2

Minimization
for : y2 = 1→ min {0.3, 1.1} = 0.3 foru3 = 1

for : y2 = 2→ min {0.2, 1.4} = 0.2 foru3 = 1

→

u3 =

{
1 for y2 = 1

1 for y2 = 2

and reminder after minimization

y2 = 1 y2 = 2
0.3 0.2

∀u2, y1 →

u2, y1 y2 = 1 y2 = 2
1, 1 0.3 0.2
1, 2 0.3 0.2
2, 1 0.3 0.2
2, 2 0.3 0.2

= ϕ∗3
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Step for t = 2:

Expectation

ϕ2 = E [J + ϕ∗3|u2, d (1)] =

2∑
y2=1

(
Jy2|u2,y1 + ϕ∗3;y2|u2,y1

)
Θy2|u2,y1 =

=




0
1
1
2

+


0.3
0.3
0.3
0.3


 .ϕ∗2 = 0 ∗


0.7
0.2
0.9
0.4

+




1
0
2
1

+


0.2
0.2
0.2
0.2


 . ∗


0.3
0.8
0.1
0.6

 =

=


0.8
0.7
1.6
1.9


· · · u2 = 1, y1 = 1
· · · u2 = 1, y1 = 2
· · · u2 = 2, y1 = 1
· · · u2 = 2, y1 = 2

Minimization
for : y1 = 1→ min {0.8, 1.6} = 0.8 foru2 = 1

for : y1 = 2→ min {0.7, 1.9} = 0.7 foru2 = 1

→

u2 =

{
1 for y1 = 1

1 for y1 = 2

and reminder after minimization

y1 = 1 y1 = 2
0.8 0.7

∀u1, y0 →

u1, y0 y1 = 1 y1 = 2
1, 1 0.8 0.7
1, 2 0.8 0.7
2, 1 0.8 0.7
2, 2 0.8 0.7

= ϕ∗2

Step for t = 1:

Expectation

ϕ1 = E [J + ϕ∗2|u1, d (0)] =

2∑
y1=1

(
Jy1|u1,y0 + ϕ∗2;y1|u1,y0

)
Θy1|u1,y0 =

=




0
1
1
2

+


0.8
0.8
0.8
0.8


 . ∗


0.7
0.2
0.9
0.4

+




1
0
2
1

+


0.7
0.7
0.7
0.7


 . ∗


0.3
0.8
0.1
0.6

 =

=


1.8
1.7
2.6
2.9


· · · u1 = 1, y0 = 1
· · · u1 = 1, y0 = 2
· · · u1 = 2, y0 = 1
· · · u1 = 2, y0 = 2
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Minimization
for : y0 = 1→ min {1.8, 2.6} = 1.8 foru1 = 1

for : y1 = 2→ min {1.7, 2.9} = 1.7 foru1 = 1

→

u1 =

{
1 for y0 = 1

1 for y0 = 2

and reminder after minimization

y0 = 1 y0 = 2
1.8 1.7

9.2 Application

For t = 0 let us have y0 = 2.

For y0 = 2 we have u1 = 1; → [1, 2] Θ1,2 =[0.2, 0.8] let us obtain y1 = 2

For y1 = 2 we have u2 = 1; → [1, 2] Θ1,2 =[0.2, 0.8] let us obtain y2 = 1

For y2 = 1 we have u3 = 1; → [1, 1] Θ1,1 =[0.7, 0.3] let us obtain y3 = 2

The �nal value of criterion is J2|12 + J1|12 + J2|11 = 0 + 1 + 1 = 2.
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Part II

Clustering and Classi�cation
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10 Mixtures

One of the prominent approaches in data mining is based on data modeling. The model describes
density of data points in the data space and gives a possibility to detect the areas with high
density to which a newly measured data record (point in the space) belongs.

First we will inspect models connected with this area and derive simple but general clustering
and classi�cation tool corresponding to estimation of mixture models.

Then we will show the same procedure as before but with a simplifying assumption of indepen-
dence of variables in the regression vector. This approach is known as Naive Bayes.

In the end, we will extend the previous attitude for models with unknown parameters. Then
the parameters must be estimated from data.

10.1 The basics of clustering and classi�cation

Our approach to clustering and classi�cation here is based on modeling. Generally, we consider
a data space X of �nite vectors x = [x1, x2, · · · , xn] . These vectors represent points in the
multivariate data space and we suppose, these points are somehow grouped with respect to
their density (or spatial probability of occurrence).

These groups of data vectors (represented as areas of dense points in data space) are called
clusters. Our task is

1. to detect these groups in the data space (clustering),

2. to decide, which class a newly measured vector belongs to (classi�cation).

The groups ale labeled - each of them has its own �ag (value of pointer). In our case, the �ags
will be integers c = 1, 2, · · · , nc. In classi�cation, we measure a vector x and want to classify
it. As the true class to which the vector belongs is unknown, the pointer c will be described
by a discrete random variable with its probability function f (c|x) where x is the vector to be
classi�ed.

Individual groups have their models f (x|c) = fc (x) which is a probabilistic description of vectors
x belonging to the class c.

Models

As we have seen, in connection with the tasks of clustering and classi�cation, we have two
models (for now, with known parameters).

Model of data
f (x|c)

Model of classi�cation
f (c|x)

These two models are connected via Bayes rule

f (c|x) = f (x|c) f (c)

f (x)
∝ f (x|c) f (c)
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where ∝ denotes proportionality.

We will demonstrate these models in the following example.

Example

Let the joint model f (c, x) = f (x|c) f (c) be described trough the conditional pdf

f (x|c = 1) = f1 (x) = Nx (µ1, 1) (10.1)

f (x|c = 2) = f2 (x) = Nx (µ2, 1) (10.2)

and the marginal

c 1 2
f (c) 0.4 0.6

Notice that each model is of a di�erent type. The data are continuous, so their model type is
also continuous (regression model), while the pointer is discrete and its description is a discrete
probability function. As the data model depends on the pointer, we have to de�ne two regression
models - for each pointer value one model. They di�er in parameters. The �rst component has
expectation µ1 while the second µ2. The model can be demonstrated in the picture

In the left part of the �gure, the model of the �rst component is shown. It is active (generates
data) in the 40%. In the right one there is the model of the second component, active at 60%
of cases.

Now, the joint model f (x, c) , is given by a product of the conditional data model and the
marginal pointer model; it is

f (x, c) =

{
0.4Nx (µ1, 1) for c = 1,

0.6Nx (µ2, 1) for c = 2,
forx ∈ R

This is how a mixed model (i.e. model with both continuous and discrete variables) can be
expressed.
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Having the joint distribution of the model, we can express arbitrary conditional or marginal
model. Conditional one of the data and marginal one for the pointer we already have - we have
de�ned them above. Now, we are going to determine the remaining two models.

Marginal data model

Is obtained by summing the joint model over all values of the pointer, i.e. for c = 1, 2. We get

f (x) = 0.4Nx (µ1, 1) + 0.6Nx (µ2, 1)

which is a weighted sum of two Gaussian distributions.

Classi�cation model

Can be computed as

f (c|x) =
f (c, x)

f (x)
or f (x|c) f (c)

f (x)
∝ f (x|c)︸ ︷︷ ︸
component model

f (c)︸︷︷︸
component prior

(10.3)

f (c|x) =

{
0.4Nx(µ1,1)

0.4N(µ1,1)+0.6N(µ1,2) for c = 1
0.6Nx(µ2,1)

0.4N(µ1,1)+0.6N(µ1,2) for c = 2
∝

∝

{
0.4Nx (µ1, 1) for c = 1

0.6Nx (µ2, 1) for c = 2

which is obvious (joint pdf is proportional to joint one), however, this is very important result
claiming that:

Result: The probability that x is to be classi�ed into the class c is proportional to the value of
the model of this component with the vector x inserted.

The classi�cation can run like this:

1. Measure new data vector x

2. Compute values of all component models with inserted vector x

3. Multiply them by probabilities of individual classes

4. Assign the vector to the component corresponding to the greatest computed value.

Remark

This holds for known models of components and pointer. If the parameters of these models are
unknown, they have to be estimated and their point estimates can be used instead of the true
parameters. It is an approximation but very good one. We will tackle this problem in more
details later.

In our example we have.

Let µ1 = 1, µ2 = 5 and the measured vector x = 2.45. The the values of the component models
are

f1 = 0.4
1√
2π

exp

{
−1

2
(2.45− 1)

2

}
= 0.056
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f2 = 0.6
1√
2π

exp

{
−1

2
(2.45− 5)

2

}
= 0.009.

The �rst value is greater, the point x = 2.45 belongs to the �rst component. The situation in
this simple example is clearly visible from the following picture

The point x lies closer to the �rst model, so the value of the model in x is greater.

Remark

The in�uence of the pointer model is not so important and is neglected in the picture. The main
e�ect is caused by the component models and their values will be called proximity as they express
the closeness of the measured point to the centers of individual components.

10.2 Naive Bayes classi�cation

This method is nothing but the previous case plus assumption of conditional independence of
data variables, i.e. entries of the data vector x. With this assumption we have

f (x|c) =

n∏
i=1

f (xi;t|c) .

Remarks

1. This formula can be explained by the assumed fact that the data in one cluster di�er only
by noise and thus are independent.

2. The independence brings considerable savings - instead of multidimensional model we can
use only several one-dimensional ones. For normal components, instead of large covariance
matrix we need only several (namely n) scalar variances.

The pointer model (10.3) has now the form

f (c|x) ∝ f (x|c) f (c) = f (c)

n∏
i=1

f (xi;t|c)

where f (xi;t|c) are scalar models of individual variables within the class c.
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10.3 Classi�cation with learning

Classi�cation 1 - known components

In this case(not very realistic from application viewpoint) we assume that the component models
f (x|c = i) , i = 1, 2, · · · ν, and switching probabilities f (c) , i = 1, 2, · · · ν are known. We have
measured one data record x = ξ and we are to estimate the most probable component to which
the record belongs (i.e. the value of c). The decision is described by the pf

f (c|ξ) ∝ f (ξ|c) f (c)

which is (e.g. for ν = 3)
f (c = 1|ξ) = kf (ξ|c = 1) f (c = 1)

f (c = 2|ξ) = kf (ξ|c = 2) f (c = 2)

f (c = 3|ξ) = kf (ξ|c = 3) f (c = 3)

The result of the decision is given by selecting the value of c with the greatest probability.

Remark

Similarly we can continue with the next measured records.

Classi�cation 2 - known pointer for learning

In this case we assume, that the components as well as the pointer probabilities are unknown,
However, we have a learning data sample x1, x2, · · ·xN together with the corresponding pointer
values c1, c2, · · · cN for learning. After learning we get x = ξ and we are to classify it.

Solution

Divide the learning sample x into clusters Cc, c = 1, 2, · · · , nc according to the learning sample of
pointer values. Then, for all xt ∈ Cc update the statistics Sct and �nally construct components.

Now, follow the previous case.

Remark

If the components are normal, the estimation consists in computing expectations x̄c and covari-
ance matrix Σc within each set Cc.

For categorical components the component parameters are normalized histograms of x within
all Cc.

Classi�cation 3 - EM-like algorithm

Here we assume that both component models and pointer values are unknown. It means that
we do not know to which component the data records xt, t = 1, 2, · · · , T belong, i.e. we do not
know which component is to be updated. Updating of all components with the same data has no
sense. All components would converge to the same model from their initial setting. So, we have
to initialize the components, for this setting we determine the pointer values (i.e. to each record
from dataset x we determine to which component it belongs) and then estimate components for
the created pointer. And this is repeated: for given components determine pointer values and
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for this pointer update parameters of the components. The end of iterations can be indicated
by the fact, that the pointer stays the same.

Algorithm

1. Take a dataset X = [x1, x2, · · · , xN ] for estimation

2. Set initial components and switching probabilities.

3. Determine pointer values f (c|X) ∝ αcf (xt|θc)
For t = 1 : N

f (c = 1|X) ∝ α1f (xt|θ1)

f (c = 2|X) ∝ α2f (xt|θ2)

· · ·

f (c = ν|X) ∝ ανf (xt|θν)

4. Recompute component parameters and switching probabilities

For i = 1 : ν do

(a) select subset of dataset whose records correspond to pointer value i

(b) use this subset for estimation of parameters of the i-th component f (x|θi)
for normal components - average and variance

(c) switching probabilities are relative frequencies of the pointer values

5. If the pointer changes, go to 3

Classi�cation 4 - mixture estimation

The �nal and and in applications most required salutation is when the mixture parameters are
unknown and we continuously get data records and we have to on-line estimate the mixture and
at the same time to classify the data. Then, we have to proceed as follows:

For a data record xt and the current estimate (or prior estimate) of the model parameters
determine the weights of the measured xt with respect to all components using the probability
function f (ct|xt) (its constitution is shown later).

The data record xt is added to all statistics with its weight

Sj;t = Sj;t−1 + wjxt,

κj;t = κj;t−1 + wj .

With new statistics the point estimates of the parameters are constructed.

Algorithm

Initial setting: Set initial parameters of component (θ, r,) switching probabilities (α) and cor-
responding statistics.

for t = 1 : nd
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1. measure data record xt

2. determine weights w
for j = 1 : nc

(a) qj = f (xt|θj) - proximity

(b) wj = ℵ (qjαj) - where ℵ means normalization to sum equal to 1
end

3. recompute statistics and parameters
for j = 1 : nc

(a) Sj;t = Sj;t + wjxt

(b) κj;t = κj;t + wj

(c) γj;t = γj;t−1 = wj

(d) θj =
Sj;t
κj;t

(e) αj = ℵ (γ)
end

end

Remarks

1. The derivation can be found in the textbook.

2. For component parameters, the point estimates have been used.

3. There are two main points used

(a) pointer estimation for new data record - the basis is f (c|x)

(b) update of statistics with the weight
- standard update: S = S + x
- for two identical x and x it is: S = S + 2x (weight)
- similarly for x valid with probability w it is: S = S ∗ wx (again weight)
and similarly for other statistics.

Derivation of mixture estimation

As in the beginning of this section, we looked for the classi�cation pdf f (c|x) . To be able to con-
struct it, now, we must introduce the model parameters θ and α for the models f (x|c = j, θj) , j =
1, 2, · · · , nc and f (c|α)

We start with pdf of all unknown objects f (c, θ, α|x) and perform its factorization

f (c, θ, α|x) ∝ f (x, c, θ, α)︸ ︷︷ ︸
joint pdf

= f (x|c, θ, α) f (c|θ, α) f (θ, α) =

= f (x|c, θc)︸ ︷︷ ︸
component model

f (c|αc)︸ ︷︷ ︸
pointer model

f (θ, α)︸ ︷︷ ︸
prior
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where the �rst two pdfs are parameterized models of data and pointer, the last one is a prior
description of parameters which is updated to posterior with the information carried by the data
vector x. From this relation for the joint pdf we can obtain all needed

1. The classi�cation (determination of the weights w)

f (c|x) =

∫
θ∗

∫
α∗
f (x, c, θ, α) dαdθ =

=

∫
θ∗

∫
α∗
f (x|c, θc) f (c|αc) f (θ, α) dαdθ

.
= (10.4)

=



f
(
x|c = 1, θ̂1

)
α̂1 for c = 1

f
(
x|c = 2, θ̂1

)
α̂2 for c = 2

· · · · · ·
f
(
x|c = nc, θ̂nc

)
α̂nc for c = nc

where θ̂1, θ̂2,· · · θ̂nc and α̂1, α̂2, · · · , α̂nc are current (or prior) point estimates of the
parameters.

2. The estimation (

f (θ, α|x) =
∑
c

f (x, c, θ, α) =

=
∑
c

[f (x|c, θc) f (c|αc)] f (θ, α) (10.5)

However, the summation form of the model in recursive estimation a serious trouble. As the
Bayes rule is a product of pdfs and the model is a sum, its repetitive calling produces the
posterior pdf in a form which gets more and more complex and its evaluation and storing in
memory is unfeasible. So, we must proceed as follows:

Suppose, we know the true component to which the measured data record belongs. Then we
can de�ne a pointer

δ (ct, ĉt) =

{
1 for ct = ĉt

0 elsewhere

where ct is random variable and ĉt its realization (the label of the true component). Thus, at
each time instant t the pointer denotes the component that is really true (active - the data
record xt belongs to it). However, in reality, we do not know the active component. So, we must
estimate the pointer as an expectation

E [δ (ct, ĉt) |x (t)] =
∑
cεct

δ (c, ĉt) f (c|x (t)) = P (c = ĉt|x (t)) for c = 1, 2, · · · , nc

which is a vector of probabilities that the c-th component is active. We will call that vector
actual components weights and denote it by wt = [w1;t, w2;t, · · · , wnc;t] where

wi;t = P (ct = i|x (t)) , i = 1, 2, · · · , nc

Remark
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Notice that wt depends on the actually measured data record xt. It is the di�erence between it
and the pointer model f (ct|α) . The pointer model expresses only historical knowledge about the
activities of the component while wt takes into account also xt which is most important for the
actual classi�cation.

The e�ect of the approximation is following: Formerly, we needed to know the true active
component. Now, we only need to know the probabilities that each individual component is
active. The knowledge of the true active component is not required. It is like in the following
picture

The pointer, now, is nothing but the classi�cation pdf f (ct|x (t)). It has been determined
formerly in (10.4).

Example

We will continue with the same example like in the preceding sections. We will:

1. Simulate a mixture with two static Gaussian components

f1 (xt|µ1) , µ1 = 1

f1 (xt|µ2) , µ2 = 5

with known variances equal to 1 and pointer model

f (ct|α) , α = [0.4, 0.6] .

2. Estimate the mixture with initial parameters

µ̂1;0 = 2, µ̂2;0 = 3, α̂ = [0.5, 0.5] .
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The program is here

The program is described inside. Only some notes are necessary:

1. Simulation: �rst the pointer value is generated and according it a corresponding component
is used for data generation.

2. The second part is estimation.

(a) First, the initial parameters m and al are speci�ed. K is the counter. Its initial value
expresses the strength of prior information (the �ctive number of data from which
the information has been extracted).

(b) Then, in the time loop, weights are computed. The computation is performed in
logarithms, then it is roughly normalized by subtracting maximum, then exponent is
taken and multiplication with al is performed and �nally normalized to sum equal to
one.

(c) In the end of the loop, statistics are updated by weighted data and point estimates
computed.

The results of estimation (classi�cation) are in the following pictures

Here the histogram of data sample is plotted. It can be seen, that the components are slightly
overlapping. The classi�cation is not trivial.
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Here, the simulated (blue) pointer values and the predicted (magenta) ones are plotted. The
prediction is �nally classi�ed to the class which is closer to it. It can be seen that at the
beginning, when the learning just started there are some errors. Gradually it improves and in
the end all classi�cations are correct.

And here is supplementary information - evolution of expectation estimated during estimation.
The initial estimates are gradually improved till they reach practically correct values (1 and 5).

Remark

The approach presented for the last time is practically equivalent to mixture estimation.
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11 Regression

Here, we will demonstrate the logistic and Poisson regression. They are both very similar:

1. They use nonlinear models with unknown parameters.

2. Their estimation is performed o�-line using numerical optimization. It has two phases:
learning and testing.

3. They need to cope with non-negativity of estimated parameters.

11.1 Logistic regression

Model for variable ct with Bernoulli distribution

f (ct|p) = pct (1− p)1−ct

with ct = 0, 1 is dichotomous model output p ∈ (0, 1) is the probabilistic parameter: p =
P (ct = 1).

The expectation of ct is
E [ct|p] = p

Now, we would like to extend this model so that its expectation will be modeled by regression
in the form

p→ x′b = b0 + b1x1 + · · ·+ bmxm

However, there are problems. p ∈ (0, 1), i.e. it is nonnegative and bounded from above.

1. The solution with respect to bounding is: instead of p to model p
1−p which is from the

interval (0,∞)

2. Nonnegativity of p
1−p can be solved by taking logarithm ln p

1−p . This variable is called
logit

logit (p) = ln

(
p

1− p

)
This logit will be modeled by regression

ln

(
p

1− p

)
= xtb

The �nal model f (ct|b) can be derived from the above expression and it has the form

f (ct|b) = p =

{
exp{xtb}

1+exp{xtb} for ct = 1
1

1+exp{xtb} for ct = 0

and using the fact that ct ∈ {0, 1} we can write the model as

f (ct|b) =
exp {ctxtb}

1 + exp {xtb}
.
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Note, that both the mentioned demands are ful�lled - p ∈ (0, 1), and nonnegative, indeed.

For estimation of the parameter p we will construct the likelihood function

LN (p) =

N∏
t=1

exp {ctxtb}
1 + exp {xtb}

where we used a trick for writing the model in a uni�ed form. For ct = 1 the nominator in the
model will be exp {xtb} and for ct = 0 it will be 1.

The log-likelihood is

lnLN (p) =

N∑
t=1

[ctxtb− ln (1 + exp {xtb})]

As the �rst and second derivatives of this expression can be computed analytically, the Newton
method for numerical maximization is very suitable. It is quick and has fast convergence.

Program

// DM_LogisReg.sce

// Example: Logistic regression with two independen variables

// ------------------------------------------

clc, clear, close, mode(0), warning('off')

getd _func

function LL=logLL(b,par)

// log-likelihood of logistic regression

x=par.x; // data x

y=par.y; // data y

Li=y.*(x*b)-log(1+exp(x*b)); // vector of log-models

LL=-sum(Li); // log-likelihood

endfunction

function [f,g,ind]=fun(b,ind,par)

// auxiliary function

f=logLL(b,par); // log-likelihood

g=numderivative(logLL,b); // gradient

endfunction

// SIMULATION ==================================================================

nd=200; // number of data

bS=[4 8 -1]'; // simulated parameter

sd=1; // regression noise z=x*b+sd*rand

x=[ones(nd,1) rand(nd,1,'n') 5-rand(nd,1,'n')];

z=x*bS+sd*rand(nd,1,'n');

p=exp(z)./(1+exp(z));

y=round(p);

// LOGISTIC REGRESSION --------------------------------------

b0=[0 0 0]'; // initial estimates of parameters (including ones)

par.x=x; // data x

par.y=y; // data y
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// estimation

fce=list(fun,par);

[LLopt, b, gopt, work, iters, evals, err]..

= optim (fce,b0,iprint=2,'ar',1e8,1e8); // optimization

b,err

z=par.x*b; // regression

p=exp(z)./(1+exp(z)); // p=P(y=1|x)

yp=round(p); // rounding <.5 ->0, >.5 -> 1

wrong=sum(y~=yp) // number of wrong classification

// RESULTS

set(scf(),'position',[800 10 500 300]);

plot(1:nd,y,'bx',1:nd,yp,'r.')

Ep=variance(y-yp)/variance(y) // relative prediction error

scf();

plot(jiggle(y),jiggle(yp),'.','markersize',3)

title 'y against yp - jiggled'

11.2 Poisson regression

Model with Poisson distribution

f (ct|λ) = exp {−λ} λ
ct

ct!
(11.1)

with ct = 0, 1, 2, · · · ,∞, λ > 0 it the expectation (average number of events per time unit).
Again, the expectation should be expanded by regression. The condition of upper limit is nor
demanded, but the non-negativity remains and is solved in the same way as for logistic regression
- by expanding logarithm of λ instead of λ itself

ln (λ) = xtb = b0 + b1x1 + · · ·+ bmxm.

Thus, for λ we have
λ = exp {xtb} .

The �nal model f (ct|λ) will be (11.1) with the above substitution - for log-likelihood we express
directly its logarithm

ln {f (ct|b)} = − exp {xtb}+ ctxtb− ln (ct!)

Log-likelihood is

lnLN (b) =

N∑
t=1

[− exp {xtb}+ ctxtb− ln (ct!)]

and it is maximized numerically.

Program to the Poisson regression is here
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// DM_LogisReg.sce

// Example: Logistic regression with two independen variables

// ------------------------------------------

clc, clear, close, mode(0), warning('off')

getd _func

function LL=logLL(b,par)

// log-likelihood of logistic regression

x=par.x; // data x

y=par.y; // data y

Li=y.*(x*b)-log(1+exp(x*b)); // vector of log-models

LL=-sum(Li); // log-likelihood

endfunction

function [f,g,ind]=fun(b,ind,par)

// auxiliary function

f=logLL(b,par); // log-likelihood

g=numderivative(logLL,b); // gradient

endfunction

// SIMULATION ==================================================================

nd=200; // number of data

bS=[4 8 -1]'; // simulated parameter

sd=1; // regression noise z=x*b+sd*rand

x=[ones(nd,1) rand(nd,1,'n') 5-rand(nd,1,'n')];

z=x*bS+sd*rand(nd,1,'n');

p=exp(z)./(1+exp(z));

y=round(p);

// LOGISTIC REGRESSION --------------------------------------

b0=[0 0 0]'; // initial estimates of parameters (including ones)

par.x=x; // data x

par.y=y; // data y

// estimation

fce=list(fun,par);

[LLopt, b, gopt, work, iters, evals, err]..

= optim (fce,b0,iprint=2,'ar',1e8,1e8); // optimization

b,err

z=par.x*b; // regression

p=exp(z)./(1+exp(z)); // p=P(y=1|x)

yp=round(p); // rounding <.5 ->0, >.5 -> 1

wrong=sum(y~=yp) // number of wrong classification

// RESULTS

set(scf(),'position',[800 10 500 300]);

plot(1:nd,y,'bx',1:nd,yp,'r.')

Ep=variance(y-yp)/variance(y) // relative prediction error
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scf();

plot(jiggle(y),jiggle(yp),'.','markersize',3)

title 'y against yp - jiggled'
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12 Clustering

The task of clustering consists in dividing the data space into several subspaces whose data are
somehow similar. Mostly the similarity is given by the distance of the points. We demand that
the points in a cluster are as close as possible and on the other hand the points between di�erent
clusters are as remote as possible. However, the sorting can be governed also by other rules as
e.g. color or shape of �data points�.

For us the clustering according to the distance will be decisive. The distance is mainly Euclidean
but it can also be some other, like Manhattan or Minkowski ones.

12.1 K-means algorithm

Let us have a data sample X = [x1, x2, · · · , xN ] where xt = [x1;t, x2;t, · · · , xn;t] is a data record
(point) and N is total number of data records. The algorithm of clustering is as follows

0. Determine the number of clusters ans set their initial centers.

1. For each data point measure the distance to all cluster centers and assign the point to the
nearest center. The points form clusters.

2. Compute the centroid (average) of points in each cluster and set it as its new center.

3. Check, if the centers changed. If yes, go to 1. If not, the algorithm ends.

Program

// DM_kmeans.sce

// K-means

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// SIMULATION

m=list();

m(1)=[0 1]';

m(2)=[5 2]';

m(3)=[3 8]';

n=[15 30 20]*10;

sd=1.5;

ny=length(m(1));
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y=[];

for i=1:3

for t=1:n(i)

y=[y m(i)+sd*rand(ny,1,'n')]; // data generation

end

end

// ALGORITM

nd=size(y,2); // number of data

nc=length(m); // number of clusters

yc=list(); cL=list();

// inicialization of centers

mi=min(y,'c');

ma=max(y,'c');

for j=1:nc

C(j).c0=(mi+ma)/2+rand(ny,1,'n'); // initial centers of clusters

C(j).c=C(j).c0; // first centers are initial ones

end

for it=1:1000

for j=1:nc

C(j).cd=[]; // initialization of clusters

end

// distances of data from nodes

for i=1:nd

for j=1:nc

d(j)=distance(C(j).c,y(:,i)); // distances of point from centers

end

[xxx,k]=min(d); // minimal distance point from the k-th center

C(k).cd=[C(k).cd y(:,i)];

end

df=0;

for j=1:nc

C(j).cs=C(j).c; // remember centers from last step

C(j).c=mean(C(j).cd,2); // new centers

df=df+sum(abs(C(j).c-C(j).cs)); // shift of centers

end

if df<.1

break // end of iterations

end

end

// RESULTS

k1=1:n(1);

k2=k1($)+1:k1($)+n(2);

k3=k2($)+1:k2($)+n(3);

set(scf(),'position',[800 200 600 400]);
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// data

plot(y(1,k1),y(2,k1),'kd','markersize',12)

plot(y(1,k2),y(2,k2),'ks','markersize',12)

plot(y(1,k3),y(2,k3),'ko','markersize',12)

// clusters

plot(C(1).cd(1,:),C(1).cd(2,:),'r.','markersize',3)

plot(C(2).cd(1,:),C(2).cd(2,:),'b.','markersize',3)

plot(C(3).cd(1,:),C(3).cd(2,:),'g.','markersize',3)

title('Data and found clusters','fontsize',4)

disp(it,'number of iterations')

Description of the program

De�nition of the distance

Simulation

Three centers m, standard deviation of data in clusters sd are set. Two dimensional data
generated in loop. In the i-th cluster n (i) data points are simulated.

Algorithm

Structure variable C is de�ned. It has items .c0 - initial centers, .c - new centers, .cs - centers
from previous step, .cd - points in a cluster. It runs according to the list above.

12.2 K-medoids algorithm

This algorithm is similar to k-means with the di�erence, that centers (medoids) are always data
points. The algorithm is:

0. Randomly select m data points - medoids. The rest of points are called non-medoids.

0. To each medoid �nd the non-medoids that are closest to it. They form clusters.

0. Determine overall distance of non-medoids from their medoids.

1. Randomly select one medoid and one non-medoid and swap them.

2. Re-construct clusters and determine overall distance.

3. If the distance is repeatedly not smaller, stop the algorithm othervise continue by 1.

Program

// DM_cmedoids.sce

// c-medoids (simple - like genetic alg.)

// ------------------------------------------

clc, clear, close, mode(0)
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getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

function d=distXY(X,Y)

// Distance of vectors X and Y

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nX);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j));

end

end

endfunction

function dc=updateCls(md,s,u,y)

// update of all distances after update of medoids

// dc distances points from individual medoids: matrix md X nd

// md nuber of clusters

// s indexes of medoids

// u indexes of non-medoids

// construction of new clusters

d0=distXY(y(:,s),y(:,u)); // distances between medoids and non-medoids

[xxx,ic]=min(d0,'r'); // ic(k) is label of cluster

c=list(); // to which y(:,k) belongs

for j=1:md

c(j)=find(ic==j); // c(k) is vector of indxes of y

end // which belong to cluster k

// evaluation of new clusters

for j=1:md

dc(j)=sum(distXY(y(:,s(j)),y(:,c(j))));

end // sum of distances data from medoids

endfunction // = optimality criterion

// ===================================================================

// SIMULATION

m=list();

m(1)=[1 1]'; // data centers

m(2)=[5 2]';

m(3)=[3 8]';

sd=.5; // std of data

al=fnorm([1 3 2]); // prababilities of modes

ny=length(m(1)); // dimension of y

nc=length(al); // number of modes
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nd=200; // length of data

md=3; // number of initial centers (points)

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=m(i)+sd*rand(ny,1,'n'); // data generation

end

// CLUSTERING - first step

s=samwr(1,md,1:nd); // first medoids

u=setdiff(1:nd,s); // first non-medoids

dc=updateCls(md,s,u,y); // distances within initial clusters

d0=sum(dc);

dd=d0;

dd0=d0;

ss=s';

// CLUSTERING - iterations

for ite=1:1000

s0=s; // remember medoids from last step

u1=samwr(1,1,u); // choice of one non-medoid

s1=samwr(1,1,s); // choice of one medoid

// swap one medoid and one non-medoid

s=setdiff(s,s1);

s=[s,u1]; // new medoids

u=setdiff(1:nd,s); // remaining non-medoids

dc=updateCls(md,s,u,y); // new distances in clusters

d=sum(dc);

if abs(d-d0)<.001 // test of end of iterations

printf(' Po£et krok· %d\n\n',ite)

break

end

if d<d0 // test in the end of iteration (go on / go back)

d0=d; // crit OK - remember its value

else

s=s0; // crit is not OK - go back to original medoids

end

// remember

dd=[dd d];

dd0=[dd0 d0];

ss=[ss s'];

end

chk=[dd0;dd;ss];
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// RESULTS

C=y(:,s);

scf();

plot(y(1,:),y(2,:),'.')

plot(C(1,:),C(2,:),'rx','markersize',12)

Program description

Function de�nition

- updateCls recomputes centers and evaluates the overall distance of points from medoids within
individual clusters.

Simulation

Two dimensional data y are generated. nd is number of data, md is number of clusters.

Initialization

Select medoids, the rest of points are non-medoids. Compute the overall distance.

Iterations

Chose one medoid and one non-medoid. Swap them. Compute the overall distance and compare
with the previous one. Check for the end.

12.3 Fuzzy clustering

C-means algorithm

In the c-means algorithm we minimize criterion

J =

N∑
i=1

m∑
j=1

ukij‖xi − cj‖2, k ≥ 1

where uij is a degree of membership of the point xi to cluster cj and ‖ · ‖ is a norm.

The update of weights uij is performed as follows

- determine the centers (weighted average - follows from the criterion)

cj =

∑N
i=1 u

k
ijxi∑N

i=1 u
k
ij

- weights (are given as membership functions)

uij =
1∑m

z=1

(
‖xi−cj‖
‖xi−cz‖

) 2
k−1

(12.1)

Algorithm

0. Compute the initial matrix of membership U.

1. Construct the centers cj with existing matrix U.

2. Update the matrix U .

3. If ‖Unew − Uold‖ < ε, END otherwise go to 1.
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Program

// DM_cmeans.sce

// c-means (fuzzy)

// Remark: weights are computed in the function CMupdt

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// ------------------------------------------

function d=distXY(X,Y,p)

// Distance of vectors X and Y

if argn(2)<3, p=1; end

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nY);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j),p);

end

end

endfunction

// ------------------------------------------

function [c,d]=CMupdt(c,y)

// computation of weights and centers

// c clusters

// y data

// distances d

d=distXY(c,y); // distances of points and medoids

// weights u

v=ones(d)./(d+1e-8); // membership function

u=fnorm(v,1); // normoalization over clusters

// centers c

un=fnorm(u,2); // normalization over points

for j=1:size(c,2)

c(:,j)=y*un(j,:)';

end

endfunction

// ------------------------------------------

function c=clusters(dn)
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// indexes of points for individual clusters

// dn normed distances

// c list of indexes of points for clusters

[xxx,ic]=min(dn,'r');

c=list();

for j=1:size(dn,1)

c(j)=find(ic==j); // clusters

end

endfunction

// ------------------------------------------

// SIMULATION

cS=list();

cS(1)=[1 1]'; // centers for simulation

cS(2)=[5 2]';

cS(3)=[3 8]';

sd=.8; // stdev of points

al=fnorm([1 3 2]); // prababilities of modes

ny=length(cS(1)); // dimension of y

nc=length(al); // number of modes

nd=50; // length of data

md=3; // number of initial centers (points)

// SIMULATION

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=cS(i)+sd*rand(ny,1,'n');

end

// CLUSTERING - first step

p=2; // distance [(p-q)'*(p-q)]^(p/2)

j=fix(nd*rand(1,md,'u'))+1; // indexes of initial centers

c=y(:,j); // initial centers

[c,d0]=CMupdt(c,y); // first update of centers

sd0=sum(d0);

// CLUSTERING - iteration

for ite=1:1000

[c,d]=CMupdt(c,y); // new centers (medoids)

sd1(ite)=sum(d);

if abs(sd1(ite)-sd0)<.001 // test of the end of iterations

printf(' Po£et iterací %d\n',ite)

break

end

sd0=sd1(ite);

end

cL=clusters(d); // indexes of points in clusters

62



// RESULTS

tx=['r.';'m.';'g.'];

scf();

plot(y(1,:),y(2,:),'x','markersize',7)

for j=1:md

if ~(isempty(y(1,cL(j))) | isempty(y(2,cL(j))))

plot(y(1,cL(j)),y(2,cL(j)),tx(j),'markersize',6)

end

end

plot(c(1,:),c(2,:),'s')

Program description

Function de�nitions

- CMupdt computes distances of points from centers. First normalizes over clusters and then
over points. Finally creates clusters using the u-weights.

- clusters constructs clusters according to the distances m.

Simulation - standard

Initialization - updating of clusters (new centers)

Iterations - update of clusters (new clusters). Check for end of the algorithm.

12.4 Density based clustering

Dbscan

We have a set of data X = {x1, x2, · · · , xN} , where xi ∈ Rn

We de�ne:

• Distance of two points x and y and denote it by d (x, y) .

• ε-neighborhood of point x

Oε (x) = {x ∈ X : d (x, y) < ε} .

• Inner point is such one that has in its neighborhood at least given number of points.

• A point y is accessible from the point x, if a sequence of inner points from x to y exists.

• A connection between points x a y exists, it both these points are accessible from some
inner point.

Algorithm of clustering

1. For each point from X �nd its ε-neighborhood.

2. De�ne variables �clus� and �bu�� (for storing points).
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3. To �clus� put a single inner point and to �bu�� its neighborhood.

4. Select one point (e.g. the �rst one) from �bu��. Add it to �cluss� and its neighborhood
add to �bu��.

5. From �bu�� remove all points that have already been used (those that are in some cluster).

6. Repeat from 4. until �bu�� is not empty. Otherwise continue.

7. Remember the created cluster �clus� and prepare the variable for new one.

8. If there exists another free inner point, put it to �clus� and go to 4. If not, stop the
algorithm.

Clusters are formed by points that are connected.

Program

// DM_dbscan.sce

// Dbscan

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

function b=board(x)

// boards for graph

b=[min(x(1,:))-.2 max(x(1,:))+.2 min(x(2,:))-.2 max(x(2,:))+.2];

endfunction

// SIMULATION

p=[.1 .2 .1 .4 .2]; // switchin parameter

th=[0 0; 0 3; 1 2; 2 1; 3 3]'; // centers

nd=100; // number of data

for i=1:nd

j=sum(randu(1,1)>cumsum(p))+1;

x(:,i)=.3*randn(2,1)+th(:,j);

end

bo=board(x);

// CLUSTERING

eP=.5; // radius of neighbourhood

mP=3; // minimum of points

// marking of inner points

V=[]; // inner points

X=list(); // neighbourhood of inner points
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for i=1:nd

X(i)=[];

for j=setdiff(1:nd,i)

if distance(x(:,i),x(:,j))<eP

X(i)=[X(i) j]; // indexes of neighbourhood

end

end

if length(X(i))>=mP

V=[V i]; // inner points

end

end

// creation of

C=list(); // clusters

b=V(1); // auxiliary variable

M=[]; // already used points

k=1; // label of actual cluster

for h=1:100 // cycle for various clusters

CC=[]; // actual cluster

while ~isempty(b) // cycle for one cluster

b1=b(1); // one inner point

CC=[CC b1]; // new point to cluster

b=union(b,X(b1)); // add neighbourhood to b (auxiliary var.)

b=setdiff(b,CC); // removing just used point from b

end

if isempty(CC)

break // end of algorithm

end

M=[M CC]; // remembering points from a cluster

Vr=setdiff(V,M); // inner points that are still not used

if 1

C(k)=gsort(CC,'g','i'); // actual cluster(with border)

else

C(k)=intersect(V,CC); // actual cluster(without border)

end

k=k+1; // next cluster

b=Vr(1); // still not used point -> b

end

nC=length(C); // number of clusters

// RESULTS

tx=['.r';'.b';'.g';'.m';'.k'];

set(scf(),'position',[600 100 900 400])

subplot(121)

plot(x(1,:),x(2,:),'c.') // data

set(gca(),'data_bounds',bo)

title Data

subplot(122)

for i=1:nC
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plot(x(1,C(i)),x(2,C(i)),tx(i)) // clusters

end

set(gca(),'data_bounds',bo)

title Clusters

Example

Let us have 10 points as demonstrated in the picture

Points are circles and are plotted in a net with unit step. Parameter eps = 1.1, minimum
number of points is mp = 2. Then points

• 3, 4, 8, 9, 10 are inner points

• 2, 5, 6, 7 are border points

• 1 is noise points.

Cluster construction

If the points are two-dimensional, the best way is to draw them in a plane (as in the picture
above) and to select the clusters manually. Start with arbitrary free inner point and add to it
all connected points. Repeat until all points are classi�ed.

Here the result is:

Cluster1 = {2, 3, 4, 5} a Cluster2 = {6, 7, 8, 9, 10}.

The point 1 is noise.
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12.5 Hierarchical clustering

Agglomerative clustering

There is a lot of variances of this method. We will show here one of them which is very simple.
The algorithm is here:

1. All data points are denoted as clusters on the level 1 (with only one point).

2. Find two nearest clusters and join them together in one cluster. Its level is equal to the
number of points in joined clusters.

3. The coordinates of the cluster lie on a connecting line of the coordinates of clusters to be
joined in the proportion of their levels (the higher level the nearer).

4. Remember the clusters from which the new ones have been created (hierarchy).

5. Repeat from 2 until only one cluster remains.

Remarks

1. The distance is Euclidean. It is computed between coordinates of clusters.

2. Coordinates of clusters on the level 1 are those of the points. For clusters generated by
joining clusters with coordinates with levels hi a hj are coordinates given as follows:
The line connecting coordinates of the two clusters is

x = xi + t (xj − xi) , t ∈ (0, 1)

The point in the ratio of the levels (nearer to the cluster with higher level) is given by the

parameter t =
hj

hi+hj
. So

x = xi +
hj

hi + hj
(xj − xi) =

hixi + hjxj
hi + hj

3. Dendrogram is a special graph that shows the structure of hierarchical clustering as shown
in the picture

1 2 5 3 4

7

9

8

6

The resulting clusters can be determined on the basis of the dendrogram which can be drawn
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manually. The program gives the matrix C, where in each row the number of cluster, the
distance of the coordinates of parents, and numbers of the parents can be found. The
drawing will start in the cluster with the highest number (the last row of the matrix). In
the graph, in the middle of the axis x and in the level of the distance (the second column
in the matrix) on the axis y, we draw a circle and write a number of the cluster inside it.
In the matrix C, �nd the parents of the node and draw the circles with their numbers in a
corresponding levels on the axis y (the position on the axis x is arbitrary). We repeat this
procedure until we exhaust all clusters that have been created by joining, only clusters with
level one remain.

According to the desired number we can proceed as follows in determining the clusters :

We draw a horizontal line that intersect vertical lines of the dendrogram. The line can be shifted
up or down. The number of intersections of the horizontal line with the vertical ones gives the
number of created clusters. The points belonging to individual clusters are in the axes x below
the intersection.

Example

We have 5 points

i 1 2 3 4 5
y1 4.6 4.0 2.4 1.0 -1.2
y2 -2.3 0.3 7.2 9.2 4.0

The matrix C is

C =


6, 2.44, 3, 4
7, 2.67, 1, 2
8, 5.10, 5, 6
9, 8.58, 7, 8
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Construction of dendrogram starts with the last row (the cluster 9). We draw a circle in the
middle of the axis x and in the height 8.58. Its parents are clusters 7 and 8. Those can be
drawn to the left and right from the node 9 in heights 2.67 and 5.10. We continue in this way
until we obtain the dendrogram according to the following picture

1 2 5 3 4

7

9

8

6

If we cut the dendrogram so that we obtain three intersections, we obtain the clusters

C1 = {1, 2} , C2 = {5} , C3 = {3, 4} .

A comparison with the data plot con�rms the clusters created.

Two clusters would be C1 = {1, 2} a C2 = {3, 4, 5} .

Program

// DM_hierAgl.sce

// Hierarchical clustering (agglomerative)

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y)

x=x(:); y=y(:);

e=x-y;

d=sqrt(e'*e);

endfunction

// ===================================================================

// SIMULATION ----------------------------------------------------------
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m=list();

m(1)=[1 1]'; // centers

m(2)=[5 2]';

m(3)=[3 8]';

sd=2.5; // stdev of points

al=fnorm([1 3 2]); // switching parametwr

ny=length(m(1)); // number of variables

nc=length(al); // number of modes

nd=5; // number of data

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=m(i)+sd*rand(ny,1,'n'); // simulation

c(1,t)=i;

end

// structre variable definition

for i=1:nd

cL(i).y=y(:,i); // data point or cluster

cL(i).n=1; // numb. of points in cluster

cL(i).p=[]; // parents

cL(i).v=[]; // distance

end

// ALGORITHM

nc=nd;

cc=1:nd;

for ite=1:(nd-1)

lc=length(cc);

d=zeros(lc,lc);

for i=1:lc

for j=1:lc

if i<j

d(i,j)=distance(cL(cc(i)).y,cL(cc(j)).y); // distances between points

else

d(i,j)=%inf; // symmetrical entries

end

end

end

// grouping points

[v,ii]=min(d); // nearest point

i1=ii(1);

i2=ii(2);

nc=nc+1;

n1=cL(cc(i1)).n;

n2=cL(cc(i2)).n;

y1=cL(cc(i1)).y;
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y2=cL(cc(i2)).y;

cL(nc).y=(n1*y1+n2*y2)/(n1+n2); // joining two points (clusters)

cL(nc).n=n1+n2;

cL(nc).p=cc(ii);

cL(nc).v=v;

cc(ii)=[];

cc=[cc nc];

end

// determining clusters

C=[];

for i=(nd+1):(2*nd-1)

C=[C; [i cL(i).v cL(i).p]];

end

// RESULTS

set(scf(),'position',[800 100 600 500])

tx=['.r';'.b';'.g';'.k';'.m';'.y'];

tn=['1','2','3','4','5'];

for i=1:nd

plot(y(1,i),y(2,i),tx(i,:),'markersize',8)

end

legend(tn(1:nd),-2);

disp(' node distance p1 p2 (p = parents)')

disp(C)

Divisive clustering

In divisive clustering we proceed from top to bottom. We start with one cluster that contains all
data points and subsequently we divide clusters so that there would be minimal point distances
in clusters and maximal distances between clusters. For a given de�nition of the distanceD (x, y)
we introduce following notions

Big cluster CT - is a cluster to be divided.

Left and right cluster CL a CR - clusters created by division

Distance between clusters CL and CR - ILR

Distance inside clusters - UL, UŔ

Distance of the divided cluster - UT = ILR + UL + UR (it is sum of distances from each point
from CL to each point from CR - it is independent on division)

Task: to �nd CL a CR so that

HLR = (1− α) ILR︸︷︷︸
H1

−α [UL + UR]︸ ︷︷ ︸
H2

→ min

This task is combinatorial and it is np-hard. For its approximative numerical solution we will
use the method called
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Avalanche method.

We have a cluster CT (in the beginning the whole data sample), which is to be divided.

We introduce CL as an empty set and CR as the whole cluster CT .

1. In CR we �nd anti-medoid - i.e. the point which is maximally remote from all other points
in the cluster CR.

2. We shift anti-medoid into the cluster CL a compute the value of the criterion HLR.

3. We try to add another point that is closer to the previously added.

4. If the value of the criterion increases we leave the point in CL and we go to the point 3.
If it dos not increase, the algorithm ends.

Program

// DM_hierDiv.sce

// Hierarchical clustering (divisive)

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// ------------------------------------------

function d=distXY(X,Y,p)

// Distance of vectors X and Y

if argn(2)<3, p=1; end

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nY);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j),p);

end

end

endfunction

function h=H1(cL,cR,y)

// sum of mutual distances of points

h=0;

for i=cL

for j=cR

h=h+distance(y(:,i),y(:,j));

end

end
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endfunction

// ===================================================================

// DATA

nd=120;

py=[.3 .5 .2];

th=[-2 6; 6 3; 8 15]';

cv=3;

for i=1:nd

iy=sum(rand(1,1,'u')>cumsum(py))+1;

y(:,i)=th(:,iy)+cv*rand(2,1,'n');

end

// ALGORITHM

c=list();

cL=1:size(y,2); // data indexes

for itA=1:100 // iterations between clusters

cR=[];

// initialization

D=distXY(y(:,cL),y(:,cL));

Da=sum(D,2);

[xxx,cc1]=max(Da); // cc1 - pointer to anti-medoid

c1=cL(cc1); // c1 - index of anti-meoid

ci=cc1; // ci - storing of used clusters

cL=setdiff(cL,c1); // old (all)

cR=union(cR,c1); // new (is added)

h2=H1(cL,c1,y);

// iterations in one cluster

for ite=1:100

Dn=zeros(cL);

for i=1:length(cL)

Dn(i)=distance(y(:,c1),y(:,cL(i)));

end

[xxx,cc2]=min(Dn);

c2=cL(cc2);

ci=[ci cc2]; // is added for trial use

cL=setdiff(cL,c2);

cR=union(cR,c2);

h1=H1(cL,cR,y);

c1=c2; cc1=cc2;

if h1<=h2

ci=setdiff(ci,cc2); // if not used, it is removed
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break

end

h2=h1;

end

c(itA)=cR;

if isempty(cL), break, end

end

// RESULTS

tx=['.r';'.b';'.g';'.k';'.m';'.y';'*r';'*b';'*g'];

set(scf(),'position',[800 100 600 500])

for i=1:length(c)

plot(y(1,c(i)),y(2,c(i)),tx(i))

end

c
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13 Classi�cation

By classi�cation we mean assignment of a data record (point) to some cluster or more clusters
each with its probability. Here, we mostly assume, that clusters have already been created by
some clustering method.

13.1 K-nearest neighbour

It is a basic form of classi�cation.

We have data X = {xi}Ni=1 with detected clusters. We can get them using some method of
clustering. The task is: for a newly measured data point y, to assign it to some cluster.

The procedure of classi�cation is following:

1. Compute the distance of the point y from all points from xi ∈ X.

2. Determine k points xi, i = 1, 2, · · · , k nearest to y.

3. Assign y to the cluster to which majority of the k nearest points belongs.

Remark

If there are more than one such cluster, take the �rst of them.

Program

// DM_knearest.sce

// K nearest neighbour

// ------------------------------------------

clc, clear, close, mode(0)

getd _func

function d=distance(x,y,p)

// Euclidean distance (for p=1)

if argn(2)<3, p=1; end

x=x(:); y=y(:);

e=x-y;

d=(e'*e)^(p/2);

endfunction

// ------------------------------------------

function d=distXY(X,Y,p)

// Distance of vectors X and Y

if argn(2)<3, p=1; end

nX=size(X,2);

nY=size(Y,2);

d=zeros(nX,nY);

for i=1:nX

for j=1:nY

d(i,j)=distance(X(:,i),Y(:,j),p);

end
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end

endfunction

function tx=scfmark()

// marks for plot

tx=['.b';'.r';'.g';'.k';'.m';

'xb';'xr';'xg';'xk';'xm';

'db';'dr';'dg';'dk';'dm';

'sb';'sr';'sg';'sk';'sm';

'*b';'*r';'*g';'*k';'*m';

'pb';'pr';'pg';'pk';'pm';

'+b';'+r';'+g';'+k';'+m';

'ob';'or';'og';'ok';'om'];

endfunction

function [h,f]=vals(a)

// [h f]=vals(a) find different values of a variable

// and their frequencies

// h values and frequencies [vals;abs_freq]

// f relative frequencies

a=a(:)';

b=gsort(a,'g','i');

[v,m]=unique(b);

dm=diff(m);

n1=length(b)+1;

n=[dm n1-m($)];

f=n/sum(n);

h=[v(:)';n];

if sum(n)~=max(size(a))

disp('Error: in vals.sci')

return

end

endfunction

// ===================================================================

// SIMULATION

m=list();

m(1)=[1 1]';

m(2)=[5 2]';

m(3)=[3 8]';

sd=2.5;

al=fnorm([1 3 2]);

ny=length(m(1));

nc=length(al);

nd=130;

for t=1:nd

i=sum(rand(1,1,'u')>cumsum(al))+1;

y(:,t)=m(i)+sd*rand(ny,1,'n'); // data generation
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c(1,t)=i;

end

// ALGORITHM

k=15; // k nearest neighbour (this is k)

i=sum(rand(1,1,'u')>cumsum(al))+1;

z=m(i)+sd*rand(ny,1,'n'); // choice of a point

ic=i;

d=distXY(z,y);

[ds,j]=gsort(d,'g','i');

jk=j(1:k); // the nearest k points

ck=c(jk)

v=vals(ck);

[xxx,i]=max(v(2,:));

cz=v(1,i)

// RESULTS

tx=['.r';'.b';'.g';'.k';'.m';'.y';'*r';'*b';'*g'];

scf();

for j=1:length(m)

i=find(c==j);

plot(y(1,i),y(2,i),tx(j),'markersize',3)

end

legend('1','2','3');

plot(z(1),z(2),'ko','markersize',8)

13.2 Decision trees

Let us have discrete data records xt = [x1, x2, · · · , xn]t , t = 1, 2, · · · , N and a pointer variable
ct ∈ {1, 2, · · · ,m} which is a label of the class (cluster) to which the record xt belongs.

The principle of tree construction if following:

We construct a matrix from the data records and add the pointer variable ct as its last column.
We have matrix N × (m+ 1)

X = [xti, ct] , t = 1 : N, i = 1 : m

We chose some variable xi and according to its values we sort the remaining parts of the matrix
into groups. Then, in each group we again select a variable and do the same. We repeat this
procedure until each group contains only one value of the pointer. If some �nal group has more
than one pointer value, the decision is probabilistic.

It is clear that the subsequent choice of variables is very important for a success of the task.
However, the proper choice is a combinatorial task for which we need to use some heuristic
methods. One of them is illustrated in the following example.

Example

Let us have the following data
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t x1 x2 c
1 1 1 1
2 1 2 1
3 2 1 2
4 2 2 2

where x1, x2 are data records and c is pointer variable.

It is evident, the variable x1 decides about the classi�cation (on the basis of only the variable
x1 we can decide about classes of all records). The tree for the order of variables x1 - x2 is

If we swap the order of variables to x2 - x1 we get the tree longer and more complex

However, both the trees led to deterministic decision making (the �nal percent are 100%).

If we supply the data by one more record (the last row of the table)

78



t x1 x2 c
1 1 1 1
2 1 2 1
3 2 1 2
4 2 2 2
5 2 2 1

which is in contradiction with the others, the thee will be like this

In the second layer, the decision is probabilistic..

Implementation of the task in KNIME

We take an example from web https://tanthiamhuat.�les.wordpress.com/2015/10/decision-tree-
tutorial-by-kardi-teknomo.pdf

Example

The data bring information about the ways in which people go to work.
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(13.1)

sex has a car? fare income way
M 0 L N B
M 1 L S B
Z 1 L S V
Z 0 L N B
M 1 L S B
M 0 S S V
Z 1 S S V
Z 1 D V A
M 1 D S A
Z 1 D V A

kde �sex�, �car�, �fare� and �income� data records and �way� is a value of the pointer variable.

The values of variables are:

sex: M = man, Z = woman;

car: 0 - does not have, 1 - has

fare: L - low, S = medium, V - high;

way: B - bus, V - train, A - car.

The task is to decide about the way (B, V, A) on the basis of the values in data records.

We are going to show the solution in KNIME.

1. Data can be set into table e.g. in EXCEL and exported as csv table to disk.

2. In KNIME we open a New KNIME work�ow (icon new).

3. In KNIME in the left side there is a window Node Repository (here icons of various tasks
are found).

(a) In IO we �nd Read and File reader and drag it by mouse to the working area. An
icon of the Reader appears. We click on it by left mouse button (or twice by the
right) and we obtain menu Con�guration
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Here (up) we can set the name of the data csv �le. Most of the rest is set automati-
cally.
But important !!!

• The pointer variable must be set as string. The rest of variables can stay as they
are.

• Strings are sorted by values the other by intervals.

• The change of the variable type can be done in the menu which can be obtained
by clicking at the title of the variable in the data table below. After a click a
menu window appears in which the type can be selected.

• W click once again at the icon of the task and select Execute (or press F7).

(b) Next, in the window Node Repository open the folder Analytics and Mining and
select the tool Decision Tree Learner, drag it to working area and by mouse connect
it with the Reader (by the black small triangles).
Press F7.

(c) Further, we can choose the tool Decision Tree Prediction, and possibly Decision Tree
to Ruleset. The small triangles are always connected to Reader, small blue rectangles
subsequently with the new tool (they generate the model of the task).

4. The results can be stored by the tool IO/Write/CCVWriter or directly checked by clicking
by the left mouse and opening
in Learner the menu Decision tree view
in Prediction the menu Classi�ed Data
in Ruleset the menu Rules table

The overall view on the task in KNIME is following
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Remark

If the tree ends prematurely, it is necessary to set Number of records per node = 1 in the menu
Con�gure in the tool Decision Tree Learner. It means that the decision rule can be derived from
only one data record.

13.3 Support vector machines

In this task, we are going to �nd hyperplane in the data space that separates the space into two
sub-spaces, one with y = 1 and second with y = −1. If the points are linearly separable, the
result will be without errors. In addition, we demand so that the hyperplane would separate the
points optimally. It means that the points should lay as far as possible from the hyperplane.

Theory

We will demonstrate the task in a plane (with two variables). The data sample is X =
{x1, x2, · · · , xN} where xi = [x1, x2]i is i-th data record. In this case, the hyperplane will
be a line as indicated in the picture

Here we have a sample of �ve points x1, x2, x3, x4 and x5. The separating line is drawn
dashed and it separates the points whose attributes are �circles� (up) and �crosses� (down). The
attributes can be expressed numerically by 1 and -1 as values of a variable y

x x1 x2 x3 x4 x5

y 1 -1 1 1 -1
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The points with y = 1 form the set B+, those with y = −1 the set B−. So, it is

B+ = {x1, x3, x4} , and B− = {x2, x5} .

The task is to �nd a line which separates the points and maximizes the distance of points from
itself.

Let us denote the separating line as α′x + β = 0. The parallel line above it is α′x + β + δ = 0
and below it α′x+ β − δ = 0 for any δ > 0. All these equations are over-parameterized, i.e. can
be divided by some nonzero number. We will divide them by δ and get

separating line
w′x+ b = 0

lines above and below
w′x+ b± 1 = 0

For all x1 above the above line we have the condition

w′x+ b+ 1 > 0

and below the below line the condition is

w′x+ b− 1 < 0.

The second condition can be multiplied by -1

− (w′x+ b) + 1 > 0

and using the fact that yi = −1 for all xi below and yi = 1 for xi above, we have

yi (w′xi + b) + 1 > 0

this single condition for all the points xi (compare the original condition above and the modi�ed
condition below). The equality holds for parallels as borders of the above and below area.

Now, we want the above and below lines would be as far as possible one from the other. The
distance of parallel lines is measured as a distance of intersections of the lines and a vertical to
them. Such a vertical has equation

x = m+ t
w

|w|
where m is a �xed point, x is arbitrary point on the vertical and t is a parameter. |w| is the
length of w and thus w

|w| is a unit vector. In this case the distance of the points x and m is

|x−m| = t
|w|
|w|

= t,

and it is directly equal to t. Now, we choose that x is a point on the parallel and m lies on the
separating line. Then x must ful�ll the equation for the parallel and m for the separating line.
Tu this end we multiply the previous equation by w′, add b to both sides and we obtain

| w′x+ b+ 1︸ ︷︷ ︸
=0 (parallel)

−1− w′m+ b︸ ︷︷ ︸
=0 (separ.)

| = +t
w′w

|w|
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and the result is

1 = t
w′w

|w|
= t|w|

The distance is

t =
1

|w|

which is to be maximized. From it the task is

|w| → min

on condition that
yi (w′xi + b) + 1 > 0

As both w and b are to be optimized, the task is nonlinear and the solution rather complex.

Program KNIME

Create tho following program scheme

Block 1: Reading data.

Block 6: Division of data to learning and training parts.

Block 2: Estimation (learning).

Block 3: Prediction (classi�cation).

Block 15: Frequencies of classi�cation (table: from / to).

Block 16: Write results to disk.

Block in the yellow frame: Show graph of the found clusters .

Remarks

1. The results can be found after clicking on the task icon down in the menu.
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2. The data �le can be changed directly on disk. If there are new variables (not only values),
it is necessary to perform new Con�guration otherwise only to run Execute.

3. If the results are stored on disk, we have a possibility to investigate them in some other
program - probably in Excel. To this end it is necessary to:

(a) Set semicolon as data delimiter - in menu menu of the icon of CSV Writer, in the
item Con�gure / Advanced.

(b) In the menu Con�gure / Settings it is good to set Overwrite in the item If �le exists
...

Scatter plot

Table of classi�cations
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Part III

Supplements

14 Competition to squares

For normal distribution it is equivalent to decomposition of joint pdf to conditional and marginal
ones. Is useful for integration.

Scalar case

For scalar variables x a y and constants a, b, c it holds

ax2 + 2bxy + cy2 = a

[
x2 + 2x

b

a
y +

(
b

a
y

)2

−
(
b

a
y

)2
]

+ cy2 =

a

(
x+

b

a
y

)2

+ cy2 − b2

a
y2 = a

(
x+

b

a
y

)2

+
ac− b2

a
y2.

Vector case

For variables x a y (column vectors) and constant matrices A, B, C with corresponding dimen-
sions, A a C symmetric, it holds

x′Ax+2x′By+y′Cy = x′Ax+2x′AA−1By+
(
A−1By

)′
AA−1By−

(
A−1By

)′
AA−1By+y′Cy =

=
(
x+A−1By

)′
A
(
x+A−1By

)︸ ︷︷ ︸
kvadrát

+ y′
(
C −B′A−1B

)
y︸ ︷︷ ︸

zbytek

.

Remark

For vectors it holds ax2 corresponds to x′Ax.

15 Natural conditions of control

Assumption, that the information about unknown parameter Θ and used for construction of new
control variable ut is the same and it is gained only from data d (t− 1) = {y (t− 1) , u (t− 1)} .
Then it holds

f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1)) .
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I.e. now new information about Θ can be extracted from ut that that, which already is in
d (t− 1) .

Using Bayes rule, we can also write

f (ut|Θ, d (t− 1))) = f (ut|d (t− 1))

Remark

Natural Conditions of Control are abbreviates as NCC.

16 Bayes rule

Derivation

f (A,B|C) =

{
f (A|B,C) f (B|C) z jedné strany, nebo

f (B|A,C) f (A|C) z druhé strany.

By comparison of both right hand sides we get

f (A|B,C) f (B|C) = f (B|A,C) f (A|C) .

From it

f (B|A,C) =
f (A|B,C) f (B|C)

f (A|C)
. (16.1)

which can also be written as

f (A|B,C) ∝ f (A|B,C) f (B|C)

where the constant is hidden in the proportional sign ∝ .

Application

In estimation we have

• A is the output yt,

• B are parameters Θ and

• Cold data d (t− 1) (or {ut, d (t− 1)}).

In this way, the Bayes rule reads

f (Θ|d (t)) =
f (yt|ψt,Θ) f (Θ|d (t− 1))

f (yt|d (t− 1))

Remarks

1. For model it holds f (yt|ut, d (t− 1) ,Θ) = f (yt|ψt,Θ) .

2. The natural conditions f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1)) are applied.
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17 Categorical distribution

The probability function of categorical distribution is

y 1 2 · · · nl
f (y) p1 p2 · · · pnl

,

where pi are probabilities, pi ≥ 0, i = 1, 2, · · · , nl a
∑nl
i=1 pi = 1.

Alternative form for the pf is
f (y) = py, y = 1, 2, · · · , nl.

Model of discrete system is
f (y|ψ,Θ) = Θy|ψ.

and it can be expressed in the form of table (for y ∈ {1, 2} and ψ = [u, v]
′
, where u, v ∈ {1, 2}

f (y|u, v)

[u, v] y = 1 y = 2
1, 1 Θ1|11 Θ2|11

1, 2 Θ1|12 Θ2|12

2, 1 Θ1|21 Θ2|21

2, 2 Θ1|22 Θ2|22

,

Θi|jk are conditional probabilities Θi|jk ≥ 0, ∀i, j, k,
∑2
i=1 Θi|jk = 1, ∀j, k.

For the purpose of estimation it is useful to express the model in so called product form

f (y|ψ,Θ) =
∏
i∈y∗

∏
ϕ∈ψ∗

Θ
δ(i|ϕ,y|ψ)
i|ϕ , (17.1)

where i is index, ϕ is multiindex (vector index), y∗, ψ∗ domains of variables and δ (i|ϕ, y|ψ) is
Dirac function, i.e. it is one for i|ϕ = y|ψ and zero otherwise.

18 Dirichlet distribution

A suitable distribution of model parameters in the case when model is categorical, is the Dirichlet
one.

f (Θ|d (t)) =
1

B (νt)

∏
i∈y∗

∏
ϕ∈ψ∗

Θ
νi|ϕ;t

i|ϕ , (18.1)

Here

νt is the statistics (with the same structure as the model has) ,
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B (ν) is a multivariate beta function

B (ν) =
∏
ϕ∈ψ∗

∏
i∈y∗ Γ

(
νi|ϕ

)
Γ
(∑

i∈y∗ νi|ϕ

) , (18.2)

where Γ (·) is gamma function de�ned by the formula

Γ (x) =

∫ ∞
0

tx−1 exp (−t) dt, (18.3)

for which it holds
Γ (x+ 1) = xΓ (x) , x ∈ R+. (18.4)

19 Normal distribution

We have normal regression model with regression vector ψt, regression coe�cients θ and noise
variance r, We denote Θ = {θ, r} . The model equation is

yt = ψ
′

tθ + et, et ∼ N (0, r) .

The conditional pdf of the model is

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r

(
yt − ψ

′

tθ
)2
}
. (19.1)

Expectation
E [yt|ψt,Θ] = ψ

′

tθ,

variance
D [yt|ψt,Θ] = r.

For the purpose of estimation it is advantageous to modify the model in the following way:

• exponent is divided as follows

yt − ψ
′

tθ = − [−1 θ′]

[
yt
ψt

]
= − [yt ψt]

[
−1
θ

]
(the sign minus is formal).

• the square in the exponent is written as row times column

(
yt − ψ

′

tθ
)2

=
(
yt − ψ

′

tθ
)(

yt − ψ
′

tθ
)

=

= [−1 θ′]

[
yt
ψt

]
[yt ψt]

[
−1
θ

]
= [−1 θ′]Dt

[
−1
θ

]
,

where Dt =

[
yt
ψt

]
[yt ψt] is so called data matrix.

Model (19.1) now has the form

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r
[−1 θ′]Dt

[
−1
θ

]}
. (19.2)
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20 Inverse Gauss-Wishart distribution

Its abbreviation is GiW

The distribution has the form

f (Θ|d (t)) ∝ r−0.5κt exp

{
− 1

2r
[−1 θ′]Vt

[
−1
θ

]}
, (20.1)

where κt and Vt are statistics (κt is the counter, Vt is the information matrix).

Matrix Vt is symmetric and positive de�nite and for computation of parameter point estimates
it can be decomposed to sub-matrices

Vt =

[
Vy V

′

yψ

Vyψ Vψ

]
, (20.2)

where (for yt scalar) Vy is a number, Vyψ is a column vector and Vψ is a rectangle matrix.

21 Point estimate with quadratic criterion

The optimal point estimates must minimize the posted criterion. Here it is quadratic one

min
Θ̂t

E

[(
Θ− Θ̂t

)2

|d (t)

]
. (21.1)

We perform the square and than apply the expectation. Then we are going to use completion
to square in Θ̂

min
Θ̂t

E
[
Θ2 − 2Θ̂tΘ + Θ̂2

t |d (t)
]

=

= min
Θ̂t

{
E
[
Θ2|d (t)

]
− 2Θ̂tE [Θ|d (t)] + Θ̂2

t

}
= ∗1∗

Θ̂t is a deterministic number

∗1∗ = min
Θ̂t

{
E
[
Θ2|d (t)

]
− E [Θ|d (t)]

2
+ E [Θ|d (t)]

2 − 2Θ̂tE [Θ|d (t)] + Θ̂2
t

}
= ∗2∗

we used the formula D [Θ] = E
[
Θ2
]
− E [Θ]

2
valid for the variance

∗2∗ = min
Θ̂t

{
D [Θ|d (t)] +

(
Θ̂t − E [Θ|d (t)]

)2
}

= D [Θ|d (t)]

the minimum is
Θ̂t = E [Θ|d (t)]

as D [Θ|d (t)] is a constant with respect to Θ̂t.
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22 Point estimates of regression model parameters

MAP (Maximum Aposteriori Probability) estimation for normal regression model practically
corresponds to minimization of quadratic criterion.

We look for maximum posterior pdf (which is a result of Bayesian estimation) (20.1)

f (Θ|d (t)) ∝ r−0.5κ exp

{
− 1

2r
[−1 θ′]V

[
−1
θ

]}
=

= r−0.5κ exp

{
− 1

2r
(Vy − 2θ′Vyψ + θ′Vψθ)

}
,

where we used the division of information vector V according to (20.2).

First we age going to estimate θ, i.e. to di�erentiate with respect to θ and lay the result equal
to zero. It is a derivation of vectors according to vectors.

∂f ({θ, r} |d (t) , r)

∂θ
∝ r−0.5κ exp

{
− 1

2r
[−1 θ′]V

[
−1
θ

]}(
−1

2r

)
(−2Vyψ + 2Vψθ) = 0.

From it he get
θ̂ = V −1

ψ Vyψ. (22.1)

We substitute the result into the posterior pdf and we obtain

Λ = Vy − 2θ̂′Vyψ + θ̂′Vψ θ̂ =

= Vy − 2V
′

yψV
−1
ψ Vyψ + V

′

yψV
−1
ψ VψV

−1
ψ Vyψ,

and
Λ = Vy − V

′

yψV
−1
ψ Vyψ. (22.2)

The posterior pdf with the optimal point estimate of regression coe�cient is(22.1)

f (r|d (t)) ∝ r−0.5κ exp

{
− Λ

2r

}
.

We di�erentiate it and lay equal to zero

−κ 1

2r
+ Λ

1

r2
= 0,

From it we have

r̂ =
Λ

κ
. (22.3)

θ̂ a r̂ are point estimates which we are seeking for.
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23 Point estimates of categorical model parameters

Here, the point estimates of parameters are given by a mere normalization of rows of or the
statistics matrix νt

Θ̂y|ψ;t =
νy|ψ;t∑
i∈y∗ νi|ψ;t

, ∀y ∈ y∗ aψ ∈ ψ∗. (23.1)

The point estimate is an expectation of parameter with posterior pdf (18.1) - for lucidity we
skip the time index t

Θ̂y|ψ = E
[
Θy|ψ|d (t)

]
=

∫ ∞
0

Θy|ψf (Θ|d (t)) dΘ =

=
1

B (ν)

∫ ∞
0

Θy|ψ
∏
i∈y∗

∏
ϕ∈ψ∗

Θ
νi|ϕ
i|ϕ dΘ = ∗1∗,

where beta function B is given in (18.2). Formally we express the model in a product form
(17.1)

Θy|ψ =
∏
i∈y∗

∏
ϕ∈ψ∗

Θ
δ(i|ϕ,y|ψ)
i|ϕ

and substitute. We continue

∗1∗ =
1

B (νt)

∫ ∞
0

∏
i∈y∗

∏
ϕ∈ψ∗

Θ
νi|ϕ+δ(i|ϕ,y|ψ)

i|ϕ dΘ =

=
1∏

ϕ∈ψ∗ B (νϕ)

∏
ϕ∈ψ∗

∫ ∞
0

∏
i∈y∗

Θ
νi|ϕ+δ(i|ϕ,y|ψ)

i|ϕ dΘy|ψ = ∗2∗,

where

B (νϕ) =
∏
i∈y∗ Γ(νi|ϕ)

Γ(
∑
i∈y∗ νi|ϕ)

according to (18.2)

we use the assumption of independence between parameters from di�erent components.

For individual components it holds

∫ ∞
0

∏
i∈y∗

Θ
νi|ϕ+δ(i|ϕ,y|ψ)

i|ϕ dΘy|ψ =

{
B (νϕ) pro δ = 0,

B (νψ + 1) pro δ = 1.

The terms with δ = 0 are canceled

∗2∗ =
B (νψ + δ (i, y))

B (νψ)
=

∏
i∈y∗ Γ(νi|ψ+δ(i,y))
Γ(

∑
i∈y∗ νi|ψ+1)∏
i∈y∗ Γ(νi|ψ)

Γ(
∑
i∈y∗ νi|ψ)

= ∗3 ∗ .

and again the terms for which y 6= i are canceled, too, and we get
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∗3∗ =

Γ(νy|ψ+1)
Γ(

∑
i∈y∗ νi|ψ+1)
Γ(νy|ψ)

Γ(
∑
i∈y∗ νi|ψ)

=

νy|ψ∑
i∈y∗ νi|ψ

Γ(νy|ψ)
Γ(

∑
i∈y∗ νi|ψ)

Γ(νy|ψ)
Γ(

∑
i∈y∗ νi|ψ)

=
νy|ψ∑
i∈y∗ νi|ψ

.

In the above derivation we also have used the properties of the gamma function (18.4).

This completes the proof of (23.1).

24 Logistic regression in details

Derivative of likelihood for logistic regression

Derivative of logarithm for likelihood lnL with the model(??) with respect to Θ is

∂

∂Θ
lnL (Θ) =

t∑
τ=1

[
yτψτ −

exp (zτ )

1 + exp (zτ )
ψτ

]
=

t∑
τ=1

(yτ − pτ )ψτ ,

where according to (??) zτ = ψτΘ a and sodzτ/dΘ = ψτ . Further we denote

pτ =
exp (zτ )

1 + exp (zτ )
= P (yt = 1|ψτ ,Θ) .

The second derivativelnL with respect to Θ is

∂2

∂Θ2
lnL (Θ) =

∂

∂Θ

t∑
τ=1

(yτ − pτ )ψτ =

t∑
τ=1

∂

∂Θ
pτψτ =

t∑
τ=1

pτ (1− pτ )ψ
′

τψτ ,

as
∂

∂Θ
pτ =

∂

∂Θ

exp (zτ )

1 + exp (zτ )
=

exp (zτ )ψ
′

τ (1 + exp (zτ ))− exp (zτ ) exp (zτ )ψ
′

τ

(1 + exp (zτ ))
2 =

=
exp (zτ )ψ

′

τ

(1 + exp (zτ ))
2 =

(
exp (zτ )

1 + exp (zτ )

1

1 + exp (zτ )

)
ψ
′

τ = pτ (1− pτ )ψ
′

τ .

For numerical maximization it is advantageous to use Newton algorithm (both the derivatives
are analytical).

Newton algorithm

Let us denote g (x) the function to be minimized; here x = [x1, x2 · · ·xn]
′
. The gradient g′ and

Hess matrix g′′ are

g′ (x) =


∂g
∂x1
∂g
∂x2

· · ·
∂g
∂xn
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g′′ (x) =


∂2g
∂x2

1

∂2g
∂x1∂x2

· · · ∂2g
∂x1∂xn

∂2g
∂x2∂x1

∂2g
∂x2

2
· · · ∂2g

∂x2∂xn

· · · · · · · · · · · ·
∂2g

∂xn∂x1

∂2g
∂xn∂x2

· · · ∂2g
∂x2
n

 .

The algorithm starts at the point x(0) and generates further points x(1), x(2), · · · as follows:

We take Taylor expansion of g at x(i) and use its �rst three terms (quadratic function)

g (x)
.
= g

(
x(i)
)

+ g′
(
x(i)
)(

x− x(i)
)

+
1

2
g′′
(
x(i)
)(

x− x(i)
)2

.

For the next point x(i+1) we minimize this quadratic function

g′
(
x(i)
)

+ g′′
(
x(i)
)(

x(i+1) − x(i)
)

= 0

from which we have

x(i+1) = x(i) −
g′
(
x(i)
)

g′′
(
x(i)
) .

We repeat it till the estimates stabilize.
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