KNIME - Decision tree

Let us have data, generated by logical implication $Imp(A, B) \equiv A \Rightarrow B$, i.e.

A	B	Imp
fA	$_{\mathrm{fB}}$	t
fA	tB	\mathbf{t}
tA	$_{\mathrm{fB}}$	f
$\mathbf{t}\mathbf{A}$	tB	t

where, for lucidity, we distinguish logical values of A, B and the result Imp. Then, for the sequence of column selection A, B we get the sub-tables: A = fA

A	B	Imp
fA	$_{\mathrm{fB}}$	\mathbf{t}
fA	tB	\mathbf{t}

 $A=\!\!\mathrm{tA}$

A	B	Imp
tA	$_{\mathrm{fB}}$	f
tA	tB	t

From the first table we can see, that the result is unambiguous: For A = fA we have Imp = t (independently of B)

The second table results in both f and t in dependence on the variable B. So here we have to continue

 $B=\!\!\mathrm{fB}$

B = tB

and here we see, that for B = fB we have Imp = f and for B = tB we have Imp = t; both unambiguous.

This is also expressed in the tree, from KNIME (Decision three learner/Decision tree view)

Here we can follow the subsequent division of the table:

The first rectangle shows the situation, when no information from A and B is taken into account. Here, we can see the number of t and f in the column Imp. From it follows, that without any other information we would guess the value of Imp to be t - this is indicated in the top of the upper rectangle.

Remark: This means
$$\frac{Imp}{f(Imp)} = \frac{1}{4} \frac{1}{4} = \frac{1}{4}$$
 and $\hat{Imp} = 1$.

Now we take into account the variable A - i.e. we have f(Imp|A). This situation is reflected by the second layer of the tree.

Here: the left rectangle is finished (in the table we have 100%) but the right one is still not ready, no 100% occurs. So, here we must still continue.

Taking into account also the variable B we treat f(Imp|A, B), specifically f(Imp|A = tA, B). This is in the third layer of the tree.

 Result

The result for the measured values of A and B is obtained in the top of the rectangle we get to using the measured value - they are the rectangles in the bottom of the tree.

This result can also be obtained from the Decision tree to ruleset as follows

The whole KNIME program is here

	Decision	Decision Tree	
File Reader	Tree Learner	to Ruleset	Table Viev
Node 1	Node 2	Node 3	Node 4