## KNIME - Decision tree

Let us have data, generated by logical implication $\operatorname{Imp}(A, B) \equiv A \Rightarrow B$, i.e.

| $A$ | $B$ | Imp |
| :---: | :---: | :---: |
| fA | fB | t |
| fA | tB | t |
| tA | fB | f |
| tA | tB | t |

where, for lucidity, we distinguish logical values of $A, B$ and the result Imp.
Then, for the sequence of column selection $A, B$ we get the sub-tables:
$A=\mathrm{fA}$

| $A$ | $B$ | Imp |
| :---: | :---: | :---: |
| fA | fB | t |
| fA | tB | t |

$A=\mathrm{t} \mathrm{A}$

| $A$ | $B$ | Imp |
| :---: | :---: | :---: |
| tA | fB | f |
| tA | tB | t |

From the first table we can see, that the result is unambiguous: For $A=\mathrm{fA}$ we have $\operatorname{Imp}=\mathrm{t}$ (independently of $B$ )

The second table results in both f and t in dependence on the variable $B$. So here we have to continue
$B=\mathrm{fB}$

| $B$ | $\operatorname{Imp}$ |
| :---: | :---: |
| fB | f |

$B=\mathrm{tB}$

| $B$ | $\operatorname{Imp}$ |
| :---: | :---: |
| tB | t |

and here we see, that for $B=\mathrm{fB}$ we have $\operatorname{Imp}=\mathrm{f}$ and for $B=\mathrm{tB}$ we have $\operatorname{Imp}=\mathrm{t}$; both unambiguous.

This is also expressed in the tree, from KNIME (Decision three learner/Decision tree view)


Here we can follow the subsequent division of the table:
The first rectangle shows the situation, when no information from $A$ and $B$ is taken into account. Here, we can see the number of t and f in the column Imp. From it follows, that without any other information we would guess the value of $\operatorname{Imp}$ to be t - this is indicated in the top of the upper rectangle.

Remark: This means | $\operatorname{Imp}$ | t | f |
| :---: | :---: | :---: |
| $f(\operatorname{Imp})$ | $\frac{3}{4}$ | $\frac{1}{4}$ | and $\hat{\operatorname{Im} p}=\mathrm{t}$.

Now we take into account the variable $A$ - i.e. we have $f(\operatorname{Imp} \mid \mathrm{A})$. This situation is reflected by the second layer of the tree.

Here: the left rectangle is finished (in the table we have 100\%) but the right one is still not ready, no $100 \%$ occurs. So, here we must still continue.

Taking into account also the variable $B$ we treat $f(\operatorname{Imp} \mid A, B)$, specifically $f(\operatorname{Imp} \mid A=t A, B)$. This is in the third layer of the tree.

Result
The result for the measured values of $A$ and $B$ is obtained in the top of the rectangle we get to using the measured value - they are the rectangles in the bottom of the tree.

This result can also be obtained from the Decision tree to ruleset as follows

| $\square$ | Row1 | \$AS = "fA" AND TRUE => "t" |
| :--- | :--- | :--- |
| $\square$ | Row2 | \$BS = "fB" AND \$A\$ = "tA" => "f" |
| $\square$ | $\square$ Row3 | \$B\$ = "tB" AND \$AS = "tA" => "t" |

The whole KNIME program is here


