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1 Variables and data

1.1 Data �le

Example

We measure intensity of tra�c �ow at a speci�ed point of roadway. The measurements
are repeated every 10 seconds so the result of measuring is a sequence of real values.
The entries of the sequence are denoted by xt, t = 1, 2, · · ·N , where integers t repre-
sent discrete time of measurements (it denotes a period in which the variable has been
measured).

Data �le D is a �le of measured values of the studied variable

D = {xt}Nt=1 = {x1, x2, · · · , xN}

where N is a number of measurements

Examples

The mostly used variables in transportation are �intensity of tra�c �ow�, �density of
tra�c �ow� (or �occupancy�), �speed of cars� or �speed of tra�c �ow�, �lengths of queues
in crossroads arms�, �type of tra�c accident�, �number of cars taking part in an accident�
etc.

From the previous example we can recognize two di�erent types of data. The �rst �ve
variables have entries as real values - they are called continuous variables, the values
of the rest of them have entries as integers - they are called discrete ones.

Data can be stored and used basically in two forms

• as plain data xi,

• values Xi and frequencies ni.

Example

Plain data: x ={4, 2, 3, 2, 2, 3, 3, 2, 4, 3, 3}

can be saved as
Xi 2 3 4

ni 4 5 2
values X and frequencies n. This latter form

of data can be used not only for storing but also directly for computing - see later the
characteristics.

Sometimes, instead of data we use their ranks

data xi ordered data ranks ri
5,2,8,3,6 2,3,5,6,8 3,1,5,2,4

because 5 has the order 3 in the ordered data �le, etc.
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1.1.1 Characteristics of data �le

• average

x̄ =
1

N

N∑
i=1

xi =
1

N

∑
X

niXi =
∑
X

Xifi

where fi = ni
N are relative frequencies

Example: For x = [1, 2, 1, 1, 2, 2, 1, 1] the average is the sum of entries divided
by their number; it is 11

8 . There are values 1 which repeats 5 times and 2 with
repetition 3. Relative frequencies are 5

8 for 1 and 3
8 for 2. Thus the average is

1× 5
8 + 2× 3

8 = 11
8 which is the same result.

• variance, standard deviation

s2 =
1

N

N∑
i=1

(xi − x̄)2 =
∑
X

(Xi − x̄)2 fi

Example: For x = [2, 3, 1, 4] the average is 2.5 and the variance[
(2− 2.5)2 + (3− 2.5)2 + (1− 2.5)2 + (4− 2.5)2

]
/4 = 1.25

• quantile, critical value ζα, zα
it is a border separating α · 100% of the smallest values (quantile)
or greatest values (critical values) of a data �le.

Example: For dataset x = [5, 2, 4, 8, 2, 4, 1, 3, 6, 5] �nd quantile and critical
value with α = 0.1 (i.e. 10%).
First order the values of x

ord (x) = [1, 2, 2, 3, 4, 4, 5, 5, 6, 8] .

As the number of data is 10 and we want to separate 10% of the smallest, the
border lies between 1 and 2. The border is the average, i.e. it is ξ0.1 = 1.5.For 10%
of the greatest, the border lies between 6 and 8 and it is z0.1 = 7.

• median x0.5 is the ξ0.5, i.e. 50% quantile.

Example: For the above dataset, the median is x0.5 = 4+4
2 = 4.

• mode x̂ is the value of dataset which has the higher frequency of repetition.

Example: The above dataset has three modes: 2, 4 and 5.
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1.1.2 Graphs

• time graph: plots values of x in a discrete time of measurements: 1,2,3,· · ·

• scatter graph (xy-graph): plots values of y against values of x (used mainly in
regression)

• bar graph: the values of x in time are plotted as columns.

• histogram: is similar to the bar graph but it does not plot values of x it plots
frequencies of individual values Xi.

2 Probability and random variable

2.1 Probability

Probability is introduced through several basic notions.

Random experiment - is a trial with correctly de�ned set of possible results, that
occur accidentally (not a chaos - there are some rules how frequently individual results
occur)

Example: Tossing a dice with the result 1,2,3,4,5 or 6.

Result - de�ned outcome of the experiment.

Example: The number that fell during the dice roll.

Event - set of results.

Example: E.g. the set {2, 4, 6} represents the event �the even number will fall�.

Probability - a function that assigns to each event a real number. The following axioms
must be ful�lled:

• the number must be nonnegative (probability cannot be negative),

• the maximum number is one (if something is sure, it as probability 1 - we say it is
100 percent)

• the function is additive: I.e. for arbitrary two events E1 and E2 whose product is
empty set E1∩E2 = ∅, it holds P (E1 ∪ E2) = P (E1)+P (E2), i.e. the probability
of their union is equal to the sum of their individual probabilities.

Remark

Probability can be viewed as an area of a set. For two disjoint sets it holds that the
area of their union is equal to the sum of their areas. For two sets with nonempty
product this is not true!!

Remark: We say that an event �has occurred� if the result we obtain is an element
of this event (as a set of results). An event odd number occurred if the result was, say,
3 (or 1 or 5).

6



2.1.1 De�nitions of probability

Up to now, we have only delimited the notion of probability. We have not discussed its
value. This is de�ned through the following two de�nitions - classical and statistical.

Classical de�nition of probability is given by the following formula

P =
m

n

where m is a number of ways how to obtain a positive result and n is a number of all
ways how to obtain any result.

Example: With the dice and the event E · · · �odd number� the positive results are
{1, 3, 5} and all possible results are {1, 2, 3, 4, 5, 6}. So m = 3, n = 6 and the probability
P = 3

6 = 0.5.

Remark

Notice, that the classical de�nition concerns possibilities, not experiments and their re-
sults.

Statistical de�nition of probability is given by a similar formula

P =
M

N

but here M is a number of experiments with positive result and N is a number of all
experiments performed.

Example: For determining the probability of the result �odd number� we perform
N = 100 experiments and M = 53 out of them was positive (we obtained either 1 or 3
or 5). The statistical probability is P = 53

100 = 0.53.

Remark

Here, instead of analyzing possibilities we just perform experiments.

Comments to the de�nitions

• The classical de�nition gives a �xed value of probability while that according to
the statistical one will vary for each serial of N experiments.

• Evidently, forN →∞ the value of probability according to the statistical de�nition
will converge to that of the classical one.

• It is easy to use the statistical de�nition - we perform experiments and count those
with positive result. On the other hand, the classical de�nition needs a throughout
analysis of the experiment performed. It is possible only for the simplest experi-
ments like throwing a dice. In practice, the experiments are complex and the �true�
classical probability is estimated using the statistical one. This is the subject of
the whole inference statistic.
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Consequence

It holds: If some event has probability p, then we can expect that in N experiments it
occurs pN -times.

Example

What is the probability that the randomly drawn card from a set of marriage cards will
be an ace?

The total number of cards is 32. There are 4 aces. So the probability is

P =
4

32
=

1

8

2.2 Conditional probability

The de�nition of conditional probability is

P (E1|E2) =
P (E1, E2)

P (E2)

where P (E1, E2) is the probability of intersection E1 ∩ E2.

From this de�nition we can get so called chain rule

P (E1, E2) = P (E1|E2)P (E2)

Example: For the experiment of throwing a dice we take E1 = {2, 4, 6} · · · �even
number� and E2 = {1, 2, 3} · · · �less than 4�. Then E1∩E2 = {2, 4, 6}∩{1, 2, 3} = {2} .
P ({2}) = 1

6 ; P (E2) = P ({1, 2, 3}) = 1
2 . P (E1|E2) = 1

6/
1
2 = 1

3 .

Remark

The result can be logically veri�ed. The condition is {1, 2, 3} , i.e. nothing else could
appear. From it, only the result 2 meets the event E1. So, one positive and three possible
results gives probability 1

3 .

Example

We have a box with 3 white and 5 black balls. We randomly draw one ball, and without
returning it we draw the second one. What is the probability that the second will be white
if we know that the �rst one was black?

For the second draw one black is missing. So we have 3 white and 4 black. The probability
of white then will be

P =
3

7
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Remark

What will be the situation if we would return the �rst ball before drawing the second one?

Here we draw constantly form 3 white and 5 black. The condition has no e�ect.

2.3 Random variable

We have spoken about the notion of experiment and its results. Further on we will need
to use operation line averaging. If the results are non numerical, e.g. the colors at the
signal light, we are in a trouble - what is average color? That is why we introduce the
notion of random variable. It is equivalent to the random experiment with its results
always numerical. If they are numbers it is OK. If they are not numerical, we simply
assign them numbers.

Example: The signs on signal lights (red, yellow and green) can be denoted e.g. by
numbers 1,2 and 3.

The following de�nition is su�cient for us:

Random variable is a variable whose values occur randomly - similarly as the results
of random experiment. We can imagine that it is a standard variable whose values are
a�ected by some noise.

Generally, we have two types of random variables:

Discrete random variable - it has a �nite number of values (mostly integers).

Example: Flipping a coin, throwing a dice, drawing colored balls from an urn etc.
are discrete random variables.

Continuous random variable - which has uncountable many possible real values (inter-
vals).

Example: Speed of a passing car, waiting time for bus etc. They are examples of
continuous random variables.

2.4 Random vector

is a vector of random variables

X = [X1, X2, · · · , Xn]

Remark

The contribution of introducing random vector is twofold:
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1. The random variables involved in the vector are treated together - e.g. they are
measured in one object under investigation (tra�c intensities in four arms of a
crossroads).

2. New characteristics can be introduced - association between variables. We can
investigate if the variables are mutually in�uenced. The tool for evaluation this
dependency is covariance (will be introduced later).

3 Description of random variable and vector

3.1 Distribution function of random variable

A general description of random variable (both discrete and continuous) is distribution
function, de�ned through probability as follows

FX (x) = P (X ≤ x)

where X is a random variable, x is a realization (number).

Remark

The description of random variable cannot concern its values which are generated with
some degree of randomness. It speci�es only a probability that the value occurs in a given
interval. Here, the intervals are (−∞, x〉 .

The following two pictures show examples of distribution functions for both the cases.

x

F (x)

1

x

F (x)

1 2 3 4

1

Continuous distribution function Discrete distribution function

3.2 Distribution function of random vector

For two random variables X, Y we de�ne joint distribution function by the formula

FX,Y (x, y) = P

X ≤ x ,︸︷︷︸
and

Y ≤ y

 .
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The probability evaluates all values of random variable X that are less or equal to the
number x and all values of Y that are Y ≤ y. The area of all such points [x, y] is
depicted in the picture

X

Y

x

y

y ≤ Y

x ≤ X

[x, y]

3.3 Probability and density functions

Distribution function provides a thorough description of random variable and moreover
it is common to both types of random variable. However, for further work another
description of random variable, based on the distribution function, is more convenient.
It is probability function and density function. These functions must be de�ned for
discrete and continuous case, separately.

3.3.1 Probability function

For a discrete random variable, we can introduce the description directly as a discrete
function with the function values given by probabilities of the values of random variable
X = x.

Probability function is de�ned by the following formula

fX (x) = P (X = x) , x ∈ X

Here X is random variable and x is a number (value of X).

Each probability function must have nonnegative values and their sum must be equal
to one.
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Example: For the random variable de�ned by the experiment throwing a dice, the
probability function is de�ned at x ∈ {1, 2, 3, 4, 5, 6} and its values are all the same and
equal to 1

6 (the probability of each side of the dice).

A general form of probability function in a graph is in the following picture

1 2 3 x

f (x)

The de�nition of probability function can be given by formula - e.g

f (x) = px (1− p)1−x , forx = 0, 1

where p ∈ 〈0, 1〉 is a probability1.

The most frequently used form of de�nition of probability function is through a table.
For the previous case the tale will be

x 0 1

f (x) 1− p p

3.3.2 Characteristics of discrete random variable

In di�erence to the probability function that gives a full stochastic description of random
variable, the characteristics give only partial but very simple information. They speak
either about a level or the variability of the values of the random variable.

• expectation

E [X] =
∑
X

xif (xi)

• variance, standard deviation

D [X] =
∑
X

(xi − E [X])2 f (xi)

• quantile, critical value ∑
xi≤ζα

f (xi) = α,
∑
xi≥zα

f (xi) = α

1It is so called Bernoulli distribution.
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• mode, median: arg max from f (x) ; quantil or critical value for α = 0.5

Example

Random variable X is de�ned through the following table

x 1 2 3 4 5 6

f (x) 0.2 0.1 0.1 0.3 0.2 0.1

Compute its expectation E [X] , variance D [X] and standard deviation.

Expectation

E [X] = 1 · 0.2 + 2 · 0.1 + 3 · 0.1 + 4 · 0.3 + 5 · 0.2 + 6 · 0.1 = 3.5

Variance
D [X] = (1− 3.5)2 · 0.2 + (2− 3.5)2 · 0.1 + (3− 3.5)2 · 0.1+

+ (4− 3.5)2 · 0.3 + (5− 3.5)2 · 0.2 + (6− 3.5)2 · 0.1 = 2.65

Standard deviation √
D [X] =

√
2.65 = 1.628

3.3.3 Density function

For continuous random variable it holds, that its each single value has zero probability -
its total number of values is ∞, then according to the classical de�nition of probability
1
∞ = 0. That is why we cannot follow the de�nition of probability function in the discrete
case and must de�ne the density separately, as follows.

Density function is a real function de�ned as a derivative of the distribution function

f (x) =
dF (x)

dx
→ F (x) =

∫ x

−∞
f (t) dt.

The second (right) de�nition is implicit. It follows from the �rst (left) form and has an
integral form. Using this integral form we can easily derive the formula for probability
of an interval (a, b)

P (X ∈ (a, b)) =

∫ b

a
f (x) dx = F (b)− F (a)
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because it holds F (x) = P (X ≤ x) and
∫ b
−∞−

∫ a
−∞ =

∫ b
a .

Remark

The di�erence of density function from the probability function is that in density function
we speak not about probabilities of points but about probabilities of intervals.

An example of density function is in the following picture2.

x

f (x)

3.3.4 Characteristics of continuous random variable

The same characteristics as for the discrete random variable are de�ned but instead of
sum there is integral.

Expectation

E [X] =

∫ ∞
−∞

xf (x) dx

Variance

D [X] =

∫ ∞
−∞

(x− E [X])2 f (x) dx

Quantile ζα and critical value zα

∫ ζα

−∞
f (x) dx = α,

∫ ∞
zα

f (x) dx = α

Mode x̂ and median x0.5

x̂ = arg max (f (x)) , x0.5 = ζ0.5

Example

2The distribution used in the picture as normal or Gaussian one.
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Depict the probability function of the experiment of �ipping a regular coin with the
assignment: �head� → 1, �tail� → 2.

Solution

The probability functions can be expressed by a table

x 1 2

f (x) 0.5 0.5

Graphical form is a discrete function de�ne only in the values of the random variable.
It is as follows

f(x)

x1 2

0.5

Distribution function is a cumulative probability function and it has the form

F (x)

x1 2

0.5

1

Example

For the experiment waiting on a bus (see Example ??) construct the distribution and
density functions.
Let us recall: We are randomly coming to a bus station where the bus goes with exactly
5 minutes interval. Random variable is de�ned as a time interval we need to wait for
the bus.

Solution

We are looking for the distribution function F (x) = P (X ≤ x) . So precisely speaking,
we are looking for probabilities that we will wait the time x or less. Waiting x = 0 has
probability 0, waiting x = 5 has probability 1 (in the interval 〈0, 5〉 the bus surely has to
come). As we come randomly (each time instant is equally probable), the distribution
function will be linear. So, it will have the form

15



F (x)

x1 2 3 4 5

1

Density function is a derivative of the distribution function (where the derivative exists).
The derivative in the interval (0, 5) exists and it is equal to 1

5 . Outside this interval, i.e.
in (−∞, 0) ∪ (5,∞) it is zero and in 0 and 5 we can de�ne it as zero, too. Then it is

f(x)

x1 2 3 4 5

1
5

3.4 Probability and density functions of random vector

Similarly as for a single random variable we need �rst to introduce the notion of dis-
tribution function. Then, separately for discrete and continuous cases the notions of
probability function and density function can be introduced.

3.4.1 Probability function of random vector

For two random variables X, Y we de�ne joint probability function as

fX,Y (x, y) = P

X = x ,︸︷︷︸
and

Y = y


where inside the probability the �,� (comma) means logical �and�.

For two random variables we are in a plane x, y and given x and given y is a point [x, y]
in this plane.

3.4.2 Density function of random vector

For two random variables X, Y we de�ne joint density function as a derivative of the
distribution function as follows

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y)
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or in an integral form

FX,Y (x, y) =

∫ x

−∞

∫ x

−∞
fX,Y (u, v) dudv

Remark

As F (x, y) = P ([x, y] ∈ (−∞, x) , (−∞, y)) again it holds that the probability of random
vector belonging to some area is equal to the integral of density function over this area.

3.4.3 Factorization of random vector

The description f (x, y) is called joint distribution. It can be factorized according to
the chain rule in the following way

f (x, y) = f (x|y) f (y) or f (y|x) f (x)

where f (y) or f (x) are marginal distributions. They can be computed:

for discrete random variable (e.g. for X)

f (x) =
∑
Y

f (x, y)

for continuous random variable

f (x) =

∫ ∞
−∞

f (x, y) dy

f (x1|x2) or f (x2|x1) are conditional pf. (meaning)

The second distribution in the factorization is conditional one

f (y|x) =
f (x, y)

f (x)
.

3.4.4 Covariance

Covariance is a characteristics of two random variables X and Y. It is de�ned for:

Discrete random variable

C [X,Y ] =
∑
x

∑
y

(x− E [X]) (y − E [Y ]) f (x, y)
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Continuous random variable

C [X,Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x− E [X]) (y − E [Y ]) f (x, y) dxdy

For two correlated variables it holds that if x grows y mostly also grows or if x falls y
also falls. In this case the covariance is positive and the variables are called positively
correlated. If x grows and y falls or x falls y grows than their covariance is negative
and they are called negatively correlated.

3.4.5 Uncorrelated random variables

Random variables X and Y are called uncorrelated if their covariance is equal to zero

C [X,Y ] = 0.

It means no correlation exists between them.

3.4.6 Independent random variables

Random variables X and Y are called independent if it holds

f (x, y) = f (x) f (y)

Independence means that the random variables do not in�uence one another. From the
known behavior of X you can learn nothing about Y and vice versa.

Remark

The two lately introduced notions of independent and uncorrelated variables are simi-
lar. However, independence is stronger. It holds that independent variables are always
uncorrelated. The reverse is not true. Uncorrelated variables can be dependent.

Example

We have two discrete random variables X and Y with the joint probability function

x\y 1 2

1 0.4 0.1
2 0.2 0.3

Determine covariance C [X,Y ].

First, we must compute marginal probability functions

f (x) =
∑
y

f (x, y) = [0.5, 0.5]
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f (y)=
∑
x

f (x, y) = [0.6, 0.4]

Then expectations can be determined

E [X] =
∑
x

xf (x) = 1 · 0.5 + 2 · 0.5 = 1.5

E [Y ] =
∑
y

yf (y) = 1 · 0.6 + 2 · 0.4 = 1.4

Now, according to the de�nition formula for covariance, it is

C [X,Y ] =
∑
x

∑
y

(x− E [X]) (y − E [Y ]) f (x, y)

= (1− 1.5) (1− 1.4) · 0.4 + (1− 1.5) (2− 1.4) · 0.1+

= (2− 1.5) (1− 1.4) · 0.2 + (2− 1.5) (2− 1.4) · 0.3 = 0.1

3.5 Moments

Here, we introduce notions of general and central moments. They are computed with
the use of distribution and as the distribution for discrete random variable (probabil-
ity function) and continuous one (density function) are de�ned deferentially, also the
moments have to be de�ned separately.

Overall comparison of data moments and population ones can be found in Appendix ??

3.5.1 k-th general moments

� discrete random variable
m
′
k =

∑
X

xki f (xi)

where xi are di�erent values of rv, X is the set of all di�erent values of rv, f (xi) is the
value of probability function at the point xi.

� continuous random variable

m
′
k =

∫
X
xkf (x) dx

where x are real numbers, X is the support of rv and f(x) is the density function.
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3.5.2 k-th central moments

� discrete random variable

m
′
k =

∑
X

(
xi −m

′
1

)k
f (xi)

where xi are di�erent values of rv, X is the set of all di�erent values of rv, f (xi) is the
value of probability function at the point xi.

� continuous random variable

m
′
k =

∫
X

(
x−m′1

)k
f (x) dx

where x are real numbers, X is the support of rv and f (x) is the density function.

Remark

It holds: expectation is the �rst general moment; variance is the second central moment.

3.6 Computation with random variables

Example:

For two random variables X and Y with probability functions f (x) and f (y)

x 1 2 y 1 2 3
f (x) 0.4 0.6 f (y) 0.3 0.5 0.2

construct joint f (x, y) and conditional f (x|y), f (y|x) functions.

The variables X and Y are independent (a change in x does not in�uence probability of
y) so the joint probability function is a product

f (x, y) = f (x) f (y)

which means a product entry by entry. The result is

x\y 1 2 3

1 0.4·0.3 0.4·0.5 0.4·0.2
2 0.6·0.3 0.6·0.5 0.6·0.2

=

x\y 1 2 3

1 0.12 0.2 0.08
2 0.18 0.3 0.12

The conditional distributions are

f (x|y) =
f (x, y)

f (y)
and f (y|x) =

f (x, y)

f (x)

The marginals are given or they can be obtained by summing the joint (the �rst one is
a sum of columns, the second one of rows).
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x\y 1 2 3 f (x)

1 0.12 0.2 0.08 0.4
2 0.18 0.3 0.12 0.6

f (y) 0.3 0.5 0.2

The division is again entry-vise. So, f (x|y) is

x\y 1 2 3

1 0.12
0.3

0.2
0.5

0.08
0.2

2 0.18
0.3

0.2
0.5

0.12
0.2

=

x\y 1 2 3

1 0.4 0.4 0.4
2 0.6 0.6 0.6

Remark

The sum over columns (i.e. for values of x) must be always equal to one. For given
value of y, all possibilities for x are 1 or 2. And probability of �all� is one.

The columns of the conditional distribution are all the same. It is due to the independency
of the variables. I.e. it holds f (x|y) = f (x) .

The second conditional distribution f (y|x) is

x\y 1 2 3

1 0.12
0.4

0.2
0.4

0.08
0.4

2 0.18
0.6

0.3
0.6

0.12
0.6

=

x\y 1 2 3

1 0.3 0.5 0.2
2 0.3 0.5 0.2

Remark

Here the situation is similar, only transposed.

Example:

Two dependent discrete random variables.

Let us have random variables X and Y with the joint probability function f (x, y)

x\y 1 2 3

1 0.1 0.2 0.1
2 0.3 0.1 0.2

Construct marginal and conditional probability functions.

Marginals f (x) and f (y) are sums of the joint one

x\y 1 2 3 f (x)

1 0.1 0.2 0.1 0.4
2 0.3 0.1 0.2 0.6

f (y) 0.4 0.3 0.3
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Conditional probabilities are:

f (x|y) = f(x,y)
f(y)

x\y 1 2 3

1 1
4

2
3

1
3

2 3
4

1
3

2
3

and f (y|x) = f(x,y)
f(x)

x\y 1 2 3

1 1
4

1
2

1
4

2 1
2

1
6

1
3

Remark 1

Conditional distribution is a function of the argument before the sign |. So, e.g. f (y|x = 1)
is the �rst row of the table above. The second row describes the distribution f (y|x = 2) .
That is, the whole table (e.g. the last one) is parameterized distribution f (y|x) for
x = 1, 2. The same holds for the last but one table. It is f (x|y) for y = 1, 2, 3.

Remark 2

Notice, that in di�erence to the previous example with independent variables, here joint
distribution is not equal to the marginal one. I.e.

f (x, y) 6= f (x|y) , for y = 1, 2, 3

and
f (x, y) 6= f (y|x) , for x = 1, 2

Example:

Let us have two random variables X and Y with joint density function

f (x, y) = x+ xy +
y

2
, for x, y ∈ (0, 1)

The marginal f (x) is

f (x) =

∫ 1

0
f (x, y) dy =

1

6
(6x+ 1) , x ∈ (0, 1)

and f (y)

f (y) =

∫ 1

0
f (x, y) dx =

1

2
(2y + 1) , y ∈ (0, 1)
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Conditional f (x|y)

f (x|y) =
f (x, y)

(y)
=

(2x+ 1) y + 2x

2y + 1

and f (y|x)

f (y|x) =
f (x, y)

(x)
=

(4x+ 2) y + 4x

6 + 1

As it holds f (x, y) 6= f (x) f (y) or f (x|y) 6= f (x) or f (y|x) 6= f (y), the variables x
and y are dependent.

The expectations are

E [X] =

∫ 1

0
xf (x) dx =

5

8

E [Y ] =

∫ 1

0
yf (y) dy =

7

12

Variances

D [X] =

∫ 1

0
(x− E [X])2 f (x) dx =

13

192

D [Y ] =

∫ 1

0
(y − E [Y ])2 f (y) dy =

11

144

Covariance

C [X,Y ] =

∫ 1

0

∫ 1

0
(x− E [X]) (y − E [Y ]) f (x, y) dxdy = − 1

288

(Solved in Maxima http://maxima.sourceforge.net)

The density function is plotted in the following picture
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Example:

Determine distribution function F (x) of random variable with density function

f (x) =
1

2
x, on x ∈ (0, 2)

For the distribution function on x ∈ (0, 1) it holds

F (x) =

∫ x

0
f (t) dt =

∫ x

0

1

2
t dt =

1

2

[
t

2

]x
0

=
1

4
x2

The whole distribution function for x ∈ R it holds

F (x) =


0 for x ≤ 0
1
4x

2 for x ∈ (0, 2)

1 for x ≥ 2

4 Important distributions

4.1 Discrete random variable

Bernoulli distribution

A single experiment with only two possible outcomes x = 0 (failure) or x = 1 (success).
The probability of x = 1 is constant and equal to π.

Example: a car turns to left or right.

Probability function

P (x;π) = πx (1− π)1−x , x = 0, 1 (1)

Binomial distribution

n times independently repeated Bernoulli experiment. The result x is the number of
successes.

Example: n times toss a coin. x = 3 means we demand so that head comes three
times.

Probability function

P (x;n, π) =

(
n

x

)
πx (1− π)n−x , x = 0, 1, · · · , n (2)
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Poisson distribution

It is a limit case for binomial distribution for n → ∞ and π → 0 so that λ = nπ is a
�nite number (called intensity).

Probability function

P (x;λ) = e−λ
λx

x!
, x = 0, 1, 2, · · · (3)

It is a distribution of counts - e.g. number of cars passing a point of monitoring or
number of customers entering a shop.

Geometric distribution

Geometrically distributed random variable counts the number of unsuccessful results of
independently repeated Bernoulli experiments until the �rst success appears.

Example: A shooter shots at a small target. The probability of hitting is p = 0.2.
What is the probability that the �rst hit will occur it the x-th shot.

Probability function
P (x, p) = p (1− p)x

where p is the probability of success in a Bernoulli experiment.

It expresses the probability that the �rst success will precede x failures.

General discrete (categorical) distribution

It deals with a random variable x that can take on one of a �nite number of di�erent
values {x1, x2, · · ·xn}, each with its own probability p1, p2, · · · , pn
Probability function

P (x; p1, p2, · · · , pn) = px, x ∈ {x1, x2, · · ·xn} (4)

where pi ≥ 0 and
∑n

i=1 pi = 1.

Mostly it is de�ned in a table

x 1 2 · · · n

f (x) p1 p2 · · · pn

Each value x of the random variable has its own probability px.
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4.2 Continuous random variable

Uniform distribution

It describes a random variable with no preferences for any values, but with �x lower and
upper borders. Its discrete version can be obtained from the general discrete distribution
for equal probabilities p1 = p2 = · · · = pn = 1/n.

Probability density function

f (x; a, b) =
1

b− a
, x ∈ (a, b) , and zero otherwise (5)

Has a rigid bounds. It expresses absolute uncertainty - all admissible values are equally
probable.

Normal distribution

It is the most frequently used distribution describing e.g. errors in repetitive measure-
ments. Its standard version has zero expectation µ = 0 and the variance equal to one
σ2 = 1.

Probability density function

f
(
x;µ, σ2

)
=

1√
2πσ2

e−
1
2

(x−µ)2

σ2 , x ∈ R (6)

Is generated by a large number of small independent random accidents.

Lognormal distribution

This distribution is similar to the normal one for big µ but for small µ it is unsymmetrical,
it means, it guaranties that x > 0. It is suitable for modeling variables that are naturally
non-negative.

Probability density function

f
(
x;µ, σ2

)
=

1

x
√

2πσ2
e−

1
2

(log(x)−µ)2

σ2 , x > 0 (7)

It resembles normal distribution but it is for nonnegative variables.
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Exponential distribution

This distribution describes processes that monotonously evolve in time. Its application
is e.g. in description of a failure free state of some product.

Probability density function

f (x; δ) =
1

δ
e−

x
δ , x > 0 (8)

It is related to theory of reliability and queues.

4.3 Sample distributions

They arise in connection with a statistics for estimation (it will be introduced later).

χ2 distribution

It is used in con�dence intervals and testing hypotheses about variance or other quadratic
characteristics.

Generation

χ2 (n) =
n∑
i=1

(Ni (0, 1))2 (9)

where N (0, 1) denotes a realization of standard normal random variable.

Student distribution

It is used in con�dence intervals and testing of hypotheses about expectation when the
variance of the tested variable is not known.

Generation

St (n) =
N (0, 1)

χ2 (n) /n
(10)

where n is so called number of degrees of freedom.
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F distribution

It is used in con�dence intervals and testing of hypotheses about a ratio of two variances,
e.g. F -test and Analysis of variance.

Generation

F (m,n) =
χ2

1 (m) /m

χ2
2 (n) /n

(11)

where m and n are numbers of degrees of freedom.

5 Regression analysis

5.1 Linear regression

Describes linear dependence of explained variable y on explanatory variable x. In a
geometrical view, we have a set of points with coordinates [xi, yi] , i = 1, 2, · · · , N and
we approximate these points by a regression line. The approximation is to be optimal
- the vertical distance of the regression line to individual points must be minimal. The
situation is sketched in the �gure

Here, one point with subscript i is described. This point has coordinates [xi, yi] . The
corresponding point (the same x coordinate) lying on the line is denoted ŷi and is called
prediction. The distance between yi and ŷi denoted by ei is residuum. The line with
the equation

y = b1x+ b0

has the position so that the sum of squares of all residua is minimal

N∑
i=1

(yi − ŷi)2 =

N∑
i=1

e2
i → min (12)
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5.1.1 Derivation for b0 = 0

The derivation for the practical case - when it goes through origin - is very simple. Each
point is described by its prediction (lies on the line) plus residuum ei

yi = b1xi + ei

As the line goes though the origin, the coe�cient b0 is zero. From it we have ei = yi−b1xi.
We substitute into the criterion (12)

N∑
i=1

e2
i =

N∑
i=1

(yi − b1xi)2 =

N∑
i=1

[
y2
i − 2b1yixi + b21x

2
i

]
=

=
N∑
i=1

y2
i − 2b1

N∑
i=1

yixi + b21

N∑
i=1

x2
i = S

′
y − 2b1S

′
xy + b21S

′
x

Derivative:
−2S

′
xy + 2b1S

′
xx = 0

from which

b1 =
S
′
xy

S′x

5.1.2 General solution

In a general case, when b0 6= 0 is

Compute averages and second central moments

x̄ =

N∑
i=1

xi, ȳ =

N∑
i=1

yi

Sxx =
N∑
i=1

(xi − x̄)2 , Syy =
N∑
i=1

(yi − ȳ)2 , Sxy =
N∑
i=1

(xi − x̄) (yi − ȳ)

and then we have:

� regression coe�cients

b1 =
Sxy
Sxx

, b0 = ȳ − b1x̄

� correlation coe�cient

r =
Sxy√
SxxSyy

Coe�cients b1 and r give evidence about the quality of the regression.

Show it.
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5.1.3 Multivariate regression

Let the model equation is

yi = b0,i + b1,ix1 + b2x2,i + · · ·+ bnxn,i + ei

where we denote xi = [x1, x2, · · · , xn]
′

i .

The collected data are y = [y1, y2, · · · , yN ] and x = [x1x2, · · · , xN ] where xi are column
vectors. We construct matrices

Y = y′, X =
[
1, x′

]
which is

Y =


y1

y2

· · ·
yN

 and X =


1 x11 x21 · · · xn1

1 x12 x22 · · · xn2

1 x1N x2N · · · xnN


Remark

When we denote b = [b0, b1, · · · , bn]′ we can write the matrix equation for all measured
data

Y = Xb+ E

where E is a vector of residuals.

The general solution has the form

b =
(
X ′X

)−1
X ′Y

Prediction for all data is
ŷ = Xb

and residual estimates are
êi = yi − ŷi.

Variance of residuals is the estimate of model noise variance.

5.2 Nonlinear regression

5.2.1 Polynomial regression

Equation
yi = b0 + b1xi + b2x

2
i + · · ·+ bnx

n
i + ei

Estimation - via vector algorithm where in the rows in the matrix X are vectors[
1, xi, x

2
i , · · · , xni

]
.
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5.2.2 Exponential regression

Equation
yi = exp {b0 + b1xi + ei}

By taking logarithm we obtain

ln {yi} = b0 + b1xi + ei

and the estimation is performed with ỹ = ln {y} and x.
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6 Population and data sample

Population is a set from which we select values, sample is what we have selected.
Population is �xed, sampling is performed in random, so each sample di�ers form other
samples.

Let us start with two examples:

Example 1

15 persons work at a department of a certain institute.They can work at home, but 5 of
them must be present in the o�ce each day. Those who should be present are chosen
each day randomly. The age of all the persons working at the department is in the
following table:

person 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

age 27 28 42 35 27 33 56 37 27 44 59 42 38 35 29

One day, suddenly, we are asked what is the real average age (expectation) of the people
employed in the department. As only 5 of them is present, we have to estimate the
average age requested based on those present.

Let the sample (those who are randomly present) is

person 2 3 6 11 15

age 28 42 33 59 29

The estimate of the average age of all (expectation of the age) is

28 + 42 + 33 + 59 + 29

5
= 37.27

True expectation (average of all) of all is 38.20

We can see that

1. The sample average is not too far from the real expectation (and the longer the
sample will be, the more precise the is).

2. If the length of the sample will be 15 (all are present), the estimate will be precise.

Here:

The population are ages of all the persons working at the department.

The sample are the ages of those �ve present.

It is clear that the population is still the same, however, the sample changes day by day.
Speci�cally, the average of the population (expectation) is constant, while the average
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(sample average) of the sample changes from sample to sample (sampling is random).
Also it is clear, that the di�erences between sample averages will be smaller than the
di�erence between values of the population. The longer the sample is the closer is the
sample average to the expectation.

Important: The population and its characteristics are constant, the sample and its
characteristics are random (they depend on the sample performed)

Remark

The probability function of the population mentioned is

x 27 28 29 33 35 37 38 42 44 56 59

f (x) 3
15

1
15

1
15

1
15

2
15

1
15

1
15

2
15

1
15

1
15

1
15

. It can be used for generation. I.e. the age 27 will be generated (or chosen to the
sample) with probability 3

10 ,the age 28 with probability 1
15 etc.

Example 2

We measure speeds of passing cars. Here, the sample are measured speeds. But what is
the population?

Here, the situation is more complex then in the previous example. The population can
be characterized as �all possible speeds that were, are and will be measured� but it is
too vague. Instead, we will view the population just like random variable that produces
values randomly but according to some probabilistic rules. This random variable is
described by its density function (in a discrete case it was probability function). Then
the population can be viewed either like all the possible generated values (each with its
probability of generating) or better just as the random variable.

As the the probability density is �xed then also the properties and the characteristics of
the population will be constant.

The sample (a given number of measured speeds) is random. That is why again, the
sample itself as well as its characteristics (e.g. sample average) are random.

Speci�cally, let the speeds are distributed normally with the expectation µ = 84 km/h
and standard deviation σ = 21 km/h. Denoting speeds by x the population is given by
the density function

f (x) =
1√

2π212
exp

{
−1

2

(
x− 84

21

)2
}

Let us generate 10 samples each with 5 measurements. The result is in the table
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samples x1 s2 s3 s4 s5 s6 s7 s8 s9 s10

1 75.9 100.1 86.4 97.7 119.7 93.3 51.0 80.6 92.1 77.3
2 110.4 70.7 92.5 85.2 95.6 85.5 107.4 74.4 63.5 67.8
3 107.6 73.6 89.7 90.7 76.5 71.7 61.9 63.8 34.1 96.5
4 64.8 109.0 132.1 73.2 112.7 116.5 78.6 121.7 64.8 98.1
5 69.7 99.1 18.3 73.7 51.9 62.5 49.0 119.0 61.7 76.4

s. average 85.68 90.5 83.8 84.1 91.28 85.9 69.58 91.9 63.24 8.22

Average of sample averages: 82.92

Standard deviation of sample averages: 9.38

We can see:

(1) The sample averages vary less than the data (e.g. in the �rst table row). They are
not far form the expectation 84.

(2) The standard deviation of data is 21 which is more than standard deviation of the
sample averages which is 9.38.

(3) The average of the sample averages 82.92 is close to the expectation 84. With the
growing number of sample averages their average converges to the value of expectation.

Remark

All these observations will further be formulated as assertions or de�nitions.

6.1 Population and its parameters

Population is given by the experiment we monitor and investigate. It can be e.g. speeds
of passing cars, seriousness of tra�c accident or intensities of the tra�c �ow in arms of
a controlled crossroads.

Notice: The population concerns the experiment generally. Measuring the speeds - no
speci�c speed is given, yet. We can imagine it either as the experiment or the set of all
possible values that can be measured, including probabilities of measuring these values.

The description of population is provided by its distribution. This distribution id gen-
erally unknown (we can hardly de�ne the probabilities of a car going with a speed in
speci�ed interval, say 60-65 km/h; it is not possible to analyze all possible drivers that
can go through a speci�ed point, the possibilities of their cars etc.) However, often we
select some type of distribution (frequently normal) and say that only its parameters are
unknown. We say, the distribution is known up to some of its parameters. The general
task then is to estimate these parameters.

Let the population is given by the density function

f (x, θ)

where θ are the unknown parameters (e.g. expectation).

The task is to construct the point estimate θ̂t of the parameter θ based on the set of
measured data {xi}ti=1.
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6.2 Random sample

The notion of random sample is the most di�cult from the whole statistics.

As we already have said, the sample is used for estimation of the properties of the
population, speci�cally of the unknown parameters of the distribution by which the
population is described.

Important !!!

It is necessary to distinguish between a set of measured data, which we will call real-
ization of a sample and sample itself as a possibly measured set of values when we
repeat our choice. To explain this rather vague assertion we return to the Example 2
from the beginning of this section. Here, we have made a serial of 10 choices, each with
5 sampled data. As the choices have been random, all the choices were di�erent. At
the bottom of the table we listed also averages from the choices. Naturally, they were
also di�erent. From it we can see, that the random choice and its characteristics (here
average) are random. Now, similarly as we characterized random variable as a variable
whose values di�er in each measurement, we can de�ne the sample as a vector random
variables on which we can measure its vector values - realizations of sample.

In this way we de�ne:

Sample is a vector of independent and equally distributed random variables.

Realization of sample is a realization of data sample as random vector.

Remarks

1. Independence in the de�nition of a sample expresses the fact, that the measured
values must be representative - they must represent the whole population. And
this will be guaranteed if the choice will be performed independently.

2. Equally distributed from the de�nition says that the data must be measured on
the same experiment. E.g. if I want to analyze tra�c during the day I must not
include data measured at night. Or, if I analyze speeds of cars in a free movement
I must exclude all data measured when the cars were stacked in a queue.

3. Realization of a sample is a single data vector which is used for further actions as
e.g. parameter estimation. In practice, no repetition of data choices is used. The
possibility of repetitive choices is used only for theoretical considerations.

4. To stress randomness of a sample it is often called random sample. Also real-
ization of a sample is often called data sample.

6.2.1 Characteristics of random sample

Let us have random variable X ∼ f (x) (for now with no parameter) with expecta-
tion E [X] = µ and variance D [X] = σ2. On this random variable, we have a sample
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[X1, X2, · · · , XN ] of the length N, where X1, X2, · · · , XN are independent and equally
distributed (with the same expectation µ and variance σ2) random variables. We can
de�ne the following characteristics:

Sample average

X̄ =
1

N

N∑
i=1

Xi

Sample variance

S2 =
1

N − 1

N∑
i=1

(xi − x̄)2

where the sample variance di�ers in denominator from the variance, de�ne earlier.

The characteristic are computed not from numbers, but from random variables. Thus,
they are not numbers but again random variables for which we can compute their ex-
pectations and variance. They have he following properties:

Expectation of sample average

E
[
X̄
]

= µ

Proof

E
[
X̄
]

=

∫ ∞
−∞

X̄f (x, θ) dx =

∫ ∞
−∞

X1 +X2 + · · ·+XN

N
f (x, θ) dx =

=
1

N

(∫ ∞
−∞

X1f (x) dx+

∫ ∞
−∞

X2f (x) dx+ · · ·+
∫ ∞
−∞

XNf (x) dx

)
dx =

=
1

N

µ+ µ+ · · ·+ µ︸ ︷︷ ︸
N times

 = µ

as the choice is taken from the same random variable with expectation µ.

Variance of sample average

D
[
X̄
]

=
σ2

N

Proof

D
[
X̄
]

= D

[
1

N

N∑
i=1

Xi

]
=

1

N2

N∑
i=1

D [Xi] =
1

N2

N∑
i=1

σ2 =
σ2

N

as D [aX] = a2D [X] and random variables in the sample are independent (de�nition).

These properties show the following:
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1. If we take in�nitely many sample realizations, compute sample averages of them
and make an average of these sample averages (which makes the expectation
E
[
X̄
]
), we obtain precisely the expectation of the population.

2. The more sample realizations we take the more accurately we obtain the value of
the population expectation when averaging their sample averages.

Conclusion: Estimation of population expectation by replacing it with the sample aver-
age has a good sense.

6.3 Point estimation

In the previous paragraph, we have shown that sample average is a good estimator of
population expectation. Now, we are going to generalize this assertion.

We have random variable X ∼ f (x, θ) which is known, up to the parameter θ. We
want to construct point estimate θ̂ of this parameter, based on the realization of sample
x = [x1, x2, · · · , xN ] (vector of measured data). To this end we introduce the notion of
statistics:

Statistics T is a function of random sample whose value can be regarded as estimate
of the parameter θ.

Remark

As we have seen, sample average is a good approximation of the parameter µ (expecta-
tion)

x̄→ E [X]

Similarly for other parameters (variance, proportion, correlation coe�cient etc.) there
can be found functions of random sample, that approximate their true value. Such
function is called statistics, and should have some properties (that guarantee it estimates
just this parameter). The statistics should be:

� unbiased

E [T ] = θ

� consistent = unbiased and
lim
N→∞

D [T ] = 0

� e�cient (for T1, T2 unbiased)

T1 is more e�cient then T2 if D [T1] > D [T2]
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Example

Sample average is an unbiased and consistent statistics with respect to the parameter
θ = µ.

Proof

E
[
X̄
]

= µ; limN→∞D
[
X̄
]

= limN→∞
σ2

N = 0

We have two samples: �rst of the length N1 and second N2. Which sample average is
more e�cient with respect to parameter µ.

Solution

If N1 < N2 then σ2

N1
> σ2

N2
and the second statistics is more e�cient than the �rst one.

The notion of statistics is the basic one in the whole subject of the theory of Statistics.
Its detailed treatise can be found (and it is recommended to read) in the Appendix ??.

Now, we can formally de�ne the notion of point estimate:

Point estimate θ̂ of parameter θ is the value of the statistics corresponding with
parameter θ (it should be unbiased, consistent and su�ciently e�cient).

Example

A good statistics for estimation of population expectation µ is the sample average. Thus,
sample average x̄ is a point estimate of µ.

Notice

For estimation we use average of the sample realization x̄ which is a number and not
average of the sample X̄ which is random variable. For estimation we use only a single
realization of the sample. No repetition of sampling is performed.

Practical example

Let us return to the Example 2 from the beginning of this Section 6. Here we had
the population with expectation 84 and standard deviation 21. We took 10 samples to
show theoretical properties of sample average (here we looked at the sample a average
theoretically as a random variable).

Now, we take only the �rst sample realization

x = [75.9, 110.4, 107.6, 64.8, 69.7] .

This sample realization will be used for estimation of the expectation. The estimate µ̂
will be the value of the sample average that has been computed

µ̂ = 85.68

If we use the same data generator (normal distribution wit the expectation 84 and
standard deviation 21) and generate longer samples, we obtain
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sample length 10 20 50 100 1000 10000

point estimate 87.08 85.45 81.40 88.36 83.07 84.01

Here, we can see, that the estimates are almost true only for samples longer than 1000.
The reason is that the variance of the population is rather large.

7 Statistical inference

In the previous Chapter, we spoke about point estimation of unknown parameters of
population. We have said that the point estimate is constructed from a single sample
realization taken from the population under investigation. Also we know, that we could
have taken another sample realization (samples can theoretically be repeated). And as
the sampling is random, the new sample realization would di�er from this we have done
and also the statistics (e.g. sample averages) would di�er. We have said, that they are
random variables (random variable gives di�erent values; statistics based on di�erent
sample realizations gives also di�erent values). So it, as a random variable, is described
by its distribution f (T ), where T is the statistics.

Very important summarization !!!

We have population X that is described by its distribution f (x, θ) which is known up
to the parameter θ.

We de�ne statistics T (x, θ) (for estimation of θ)

Finally, we have the distribution of the statistics T , which can be derived as a
transformation of f (x, θ) according to the function T = T (x, θ). This transformation
is complex and we will not discuss it here.

The distribution f (x, θ) points at data from the population.

The distribution f (T, θ) points at the parameter θ - the value of T is a point estimate
of θ:

T (x) = θ̂

As we are now interested in parameters, all further derivations will concern

the distribution of the statistics f (T, θ) .

Example

Let us consider population described by normal distribution with variance 1 and unknown
expectation µ. We have taken a sample realization x = [x1, x2, · · · , x50] of the length 50.
We want to determine point estimate of µ and the distribution of the chosen statistics
T .

The �rst step is to choose a statistics suitable for estimation of µ. We choose sample
average

T = x̄ =
1

50

50∑
i=1

xi
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We know its suitability - it is unbiased and consistent and its e�ciency is given by the
length of the sample realization (we suppose that 50 is enough).

The point estimate is given by the value of the statistics.

The distribution of the statistics T = X̄ (here the statistics is viewed as random variable)
will be normal as the population is (this result is not easy to derive, but it can be found
on web, e.g. https://online.stat.psu.edu/stat414/node/172/) with the same expectation

E [T ] = µ as of the population and variance equal to D [T ] = σ2

50 (it has been derived in
the previous Chapter).

On the density function of the statistics, we can determine probabilities of point esti-
mates of intervals. E.g. for f (T ) with standard normal distribution (µ = 0,σ2 = 1) the
probability of T ∈ (0, 1) will be

P (T ∈ (0, 1)) = F (1)− F (0) = 0.84− 0.5 = 0.34

0 1

f(T )

T

F (0)

F (1)

f((0, 1))

7.1 Con�dence intervals

α-con�dence interval CI is an interval, in which the true value of the estimated parameter
lies with the probability 1− α.

It can be both sided (as in the picture) where the borders are 1− zα
2
and zα

2
or

left-sided, with borders 1− zα and ∞ or

40



right-sided, with borders −∞ and zα,

where zα is the α-critical value of the statistics distribution.

Remark

We will compute con�dence intervals in the software Statext. This concise explanation
is just for us to know what we are doing.

7.2 Test of hypotheses

Another method of parameter analysis, based on the con�dence interval, is testing of
hypotheses.

Again we have a population X described by distribution f (x, θ) which is known up to
the unknown parameter θ. We formulate two hypotheses

H0: the parameter is equal to θ0; it is θ = θ0.

HA: it is not equal to θ0;it is θ < θ0 or θ > θ0.

Remark

H0 is called zero hypothesis, and it usually expresses the current state of a�airs. HA is
called alternative hypothesis and it denies H0. The denial can have three forms

H0: θ = θ0; HA: (i) θ 6= θ0, (ii) θ > θ0, (iii) θ < θ0. Accordingly, the test can be (i)
both-sided, (ii) right-sided or (iii) left-sided.

The principle of testing hypotheses is as follows:

The hypothesis H0 is assumed to be valid. HA tries to deny it, based on the measured
sample realization x = [x1, x2, · · · , xN ] . Using this sample realization, we construct con-
�dence interval for zero hypothesis H0. If the sample realization comes for distribution
according to H0 then majority of its items (speci�cally (1− α) · 100% of them) should
be within this con�dence interval. If it is not true, the H0 is rejected.

Example

Let the population is normal with the unknown expectation µ and known variance 3.
Let we have

H0: µ = 5; HA: µ > 5.

Test H0 with a sample realization of the length 10;

The statistics for estimation µ is sample average x̄. Its distribution will be again normal
with expectation µ = 5 and variance σ2 = 3

10 = 0.3. As the alternative hypothesis
HA says: µ > 5, the con�dence interval for H0 will be right-sided (so that HA is the
opposite). The situation is sketched in the following picture
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α
2

right-sided CI for H0

T = x̄

f(T, µ = 5)

5 Tr

If the realized statistics Tr (which is computed from the sample realization) is as in the
picture - outside the CI for H0, the hypothesis H0 is rejected. If it lies in the CI, we say
that evidence is not su�cient for rejecting H0 (however, HA is not acknowledged).

Here, the CI is called region of acceptance, its complement is denoted W and called
critical region. So, if

Tr ∈W we reject H0, and if

Tr ∈/ W we do not reject H0.

This principle rejects or does not reject. The power of rejection is not apparent. To
show this, we introduce so called p-value.

p-value is the probability that in the future we will obtain realized statistics that are
greater or equal then the one we have already obtained. It can be visible on the picture.
It is the area under the probability function greater than Tr. For better orientation we
will show it in the following picture
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α

T = x̄

f(T |µ = 5)

5 Tr

p-value

p-value is the most frequently used way of presentation of statistical testing. Its detailed
exposition is given in Appendix ??.

Remark

We will test hypotheses in the software Statext. This concise explanation is just for us
to know what we are doing.

7.3 Important tests with one sample

7.3.1 Parametric tests (normality required)

• expectation (known × unknown variance) - test of true average
Ex: A company declares that its production is more than 150 products per day.
Somebody opposes and says that it is less.

• proportion - test of a part from the whole
Ex: City manager says that only 5% of drivers exceed the permitted speed at certain
street. Police are convinced that the ratio is higher.

• variance - test of variability of a variable
Ex: Quality of production is given by the dispersion of weight of products is. If it
is higher then a given level, the machines must be adjusted. Test, if the machines
are OK or it is necessary to tune them.
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7.3.2 Nonparametric tests (normality is not required)

• Wilcoxon test: tests median of rv from one sample
� H0: median is equal to the assumed value
� test is all sided
Ex: Compare caloric intake measured at 11 selected women with the recommended
value 7725 kJ.

7.3.3 Tests of distribution type

• w/s test of normality (statistics = range / std)
� H0: rv is normal

• Kolmogorov-Smirnov test: tests given distribution. It is based on comparison of
assumed and empirical DF.
� H0: rv has assumed distribution
� right sided test with special crit. vals

• Chi-square test of homogeneity: test of distribution type. It compares observed
and expected frequencies.
� H0: rv has the assumed distribution
� right sided test
Ex: We have measured number of accidents for weekdays and weekends. Test if
they are unif

7.4 Important tests with two samples

7.4.1 Parametric

• two expectations (independent × paired samples)
Ex (indep): Company A claims that its production is greater than that of B. As-
sistant of company B denies it. Test. ... how to determine the side.

Ex (paired): Uniformity of tire removal at the front wheels of cars of a speci�c
mark has been investigated. The producer of the cars proclaims uniformity. Test
it.

• two proportions
Ex: Ratio of drivers violating rules in town is greater than outside. Test it.
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• two variances
Ex: Variability of weights of products from company A is greater than those, from
company B. Test it.

7.4.2 Nonparametric

• Mann-Whitney test: tests equality of two medians (independent samples)
� H0: the medians are equal
� both sided test
Ex: Marks form math were checked at two classes of secondary school. 5 marks
from the �rst and 8 marks from the second class were recorded. Compare the
classes.

• Wilcoxon: tests two medians (paired samples)
� H0: medians are equal
� all sided test
Ex: At a secondary school an improvement of students in math was checked. In the
1st class eight students were selected and their marks recorded. In the 2nd class the
marks of the same students were recorded again. Test, if the results of individual
students are improved.

• McNemar: tests improvement after some action. Data are yes/no - two by two
table of frequencies.
� H0: no improvement
� right sided
Ex: 22 selected people were tested for cold (yes/no). Then, they received some drug
and after a week they were tested again. Test the e�ectiveness of the drug.

7.5 Important tests with more samples

7.5.1 Parametric

• Analysis of variance: tests equality of several expectations
� H0: expectations are equal
� right sided test
Ex: Test if the power of engine of vehicles of �ve marks is the same.

• Anova with two factors: tests equality in columns and rows.
Ex: Five cars are tested by three drivers. Test the cars and the drivers.
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Auxiliary tests to anova

• Bartlett - test of equality of more variances

• Sche�é - detects di�erent samples

7.5.2 Nonparametric

• Kruskal-Wallis: nonparametric anova.
� H0: medians are equal
� right sided test
Ex: as for anova1

• Friedman - block test of equality of medians
� H0: medians are equal
� test is right sided
Ex. 5 shops are rated by 3 inspectors (each shop is rated by each inspector; inspec-
tors are factors of no interest = block). Evaluate quality of the shops.

7.6 Important tests of independence

• Gamma coe�cient: test of association of two discrete rvs. It compares prediction
from marginal and conditional pf.
� result: how many times the prediction from cond. pf is better than from
marginal.
Ex: We measure speed and consumption on driven cars. Is there a relation between
these two variables?

• Pearson test: tests independence of two rvs. It tests correlation coe�cient. (para-
metric test)
� H0: rvs are independent
� test is both sided
Ex: Test the data x and y if they are suitable for linear regression.

• Spearman test: nonparametric Pearson. Works with ranks.
� H0: rvs are independent
� test is both sided
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• Chi-square test of independence: test if independence of two rvs. Compares ob-
served and expected frequencies. Based on the de�nition of independence f (x, y) =
f (x) f (y) .
� H0: rvs are independent
� test is right sided.
Ex: We asked 200 people from three di�erent areas about their pay (low, normal,
high). Test if the pay depends on the area.

7.7 Validation in regression analysis

Regression can be viewed as approximation of dependence of y on x from data sample
by some curve - linear, exponential, polynomial etc. However, not each data sample
must be convenient for such approximation. Here we will discuss this question.

1. Draw xy-graph: ideal, good, possible and no good regression.

2. Pearson t-test of correlation coe�cient

For approximation of a relation between x and y there mus be any relation. This
is expressed in regression coe�cient

ρ =
C [X,Y ]√
D [X]D [Y ]

←→ r =
Sxy√
SxSy

where C is covariance, Dare variances, S are sums

Sxy =
∑

(xi − x̄) (yi − ȳ) , Sx =
∑

(xi − x̄)2 , Sy =
∑

(yi − ȳ)2

The true property of random variables is expressed in population regression co-
e�cient ρ. Its true value is estimated from sample by the statistics r (sample
regression coe�cient).

Pearson t-test has H0: ρ = 0, HA: ρ 6= 0 ; both sided test with Student distribution.

H0: x and y are uncorrelated - regression does not have sense. To be able to use
regression, H0 has to be rejected.
Prg: pearson_test

3. Fisher F -test of explained and unexplained variance

In regression, we have data and predictions of data which lie on the regression line.
If we want to characterize data {yi}Ni=1 without regression, we can compute the
average value ȳ. Then, for a selected xi we have the value yi and its prediction ŷi.
Now, the deviation of yi from ȳ can be decomposed as

yi − ȳ = (ŷi − ȳ)︸ ︷︷ ︸
expl.

+ (yi − ŷi)︸ ︷︷ ︸
unexpl.

where
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• yi− ȳ is the error in measurement without taking into account the regression
(overall error),

• ŷi − ȳ is a deviation from the average explained by regression (explained
error),

• yi − ŷi is a deviation of the measured point from the regression line - if
regression is precise, all points should lie no the line (unexplained error).

Taking variances, we obtain explained Sr (regression) and unexplained Se (resid-
ual) variances. The statistics is de�ned as F = Sr

Se
with F distribution. For H0:

F = 0 is nothing explained and the regression does not have sense. The test is
right-sided. Regression has sense, it H0 is rejected.

4. Test of independence of residuals

Residuals are deviations of the data from regression line. For correct regression
the residuals must be independent. If not, the relations between them could be
used to construct better regression line.

The test has the statistics

z =
2b− (n− 2)√

n− 1
∼ N (0, 1)

where b is number of sequences (deviations from median with the same sign). H0:
is independence (for z = 0).

5. Test for auto-correlation of residuals

It is a similar test to the previous one. We test if a current residuum ei can be
estimated from the previous one ei−1. We estimate the dynamical regression

ei = aei−1 + b+ εi

If |a| < 0.3 and k → 0, the regression is OK.

6. Relative prediction error of residuals RPE

Residuals ei = yi − ŷi are errors of approximation of data with regression curve.
The smaller the errors are, the better approximation. The standard error is de�ned
as

RPE =
var (e)

var (y)

which is variance of prediction error ei relative to variance of dependent variable
yi.
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8 Work with Statext

8.1 Introduction to Statext

The statistical software Statext can be found on web

https://www.statext.com/

This is the main page of the Statext project. The download can be found on the folder
Download.

However, there is much more here.

You can work on-line, here. But this on-line version is a bit limited in the menu possi-
bilities. So, o�-line work is preferred. No installation is necessary. Just download the
�le Statext.zip, unzip it and run Statext.exe.

In the Statext homepage you can also �nd many useful things on the red bar. E.g. list
of all sub-menu (in How to use?) or brief introduction to basic statistical notions (in
Statistics).

The picture of Statext homepage is here

Here in the blue (upper) window, the data can be set (closed in curly brackets), in the
menu (Descriptive, Parametric, etc.) the task is selected and the result (including the
procedure of computation) appears in the white (lower) window. The result is mainly
given by the p-value.
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The picture of the o�-line Statext version is similar

The blue (here lower) window obtains data, the white (here upper) window sets the
results of the task selected in the menu (at the top).

If you do not know the format of the data for a speci�c task, just set some, run the task
and Statext will advice you. E.g. for ANOVA, we get
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If you want help to some task, run it without any data

Another possibility that Statext allows is copying block of data from the result window
into the data one. For example: We want to generate sample realizations form a popu-
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lation

Here we have set the population (in {}) and call Data|Random Sample.. We obtain
result it the result window. We can take it and copy to the data window (without {} it
will be just a text). If we want to use the sample realizations for further computation
as data, we need to close them into {}.

Further possibilities can be got by experimenting. What we are mainly interested in,
are the menus solving directly our statistical tasks. They are

Parametric, Nonparametric and Categorical

In the following text, we will look at them in more details.

Remark

Sometimes it happens that after running the task the results window stays rolled up and
nothing can be seen. It must be rolled down manually.

9 Examples solved in Statext

Statext version 3.3 is used.

For us, compulsory are only those tasks that are supported by Statext. The others were
listed only for your information.

The following examples should be the main practical outcome of the subject. The theory
is important just to understand the examples.
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9.1 Regression analysis

9.1.1 Example

In a factory, dependence of the overall costs y (in thousands of K£) on the production x
has been investigated. The following data have been measured

x = {532 297 378 121 519 613 592 497}

y = { 48 32 42 27 45 51 53 48}

a) Using linear regression estimate the costs for the production of 1000 products

b) For which production the costs would be equal to $ 100 000.

Results

line: y = 0.053x+ 19.51

cost_1000 = 73.02

prod_100 = 1504.09

Statext

The data can be directly copied from the pdf.

Call: Parametric|Simple regression|Linear...

In the result window you can �nd not only coe�cients of regression line, but also the
analysis of the regression performed.

The second task must be computed manually from the estimated regression line Y =
19.510024 + 0.053514X and express X. The precise parameters are at the top of the
Result window.

Notice !!!

After running the task from the menu, a window appears. Here the characteristics of
the data set are computed and can be used. If you have your own characteristics, you
can set them here replacing the computed ones.

9.1.2 Example

A harmful substance leaked into the container with water. Neutralizing agent has been
applied and the concentration of the harmful substance has been measured at time
instants x. The measured concentrations y are

x= {5 12 20 26 29 38 65 126}

y = {19 17 18 17 17 15 14 7}

Compute the correlation coe�cient of linear regression and conclude about its suitability.
If suitable, estimate when the concentration will be zero.
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Results

Correlation coe�cient r = -0.9832531

Line y = −0.095x+ 19.305

Zero concentration will be at x = 203.58

Statext

The same as in Example 14.1.2.

Call: Parametric|Simple regression|Linear...

9.1.3 Example

At certain process we have measured the data

x = {5 12 20 26 29 38 40 45}

y = {9 7 12 12 27 35 44 76}

Perform the polynomial regression of the order 3 and the exponential regression. Using
p-value of the regression decide which type of regression is better.

Results

pvlin = 0.0057

pvexp = 0.0025

Polynomial is better.

Statext

Call: Parametric|Simple regression|Linear...

Parametric|Simple regression|Exponential...

Better is that one which has smaller p-value.

9.1.4 Example

At certain process we have measured the data

x1 = {15 12 11 9 9 8 5 3}

x2 = {3 9 5 11 28 14 32 58}

y = {9 7 22 12 27 31 44 36}

Perform multivariate linear regression and test its suitability using p-value from the
ANOVA table.

Results
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pv = 0.0415

On the level 0.05 is the regression OK.

Statext

Call: Parametric|Multiple regression|Linear...

9.2 Con�dence intervals

9.2.1 Example

Assume, that the height of children in the age 10 has normal distribution with the
variance 38. Determine the interval α-I, in which the true height will be if we have
measured the data sample of the length 12 with the average 127.3. Compute on the
level α = 0.01.

Results

CI = (122.72, 131.88)

Statext

Here, instead of data, we have computed characteristics of average 127.3. The variance
is given as known (z-values will be used).

Call: Parametric|Con�dence interval for the mean...

Remark: some data, no matter which, must be set in the data window.

The window that appears must be set like this:

The value 6.16 is square root of 127.3. Con�dence level is set as 0.99 (it is 1-0.01). Using
z-table must be checked, as the value of variance (here standard deviation) is known,
not computed from data.

9.2.2 Example

Assume, that the height of children in the age 10 has normal distribution. Determine
the interval α-I, in which the true height will be if we have measured the data sample
of the length 12 with the average 127.3 and variance 38. Test on the level α = 0.01.
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Compare with the previous result and justify.

Results

CI = (121.77, 132.83)

Statext

The same as the previous Example 14.2.1

Call: Parametric|Con�dence interval for the mean...

The di�erence is that the variance now is computed from data, not known exactly. So,
Using the z-table must stay unchecked.

9.2.3 Example

To learn the accuracy of a method for measuring the volume of manganese in the steel,
we performed independent measurements of several variances. We would like to know
the border for which it holds that only 5% of possibly measured variances will be greater
than this border. The measured values are

x = {4.3 2.9 5.1 3.3 2.7 4.8 3.6}

Results

The border of variance is 3.2

Statext

Call: Parametric|Con�dence interval for standard deviation...

The border will be given by the upper border of right-sided con�dence interval. As the
intervals o�ered are only both-sided, we have to set 10% (i.e. 0.1) instead of 5%.

In the results window we must �nd interval for variance.

9.3 Parametric tests

9.3.1 Example

At the motorway with recommended speed 80 km/h we monitored the speeds of passing
cars and obtained data presented in the following table of values and frequencies

x 0-78 79 80 81 82 83-∞
n 543 32 45 15 8 2

Test the hypothesis H0 that only 3% of drivers exceed the speed 80 km/h. Test on the
level 0.05.

Results
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pv = 0.096

We do not reject.

Statext

Exceed: 25, All: 645

Call: Categorical|One sample proportion test...

The window to be �lled in is here

9.3.2 Example

From a set of steel rods with equal nominal length 6.2 cm, we have selected random
choice with the lengths x. The producer guarantees that the standard deviation of the
lengths is 0.8 cm. At the signi�cance level 0.05 test the assertion of the producer that
the produced rods have the nominal length if the measured lengths are

x= {6.2 7.5 6.9 8.9 6.4 7.1}

Compare the result with the situation when the variance is not known.

Results

pvz= 0.008, pvt = 0.059

Statext

Call: Parametric|Test for a population mean...

� for known variance
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� for unknown variance

Here in the item SD= we leave the computed value.

9.3.3 Example

The accuracy of setting of certain machine can be veri�ed according to the variance of
its products. If the variance is greater then the level 28, it is necessary to perform new
setting. A data sample has been measured

x = {102 113 108 119 114 102 115 119 99 117 108 101}

On the level 0.05 test if it is necessary to set the machine.

Results

pv = 0.03

On the level 0.05 reject H0: the machine is OK

Statext

Call: Parametric|Chi-square test of variance...
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9.3.4 Example

Solidity of materials is veri�ed by two methods A and B. The same material has been
subdued testing by both methods. The results are

A = {20.1 19.6 20.0 19.9 20.1}

B = {20.9 20.1 20.6 20.5 20.7 20.5}

On the level 0.05 test equality of both methods if the variability of methods is assumed
to be equal.

Results

pv = 0.0027

Equality is rejected.

Statext

Call: Parametric|Test for two population means|t-test (indep.samp.)

9.3.5 Example

We are going to test if the tire removal on left and right sides of the front wheels of cars
is equal. The measured values are

xL= {1.8 1.0 2.2 0.9 1.5}

xP= {1.5 1.1 2.0 1.1 1.4}

Test at the level 0.05.

Results

pv= 0.55, are the same.

Statext

Call: Parametric|Test for two population means|Paired t-test

9.3.6 Example

At the motorway with recommended speed 80 km/h speeds of passing cars have been
monitored the in the direction to the town (xT) and from the town (xF). The data
measured are

xT = {95 88 71 82 69 75 78 67 77 82 79}

xF = {81 69 75 91 77 76 88 68 91 74 92}

At the level 0.05 test the hypothesis H0: To the town the cars go faster.

Results
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1. test of variances: pv = 0.3 - variances are equal.

2. test of speeds: pv = 0.322 - to town are higher is not rejected

Statext

Call: Parametric|Test for two population means|t-test (indep.samp.)

To is the �rst sample, From is the second sample.

H0 says: To > From. HA: To<From → HA ... is less than

Now, in the results table we must �nd result for �equal variances�.

The variance can be tested in: Parametric|Barlett's test for variance...

9.3.7 Example

During a check of the front lights of cars we have measured the data xL (left light) and
xR (right light).

xR= {-3 5 16 9 -8 -2 23 5 -6 -3}

xL= {-5 -12 22 -3 -9 1 -1 2 -13 -5}

The values are distances (in cm) above (positive) and below (negative) of the real level
with respect to the optimal level. At the level 0.1 test if

a) the light levels at each car are the same,

b) the left lights are higher then right.

Results

a) pv = 0.075; On the level 0.1 we reject equality.

b) pv = 0.03; Left are higher is rejected.

Statext

Call: Parametric|Test for two population means|Paired t-test

a) H0 ... is not equal

b) H0 ... is greater than

because: R is �rst, L is second. H0: R<L, HA: R>L

so HA says: R (�rst) is greater than L (second).

9.3.8 Example

At a crossroads, we have written down numbers of cars going straight (S) turning to left
(L) and right (R). The measured data are xS = 62, xL =39 and xR = 46. On the level
0.1 test assertion that the ratio of cars
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a) going straight is equal to those that are turning,

b) going straight exceed those turning.

Results

a) pv = 0.0073 - equality is rejected

b) pv = 0.0036 - �straight is more� is rejected

Statext

Call: Categorical|Two sample proportion test...

a)

b) The same, but HA: · · · is less than

9.4 ANOVA

9.4.1 Example

We monitor three machines. Randomly, we measure their productions per hour

x1= {53 55 49 58 52 61 56 55}

x2= {49 56 52 45 51 56 44 51}

x3= {52 53 52 54 55 53 53 52}

At the level 0.05 test the equality of their production.

Results

pv= 0.054

Statext

Call: Parametric|Analysis of variance|One-way anova...
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9.4.2 Example

For one month in the years 1999 2000 2001 2002 2003, we monitored number of accidents
at �ve crossroads. The results are as follows

1999: {3 5 2 1 3}

2000: {6 2 5 3 4}

2001: {3 2 1 1 2}

2002: {4 1 1 2 2}

2003: {4 2 5 5 6}

At the level 0.01 test hypothesis H0: The average number of accidents is equal at all
monitored crossroads.

Results

One-way anova pv = 0.0207

Two-ways anova Equality in crossroads pv = 0.0195

Equality in time pv = 0.275

Statext

Call: Parametric|Analysis of variance|One-way anova...

Call: Parametric|Analysis of variance|Two-way anova (without...)...

9.4.3 Example

A factory produces some products whose weight must be constant. For the production
it uses four machines. A sample of products has been taken from all machines to test
equality of the product weights. The measured values are

x1={39.4 34.8 35.6 35.1 35.8}

x2={34.4 34.2 35.1 31.1 32.5 33.8}

x3={30.2 35.1 34.2 36.3 30.8 35.6 35.2}

x4={39.1 34.3 38.6 34.5 36.4 36.1}

Test the equality of the product weights on all four machines.

Results

pv = 0.036

Statext

Call: Parametric|Analysis of variance|One-way anova...
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9.5 Nonparametric tests

9.5.1 Example

At a crossroads we have written down numbers of passing cars. The lengths of monitoring
were d = {15 10 20 35 10 50} and the measured numbers x = {71 56 98 121 44 271}.
At the level 0.05 test the hypothesis that the cars go uniformly (the same number per
time unit).

Results

pv = 0.002

Remark: E=70.82 47.21 94.43 165.26 47.21 236.07

Statext

First, you must compute the expected frequencies E = d (
∑
xi/
∑
di). Then copy

x = {· · · } and E = {· · · } into the data window and then

Call: Categorical|Chi-square Goodness-of-Fit test...

Remark: Homogeneity test compares if the two samples come from the same distribution.
It is not the same as Goodness-of-Fit test.

9.5.2 Example

The following data are frequencies (f) of incidents at certain big factory at time intervals
(i)

i: 8-10h. 10-12h. 12-13h. 13-17h.

f: 2 7 1 16

At the level 0.05 test the hypothesis that the accidents occur uniformly.

Results

pv= 0.13

Remark: E=5.78 5.78 2.88 11.56

Statext

The same as previous. Only d must be constructed as lengths of intervals in i. I.e.
d ={2 2 1 4}. Then E = d (

∑
fi/
∑
di). Copy f and E to data window and

Call: Categorical|Chi-square Goodness-of-Fit test...
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9.5.3 Example

A connection between color of eyes and hair has been investigated. In a collected data
sample we obtained the following frequencies

eyes\hair light brown dark

blue 90 75 55
gray 96 136 88
brown 108 135 119

At the level 0.05 test the hypothesis that the color of eyes and hair are independent.

Results

pv= 0.017

Statext

Copy the data from the table into the data window and close the rows into the curly
brackets, like this:

blue {90 75 55}
gray {96 136 88}
brown {108 135 119}

Then

Call: Categorical|Chi-square independence test...

9.5.4 Example

Two operators O1 and O2 alternate regularly in production of certain articles. The
produced articles are checked for quality (either 1 or 2). The following data have been
measured

O1: 1 2 1 1 2 2 2 1 2 1 1 1 2 1 2 2 2 1 2 1 2

O2: 2 2 1 2 1 1 2 2 2 1 2 2 1 2 1 2 2 2 1 1 2

At the level 0.05 test the assertion that both the operators are with respect to the
production quality independent.

Results

pv= 0.78

(the result listed is p-value, not G test)

Statext

First the frequency table T must be constructed (frequencies of individual con�gurations
of [O1,O2]. It is T = {{3 7}{5 6}} (the matrix is set in this form). Then

Call: Categorical|Chi-square independence test...
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9.5.5 Example

Two doctors recommend curing a cold with two di�erent methods. The results (number
of days of the treatment) are x1 and x2. Test equality of the methods.

x1={5 8 7 8 4 5 5 6 9 3 5 8 6 8 7 5 8 5 7 5 6 8 4 7 7 5 6}

x2={3 4 9 5 4 9 9 8 3 3 5 3 6 4 5 6 2 2 3 4 2 3}

Results

pv=0.005

Statext

Call: Nonparametric|Two samples (unpaired)|Mann-Whitney U test...

9.5.6 Example

Eight sportsmen in a certain sports club were tested with respect to their performance.
All of them threw a javelin once and then they were subdued to intensive training. Then
they threw once more. The measured lengths were x1 and x2. The hypothesis is that
one day of training is not enough to improve their performance. Test on the level 0.05.

x1={68 81 69 72 66 91 98 89 75 68 69 75 72 83 88 79 88 76 81 85}

x2={79 62 70 75 68 81 85 94 71 62 81 70 74 85 82 91 85 82 83 73}

Results

pv = 0.68

Statext

Call: Nonparametric|Two samples (paired)|Wilcoxon signed-rank test...

9.5.7 Example

Test if mice and stags have equally long front legs. The measured values are

x1={135 123 3.1 2.5 98 124 131 3.4 2.8 128 154 135 2.9 137 2.7 3.0 3.2 131 2.8 148}

x2={136 121 2.9 2.6 101 121 130 3.5 2.9 126 162 141 2.8 142 2.9 2.8 3.0 132 3.1 151}

Results

pv=0.31

Statext

Call: Nonparametric|Two samples (paired)|Wilcoxon signed-rank test...
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9.5.8 Example

Tree inspectors are to evaluate functionality of �ve fast food stands. Each inspector
evaluates each stand. The result is at the table (rows correspond to inspectors, columns
columns to stands). Evaluation marks are 1,2,..,10. The mark 10 is the best one. Test
if the quality of the stands is equal.

Table

{{10 8 3 9 7}

{8 7 5 9 10}

{8 9 5 7 6}}

Results

pv= 0.155

Statext

Call: Nonparametric|Block design|Friedman test...

(Data sets are for subjects)

9.5.9 Example

Let X denote the length (in centimeters), of a certain �sh species. We obtained the data
set

X={5.0 3.9 8.2 7.5 2.8 4.1 5.4 2.6 1.7 4.3 7.4 4.1 5.2 9.3 2.7 3.4 5.9 4.3 9.4 8.2 4.8 3.3 4.7
5.3 4.2 4.0}.

Can we conclude that the median length of the �sh species di�ers signi�cantly from 4.1
centimeters?

Results

pv = 0.052

Statext

Call: Nonparametric|One sample|Wilcoxon signed-rank test...

Remark: Do not forget to insert 4.1 into the H0: population window
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10 Examples to the textbook on Statistics

10.1 Examples to probability

10.1.1 Example

We throw a dice. What is the probability that we obtain an odd number if somebody
watched the result and reveals us that the result is a) greater than 3; b) greater than 4.

Solution

The example can be demonstrated in a picture. The basic situation with a dice has 6
equally possible outcomes

1 2 3 4 5 6

The condition a) excludes 1, 2, 3. In the next picture they are denoted by X

X X X

1 2 3 4 5 6

Now, all possible are 4, 5, 6 from which only 5 is odd. So, we have

P1 =
1

3

For the condition b), the excluded are 1, 2, 3, 4 and positive (odd) is 5

X X X X

1 2 3 4 5 6

Then, we have

P2 =
1

2

Notice

The original probability (of odd number) is P = 1
2 . For the �rst case a) it holds P1 6= P

which means that the events are dependent. In the case b) it is P2 = P , so the events
are independent. From the example we can see that independence means that in the
new sample space (created by the condition) the ratio of positive and negative results is
the same as in the original sample space - odd/even are 1/1. In the case of dependent
events, the ratio is unbalanced - here odd/even are 1/2. The result of odd number is less
probable so the condition brings an information for us which can be used in guessing the
result.
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10.1.2 Example

Consider an example of throwing two dices. What is the probability that: a) The sum
on both dices will be greater than ten? b) We get an even sum if we know that there
was not 6 at the �rst dice? c) We get an even sum if we know that there was not 6
neither on the �rst nor on the second dice?

Solution

a) We would like to use the classical de�nition of probability, however, the results (sums
on both dices) are not equally probable. E.g. the result 2 can be got only by 1 and 1.
The result 2 can occur in two ways 1 and 2 or 2 and 1, etc. What is unique are couples
of numbers that fell at �rst and second dice. The situation can be depicted as follows
(vertical axis represents toss on the �rst dice and horizontal one the second - inside the
table are sums of tosses on both dices)

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

As all the results denoted inside the table are equally possible, the classical de�nition
of probability can now be used. We can see that the total number of di�erent results is
6× 6 = 36 and the number of positive ones is 3. So the probability will be

P (x > 10) =
3

36
=

1

18
.

b) The above table for the condition no 6 on the �rst dice looks looks like this

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11

From it the number of positive results is 15 (all entries with even sums) and possible
results are 30 (all entries). Thus the probability is

P (no 6 on first dice) =
15

30
=

1

2

which is the same result as without the condition.

c) With no 6 on both dices the table is
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1 2 3 4 5

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10

Here, positive results are 13 and possible ones ore 25. Then the probability is

P (no 6 on both) =
13

25

Here the condition in�uences the result. Even sum is more probable.

Remark

The reason why at b) the probability is the same as without the condition can be seen.
The condition b) leads to omitting the results 7 8 9 10 11 12. Here, the number of even
and odd is the same. In di�erence, in the case c) we omit 7 8 9 10 11 12 11 10 9 8 7
where even results are 5 and odd ones are 6. It means that more even results stays in
the game and thus even is more probable.

10.1.3 Example

We have a box with �ve white (w) two red (r) and three black (b) balls. Randomly we
draw one ball and without returning it we draw the second one.

1. What is the probability, that the �rst ball will be white?
Solution: According to the classical de�nition of probability we look for positive
and all possible results3. There are �ve positive results (�ve white balls) and ten
possible ones (all balls in the box). So the probability is

P =
5

10
= 0.5

2. What is the probability that the second drawn ball will be white if the �rst was
a) white; b) black?
Solution a) white: If the �rst ball was white then before the second draw we have
four white and altogether nine balls. So, denoting 1w as the �rst draw white and
2w the second one white, we have

P (2w|1w) =
4

9

Solution b) black: Here before the second draw we have �ve white and nine balls
altogether. Then

P (2w|1b) =
5

9
3The conditions for classical de�nition are met: there are a �nite number of possible results and each

result is equally probable.
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3. What is the probability that the second drawn ball will be white?
Solution: Here, we do not know which ball has been drown as the �rst. So,
we must take into account all possibilities. What we know in analogy to the
previous examples are marginal and conditional probabilities (whit the analogous
denotation) P (1w) = 1

2 ; P (1r) = 1
5 ; P (1b) = 3

10 ; P (2w|1w) = 4
9 ; P (2w|1r) = 5

9
and P (2w|1b) = 5

9 . Then the probability P (2w) is given as a union of all possible
�rst draws

P (2w) = P (2w, 1w) + P (2w, 1r) + P (2w, 1b) =

= P (2w|1w)P (1w) + P (2w|1r)P (1r) + P (2w|1b)P (1b)

where P (·, ·) denotes joint probability on which we applied the chain rule P (A,B) =
P (A|B)P (b). Now, all these probabilities are known and can be substituted

P (2w) =
4

9

1

2
+

5

9

1

5
+

5

9

3

10
=

1

2

The situation can be easily represented graphically

w

w

r

b

w

r

b

w

r

b

w

r

b

5w2r3b

4w2r3b

5w1r3b

5w2r2b

P (1w) = 5
10

P (2w|1w) = 4
9

second white

second white

second white

P (1w2w) = 5
10

4
9

P (1r2w) = 2
10

5
9

P (1b2w) = 3
10

5
9

The nodes represent states (numbers if individual balls in the box). The leftmost one
denotes the initial state (5white,2red,3black). The arrows are actions (colors of the
drawn balls). Up white, right red and down black. The second column of nodes are
states after the �rst draw (always one corresponding color is missing). The probabilities
are computed on the base if the input node and are given by number of positive colors
divided by the number of all colors. The rightmost column are the �nal states. Their
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probabilities are given by the product of probabilities on th path from the beginning to
this node.

To solve the problem - probability of second white - we must select the nodes where
the last drawn ball was white. They are the �rst, fourth and seventh one. The �nal
probability is sum of probabilities of these selected nodes.

10.1.4 Example

Let the sample space be given by sex of residents of certain village x and their age y.
By x = 1 we denote female (girl) and by x = 2 mail (boy). The age has values y = 1
for age less then 18 and y = 2 otherwise. We obtained the following population

sex 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2

age 2 2 1 1 1 2 2 2 1 2 2 2 1 1 2 2 2 2 2 1 2

1. What is the probability that a randomly chosen person will be male?
Solution: The question concerns only x - the �rst row of the data-table. Mail is 2
and there are nine entries equal to 2. The total number of persons (entries of row
in the table) is 21. So the probability of male is

P =
9

21

2. What is the probability that a randomly chosen person will be a male if we know
that the age is less than 18?
Solution: The condition is age < 18 which is what we know. So, from the above
table we select only columns which have 1 in their second entry. We obtain

sex 1 2 2 1 2 1 2

age 1 1 1 1 1 1 1

and what remains in the �rst row is: three times 1 and four times 2; altogether
seven columns. That is the probability of a boy is

P =
4

7

3. What is the probability that a randomly chosen person will be a boy (i.e. a male
with the age < 18).
Solution: Here, we are guessing both the sex as well as the age. So, from the

table, we have to select all positive columns
2
1
. There are four of them. The

total number is 21, so the probability is

P =
4

21
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10.1.5 Example

Let us have a buss station with a bus coming exactly in �ve minutes interval. We come
randomly at the bust station and want to go by the bus. The result of the experiment
is de�ned as a time we must wait. What is the probability of waiting a) one minute; b)
less than 1 minute; c) more than one minute.

Solution

a) Evidently, the probability of waiting exactly a given time is zero. In the interval
〈0, 5〉 is uncountably in�nitely many time instants which all are candidates for a possible
waiting time. The positive result is only one. So, one divided by in�nity gives zero.

b) The probability of maximum time of waiting is proportional to the length of this
interval. No waiting has probability 0 (see the case a) ) and maximum waiting 5 min
minutes has probability 1. If we denote X as maximum time of waiting and x some real
number, then we have

P (X ≤ x) =
x

5
, for x ∈ 〈0, 5〉

and zero otherwise.

So, waiting less than 1 minute has the probability 1
5 .

Remark

If we take two time instants x1 ≤ x2,both within the interval 〈0, 5〉 then

P (X ≤ x1) =
x1

5
, P (X ≤ x2) =

x2

5

and the probability of waiting more than x1 and less than x2 is

P (X ∈ 〈x1, x2〉) =
x2 − x1

5

From it we can also see that if x1 = x2 then the probability is zero.

c) Probability of waiting more than 1 minute can be determined on the basis of the last
formula. It is

P (X > 1) =
5− 1

5
=

4

5
.

10.2 Examples to random variable

10.2.1 Example

Let us consider an experiment with �ipping two coins. The results are �both heads�
(H), �both tails� (T) and �di�erent� (D). Introduce random variable X, construct its
probability function f (x) and compute the expected �ip E [X] .

Solution
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Let us assign H → 1, T → 2 and D = 3. (The assignment is arbitrary, but in the
following computations it must be preserved)

Then

f (1) = P (H) =
1

4
, f (2) = P (T ) =

1

4
, f (3) = P (D) =

1

2

So, the probability function is

x 1 2 3

f (x) 1
4

1
4

1
2

The expectation is

E [X] = 1 · 1

4
+ 2 · 1

4
+ 3 · 1

2
= 2.25

10.2.2 Example

Compute expectation and variance of the random variable X with categorical distribu-
tion de�ned by probability function set by the table

x 1 2 3 4 5

f (x) p 2p 0.3 + p 0.2 p

Solution

First we determine p : p+ 2p+ (0.3 + p) + 0.2 + p = 5p+ 0.5 = 1

→ p = 0.1. So the table will be

x 1 2 3 4 5

f (x) 0.1 0.2 0.4 0.2 0.1

E [X] = 1 · 0.1 + 2 · 0.2 + 3 · 0.4 + 4 · 0.2 + 5 · 0.1 = 3

D [X] = (1− 3)2 · 0.1 + (2− 3)2 · 0.2 · · · = 1.2

10.2.3 Example

Determine a probability that the value of random variable with Poisson distribution
f (x) = exp {−4} 4x

x! will be greater than 3.

Solution

P (X > 3) = 1− P (X ≤ 3) =

= 1− exp {−4} 40

0!
− exp {−4} 41

1!
− exp {−4} 42

2!
− exp {−4} 43

3!
= 0.566
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10.2.4 Example

Compute a) expectation, b) variance, c) distribution function, d) 0.05-quantil and e)
median of exponential distribution with density function

f (x) = a exp {−ax} , x ≥ 0, a > 0

Solution

� expectation

E [X] =

∫ ∞
0

xa exp {−ax} dx =
1

a

∫ ∞
0

y exp (−y) dy = per-partes =
1

a

where y = ax; dy = a · dx.

� variance

D [X] =

∫ ∞
0

(x− E [X])2 f (x) dx =

∫ ∞
0

x2f (x) dx− (E [X])2

∫ ∞
0

x2a exp {−ax} dx =
1

a2

∫ ∞
0

y2 exp {−y} dy = two per-partes =
2

a2

D [X] =
2

a2
− 1

a2
=

1

a2

where again y = ax; dy = a · dx and x = y
a .

� distribution function

F (x) =

∫ x

0
f (t) dt =

∫ x

0
a exp {−at} dt = [− exp {−at}]x0 =

= 1− exp {−ax} , x ≥ 0 othewise 0.

� 0.05 quantil ∫ ζ

0
f (x) dx = 0.05→ F (ζ) = 0.05

1− exp {−aζ} = 0.05

exp {−aζ} = 0.95

−aζ = ln {0.95}

ζ = − ln {0.95}
a

=
0.051

a

� median

x0.5 = ζ0.5 = − ln {0.5}
a

=
0.693

a
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10.2.5 Example

Determine E [X] and D [X] if the density function is

f (x) =
3

4

(
1− (x− 1)2

)
for x ∈ (0, 2)

Solution

The density function is in the following picture

0 1 2 3

f(x)

x

Expectation

E [X] =

∫ 2

0
x

3

4

(
2x− x2

)
dx =

3

4

∫ 2

0

(
2x2 − x3

)
dx =

=
3

4

[
2

3
x3 − 1

4
x4

]2

0

=
3

4

(
2

3
8− 1

4
16

)
= 4− 3 = 1

which also follows directly from the graph.

Variance

D [X] =

∫ 2

0
(x− 1)2 3

4

(
2x− x2

)
dx =

3

4

∫ 2

0

(
−x4 + 4x3 − 5x2 + 2x

)
dx =

=
3

4

[
−1

5
x5 + x4 − 5

3
x3 + x2

]2

0

=
1

5

Remark

Computation of 0.05-quantil: ∫ ζ0.05

0

3

4

(
2x− x2

)
dx = 0.05

3

4

[
x2 − 1

3
x3

]ζ0.05
0

= 0.05 → ζ2
0.05 −

1

3
ζ3

0.05 =
4

3
0.05

ζ3
0.05 − 3ζ2

0.05 + 0.2 = 0

It cannot be solved analytically.
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10.2.6 Example

Random variable X is de�ned by the formula

f (x) = p (1− p)x−1 , x = 1, 2, · · ·

Find α-quantile ζα and α-critical value zα of this distribution with α = 0.05.

Solution

The probability function has a form of geometrical sequence with the �rst term a1 = p
and the quotient q = 1− p. The sum of its �rst n terms is

sn = a1
1− qn

1− q
= p

1− (1− p)n

1− (1− p)
= 1− (1− p)n

Now, quantile is equal to n for which sn = α. Taking logarithm of the previous equation
we get

ln (1− α) = n ln (1− p)

n =
ln (1− α)

ln (1− p)
, for α = 0.05

The result is not an integer. Its roundup is an approximation of the quantile.

The critical value can be obtained by setting α = 0.95.

For p = 0.6 we get ζ0.05 = round (0.05) = 0 and z0.05 = round (3.269) = 3.

10.2.7 Examples

Construct distribution function of random variable X with the density function

f(x) =
3− |x2 − 4x+ 3|

8
, pro x ∈ (0, 4).

Solution

The density function is de�ned piece-wise on several intervals. First we need to solve
quadratic equation

x2 − 4x+ 3 = 0

and get rid of the absolute value. The quadratic function can be written as (x− 1) (x− 3)
and the solution is x1 = 1 and x2 = 3. From it we have the table of the signs of the
quadratic function inside the absolute value

x (0, 1) (1, 3) (3, 4)
sign + � +
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Now, we can write the density function for individual intervals:

x ∈ (0, 1) f (x) = −x2+4x
8 ,

x ∈ (1, 3) f (x) = x2−4x+6
8 ,

x ∈ (3, 4) f (x) = −x2+4x
8 .

For the distribution function it applies

F (x) =

∫ x

−∞
f (t) dt

Notice: For each x ∈ R we need to compute the integral on (−∞, x) .

For x ∈ (−∞, 0) the integral is zero, i.e. I1 (0) = 0.

For x ∈ (0, 1) we compute

I2 (x) =

∫ x

−∞
f (t) dt = I1 (0) +

∫ x

0

−t2 + 4t

8
dt =

= 0 +
1

8

[
−1

3
t3 + 2t2

]x
0

= − 1

24
x3 +

1

4
x2

and I2 (1) = 1
8

(
−1

3 + 2
)

= 5
24

For x ∈ (1, 3)

I3 (x) =

∫ x

−∞
f (t) dt = I2 (1) +

∫ x

1

t2 − 4t+ 6

8
dt =

=
5

24
+

1

8

[
1

3
t3 − 2t2 + 6t

]x
1

=
1

8

(
1

3
x3 − 2x2 + 6x−

(
1

3
− 2 + 6

))
=

=
1

24
x3 − 1

4
x2 +

3

4
x− 1

3

and I3 (3) =19
24 .

For x ∈ (3, 4)

I4 = I3 +

∫ x

3

−t2 + 4t

8
dt =

19

24
+

1

8

[
−1

3
t3 + 2t2

]x
3

=

=
1

8

(
19

3
− 1

3
x3 + 2x2 −

(
−1

3
· 27 + 2 · 9

))
= − 1

24
x3 +

1

4
x2 − 1

3

I4 (4) = 1 (check of correctness)

For x (4,∞) the integral is equal to 1.
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Altogether, we can write

F (x) =



0 for x ∈ (−∞, 0)

− 1
24x

3 + 1
4x

2 for x ∈ (0, 1)
1
24x

3 − 1
4x

2 + 3
4x−

1
3 for x ∈ (1, 3)

− 1
24x

3 + 1
4x

2 − 1
3 for x ∈ (3, 4)

1 for x ∈ (4,∞)

Density and distribution functions are in the following pictures

10.2.8 Example

For the density function

f (x, y) =
4

5

(
x2 + xy + 2y2

)
, x, y ∈ (0, 1)

determine marginal and conditional distributions and decide if the random variables are
independent.

Solution

Marginals are

f (x) =
4

5

∫ 1

0

(
x2 + xy + 2y2

)
dy =

2

15

(
6x2 + 3x+ 4

)
f (y) =

4

5

∫ 1

0

(
x2 + xy + 2y2

)
dx =

2

15

(
12y2 + 3y + 2

)
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Conditional distributions

f (x|y) =
f (x, y)

f (y)
=

6
(
x2 + xy + 2y2

)
12y2 + 3y + 2

f (y|x) =
f (x, y)

f (y)
=

6
(
x2 + xy + 2y2

)
6x2 + 3x+ 4

As evidently f (x, y) 6= f (x|y) and also f (x, y) 6= f (y|x), the variables are not indepen-
dent.

Expectations

E [X] =

∫ 1

0
xf (x) dx =

3

5

E [Y ] =

∫ 1

0
yf (y) dy =

2

3

Variances

D [X] =

∫ 1

0
(x− E [X])2 f (x) dx =

7

90

D [Y ] =

∫ 1

0
(y − E [Y ])2 f (y) dy =

29

450

Covariance

C [X,Y ] =

∫ 1

0

∫ 1

0
(x− E [X]) (y − E [Y ]) f (x, y) dxdy = − 1

90

10.2.9 Example

We have a random variable X with density function

f (x) = a2x exp (−ax) , x ∈ (0,∞)

Compute expectation E [X] and variance D [X].

Solution

Expectation

E [X] =

∫ ∞
0

xf (x) dx = a2

∫ ∞
0

x2 exp (−ax) dx = (∗)

The integral is solved by twice per partes:∫ ∞
0

x2 exp (−ax) dx =
|u = x2 v′ = exp (−ax) |
|u′ = 2x v = −1

a exp (−ax) | =
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[
−x2

a
exp (−ax)

]∞
0︸ ︷︷ ︸

=0 (L'Hospital)

−
∫ ∞

0

−2x

a
exp (−ax) dx =

=
2

a

∫ ∞
0

x exp (−ax) dx =
|u = x v′ = exp (−ax) |
|u′ = 1 v = −1

a exp (−ax) | =

=
2

a


[
−x
a

exp (−ax)

]∞
0︸ ︷︷ ︸

0 (L'Hospital)

−
∫ ∞

0

−1

a
exp (−ax) dx

 =

=
2

a2

∫ ∞
0

exp (−ax) dx =
2

a2

[
−1

a
exp (−ax)

]∞
0

=
2

a3

(∗) = a2 2

a3
=

2

a
.

Variance

It is solved similarly by three times per partes with the result

D [X] = 2
a2

Remark

The result can be obtained also by Maxima (http://maxima.sourceforge.net/).

10.3 Examples to regression analysis

10.3.1 Example

A certain �rm monitored its yearly pro�t. The data collected are in the table

year 1995 2000 2003 2008 2011 2015 2016 2017 2018 2019

pro�t (mil $) 55 50 50 53 45 60 61 67 65 66

They are interested about the prediction of the pro�t for the year 2030. To this end
perform linear and cubic polynomial regression, select the better one and perform the
prediction. Compare it with the prediction from the other regression.

Solution

As the numbers denoting the years are unnecessarily too big (or computation) we intro-
duce the following transformation

x = year− 1900, and y = pro�t

and with it we have data
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x 95 100 103 108 111 115 116 117 118 119

y 55 50 50 53 45 60 61 67 65 66

The solution can be found with Statext:

Linear regression

Parametric|Simple regression|Linear...

The equation is
yp = 0.63x− 12.13

p-value = 0.028

prediction yp = 0.63 · 130− 12.13 = 69.77

The resulting regression is in the following picture

Cubic polynomial regression

Parametric|Simple regression|Cubic...

Equation
yp = 0.0016x3 − 0.437x2 + 37.688x− 982.634

p-value = 0.0096

prediction yp = 0.0016 · 130− 0.437 · 1302 + 37.688 · 130− 982.634 = 46.71

Conclusion: The cubic regression is better (it has smaller p-value). The prediction from
it is yp = 46.71. However, both the predictions di�er considerably. So, we would like to
try other regression - 5th order polynomial. As it is not supported by Statext, we will
continue with formulas.

The regression for cubic case is
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10.3.2 Polynomial regression of the 5-th order

As a basis for our demonstration, we will consider a general multi-regression model in
the form

yt = xt · θ + et

where
xt = [1, x1, x2, · · · , xn]t and θ = [b0, b1, b2, · · · , bn]′

Remark

The product 1 · b0 produces a constant term of the model.

Now, for t = 1, 2, · · · , N we can write individual prediction models one below another
and to construct a matrix form of the model for all data

Y = Xθ + E

where

Y =


y1

y2

· · ·
yN

 , X =


1 x1;1 x2;1 · · · xn;1

1 x1;2 x2;2 · · · xn;2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 x1;N x2;N · · · xn;N

 , E =


e1

e2

· · ·
eN


Then for the optimal estimate θ̂ of the parameter θ it holds

θ̂ =
(
X ′X

)−1
X ′Y
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Derivation of the formula is very simple. The sum of prediction errors can be written as
E′E =

∑N
t=1 e

2
i and substituting the model we have

E′E = (Y −Xθ)′ (Y −Xθ) = θ′X ′Xθ − 2θ′X ′Y + Y ′Y

Le look for minimum, so we di�erentiate and lay the derivative equal to zero4

2X ′Xθ − 2X ′Y = 0 → θ =
(
X ′X

)−1
X ′Y

that is the result which was to be proved.

Now, to our problem. In the case of 5-th order polynomial regression, the model is

yt = b0 + b1θ + b2θ
2 + b3θ

3 + b4θ
4 + b5θ

5 + et

For the measured data

x 95 100 103 108 111 115 116 117 118 119

y 55 50 50 53 45 60 61 67 65 66

we have

Y =



55
50
50
53
45
60
61
67
65
67


, X =



1, 95, 952, 953, 954, 955

1, 100, 1002, 1003, 1004, 1005

1, 103, 1032, 1033, 1034, 1035

1, 108, 1082, 1083, 1084, 1085

1, 111, 1112, 1113, 1114, 1115

1, 115, 1152, 1153, 1154, 1155

1, 116, 1162, 1163, 1164, 1165

1, 117, 1172, 1173, 1174, 1175

1, 118, 1182, 1183, 1184, 1185

1, 119, 1192, 1193, 1194, 1195


The result is shown in the picture

4We di�erentiate according to θ which is a vector. We must preserve the rules for di�erentiation of

matrices.
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where we immediately can see that something is wrong. The whole prediction lies below
the data points. From the estimated parameters

θ̂ = [3290679.2− 154287.122888.85− 27.000410.1259682− 0.0002347]

we can see, that the regression curve will be numerically sensitive. Compare the largest
and the smallest regression coe�cient. The reason can be in still relatively big values of
x. We try to transform more xnew = xold − 90. This gives the x values

x 5 10 13 18 21 25 26 27 28 29

Now the picture looks like this

which is much more better.

The regression parameters, now, are better

θ̂ = [210.37,−64.68, 9.39,−0.62, 0.019,−0.00022]

the approximation is not good. And the prediction is visible from the picture with
prolonged x to the value 50 (which corresponds to the year 2030)
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We can conclude: the higher order of the polynomial used in regression does not need
to lead to better quality.

The result is, that the 5-th order regression is of no use.

10.3.3 Exponential regression

When we look at the data, we can try to improve the prediction using the exponential
regression. This can be taken from Statext, however, it is a nonlinear one using the
prediction equation

yt = a+ b2 exp (b1x)

with the estimated parameters a = 43.9, b0 = 0.062 and b1 = 0.046.

the graph of the regression (with the prolonged x axis to the point prediction - year
2030) is here
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which also is not ideal. The reason is the extremely small value at he point x = 21. If
we take it as an outlier and omit it, we get

and we can say that ow the regression is well. However, the prediction is very uncertain.
It relays on the exponential course of the data which is not fully acknowledged by the
data themselves. All in all we can state that this prediction is to long ahead to be
reliable.

In the end, we try the standard linearized exponential regression with the prediction
equation

yt = b0 exp (b1x) → ln (yt) = ln (b0) + b1x

It can be computed similarly as the 5th order polynomial regression. We construct
vector Y and matrix X

Y =


ln (y1)
ln (y2)
· · ·

ln (y10)

 , X =


1 x1

1 x2

· · · · · ·
1 xN


and with the formula θ̂ = (X ′X)−1X ′Y we get the parameters

ln (b0) = 3.82 → b0 = 45.6 and b1 = 0.01

and the graph
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and this is not bad. After omitting the outlier [21, 45] we get

which is approximately the same as with it. So the solution can be considered to be
relatively stable.

The p-value is 0.031 which in comparison with the 3-th order polynomial regression
computed at the beginning of this example shows that the polynomial one is better and
so it is an absolute winner.

10.4 Examples to con�dence intervals

10.4.1 Example

From a long-time monitoring, it is known, that the standard deviation of speeds of cars
going in a road with restriction to 40 km/h is 6.9 km/h. We have measured the speeds
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and get the data

x = [41, 45, 38, 43, 35, 37, 42, 61, 37, 40, 42, 44, 38, 45, 39]

We would like to construct 0.05-con�dence interval for the true speed expectation.

Solution

In the Statext the task is very simple.

We choose: Parametric|Con�dence interval for the mean... and check the square at
Using z-table (as we know the variance).

We obtain
I0.05 = (38.31, 45.29)

As the speed 40 km/h is within the interval, we can say that we do not reject the
hypothesis that the cars go with this speed.

Now, for those who are interested we will show how the interval is derived.

We have the population x of speeds for which we can assume that it is normal and in
addition we assume its real standard deviation to be σ = 6.9 km/h. That is f (x, µ) =
Nx

(
µ, σ2

)
.

For estimation of the expectation we choose the statistics in the form of sample average
x̄ = 1

N

∑N
i=1 xi. From the theory we know, that the sample average from normal data is

also normal with the expectation µ and variance σ2

N , where µ and σ2 are characteristics

of the population. So, f (x̄, µ) = Nx̄

(
µ, σ

2

N

)
.

Now, we want to �nd interval I0.05=(IL, IU ) for which it holds

P (x̄ ∈ I0.05) = 0.05 (13)

Remark

According to the de�nition of con�dence interval, which is

P (µ ∈ I0.05) = 0.05

it could seem that what we have written is wrong. However, it is necessary to realize that
both the probabilities are equal. It can be seen from the following picture

µIL IH

x̄

x̄

x̄

x̄

x̄

1st sample

2nd sample

3rd sample
. . .

another sample

last sample
. . .

true interval around µ
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Here, on the upper line we have denoted expectation µ and around it some interval
I = (IL, IU ), let it be the con�dence interval. On the lines below it we denoted several
samples and their sample averages x̄. Around each sample average we draw the same
interval I. Now, For the �rst three of them and the last one it holds that the sample
average belongs to the interval around µ and also that µ also belongs to the interval
around the sample average. The assertion is reciprocal. For the fourth line represents a
sample for which, again in reciprocal way, it holds that µ is not form I around µ and
µis not in the interval around x̄. So, if there are 95% of samples within the con�dence
interval then th probability of µ being in the interval is 0.95.

Now, for the outside of the interval (13), it can be written5

P (x̄ < IL) =
α

2
and P (x̄ > IU ) =

α

2
(14)

where we generally denoted the con�dence level 0.05 by α and IL, IB are interval borders.

To evaluate these probabilities (without using computer) we can use tables of the nor-
malized normal distribution where we can �nd quantiles and critical values of the random
variable. For α-quantile it holds P (z < ζα) = αwhere z is normalized random variable
and ζα is the quantile. For α-critical value P (z > za) = αwith za the critical value. The
normalization is

z =
x− µ
σ

and z̄ =
x̄− µ
σ

√
N

where x is non-normalized random with characteristics µ and σ and x̄ is sample average
of x whose characteristics are µ and σ√

N
. If we switch to normalized variables we can

write (14) like this

P
(
z̄ < ζα

2

)
=
α

2
, P

(
z̄ > zα

2

)
=
α

2

where z̄ is normalized sample average.

Substituting the above formulas into the argument of the probabilities we obtain

x̄− µ
σ√
N

< ζα
2

and
x̄− µ
σ√
N

> zα
2

(15)

and from it
x̄− ζα

2

σ√
N
< µ and µ < x̄− zα

2

σ√
N

and because it holds ζα
2

= −zα
2
it holds (for the outside of con�dence interval)

x̄+ zα
2

σ√
N︸ ︷︷ ︸

IU

< µ and µ < x̄− zα
2

σ√
N︸ ︷︷ ︸

IL

5We consider symmetrical interval in the sense that we demand so that the probability to the left

and right of the interval be one half of 0.05.
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So, the interval is

I = x̄± zα
2

σ√
N

=

(
x̄− zα

2

σ√
N
, x̄+ zα

2

σ√
N

)

For our example we get

Sample average x̄ = 41.8, σ = 6.9 (given as known), N = 15, zα
2

= z0.025 = 1.96 and

I0.5 = (38.308, 45.292)

which is the same as form Statext.

10.5 Examples to tests of hypothesis

10.5.1 Example

From a long-time monitoring, it is known, that the standard deviation of speeds of cars
going in a road with restriction to 40 km/h is 6.9 km/h. We have measured the speeds
and get the data

x = [41, 45, 38, 43, 35, 37, 42, 61, 37, 40, 42, 44, 38, 45, 39]

Test H0: the average speed of cars does not exceed 40 km/h.

Solution

The answer can be provided by Statext

We choose: Parametric|Test for a population mean...

Here we set SD = 6.9, H0 Pop. mean is equal to 40, Ha: is greater than

and we get (for Normal distribution) pv= 0.156 which means, that H0 is not rejected.

But how we can come to this result?

The population is assumed to have normal distribution with standard deviation σ = 6.9
and unknown expectation µ. H0 claims that the expectation is 40 km/h6, so HA: the
expectation is greater than 40 km/h.

So, according to the H0 (µ0 = 40km/h) we have the distribution

f (x|H0) = Nx

(
40, 6.92

)
6In the example we have H0: speed is nor greater than · · · . However, for H0 we need to have a �xed

number as a value of the parameter. So, we set it to µ = 40 and the formulation �is not greater· · · �
we use for determining of the direction of the test. With respect to H0, the hypothesis HA says the

opposite �is greater · · · �, which means right-sided test.
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However, in testing, we are nit interested of x but of µ which is represented by its point
estimate µ = x̄ (sample average) for which the distribution is

f (x̄|H0) = Nx

(
40,

6.92

15

)
where 15 =N. So, if the data come from the distribution according H0, their sample
average x̄ should mostly lie within the con�dence interval. For it, we have (see the
previous Example 15)

x̄− µ0
σ√
N

< ζα
2

and
x̄− µ0

σ√
N

> zα
2

where, now, we assume µ = µ0 according to H0. So, we can use this formula as follows

z̄ < −zα
2

and z̄ > zα
2

where z̄ = x̄−µ0
σ√
N

is normalized sample average with respect to H0 and we used the prop-

erty ζα = −zα. The above inequalities specify the area outside the con�dence interval
(the probability is α). So, for z̄ to be within the con�dence interval, it must hold

z̄ ∈
(
−zα

2
, zα

2

)
The conclusion is:

If z̄ ∈
(
−zα

2
, zα

2

)
then we admit that the sample average we have calculated from the

measured sample comes from the distribution according to H0 and thus, we do not reject
that µ ≤ µ0.

If z̄ /∈
(
−zα

2
, zα

2

)
then if H0 is valid only for α×100% samples we would get this result.

As α is very small probability we consider events with probability α as almost impossible
and that is why we reject H0, that is we say that µ 6= µ0.

Now, to our example:

First of all we have right-sided test, so the interval will be (−∞, zα) = (−∞, 1.645) for
α = 0.05.

The statistics (sample average) is x̄ = 41.8.

The normalized statistics is

z̄ =
x̄− µ0

σ√
N

=
41.8− 40

6.9√
15

= 1.01

As z̄ ∈ (−∞, 1.645) we do not reject H0.

This is the decision about rejecting. If we would like to know more - how strongly we
reject / do not reject, we need to evaluate p-value.
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P-value

The de�nition of p-value (for right-sided interval) is

pv = P (z̄ > z̄r|H0) (16)

What does it mean. z̄ is normalized statistics (as random variable), z̄r is realized statis-
tics (computed value of normalized statistics from measured sample) and H0 in the
condition means, that the normalization is performed using characteristics according to
H0, i.e.

z̄ =
x̄− µ0

σ

√
N

where µ0 from H0 is used.

The probability in (16) can be computed as

pv = 1− F (z̄r)

where F is a distribution function of the distribution of the normalized statistics (here
it will be N (0, 1)).

Our realized statistics is z̄r = 1.01 (see above) and using a computer or from tables we
have

pv = 0.156

which is the same result as from Statext.
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11 Questions for knowledge validation

11.1 Variables and data

1. What is a data �le?

2. Explain the ways of storing data in a plain form and as values and frequencies.

3. Having data 8 6 2 8 9 7 5 4 - determine their ranks.

4. Which characteristic of data �le express their level and which ones describe their
variability?

5. Determine median of the data �le 2 4 6 1 7 3 9 .

6. Compute average and variance of data �le 3.15 2.22 10.45 3.57 1.58 6.9 5.13 -0.75
2.24 6.58 4.65 6.52 3.79 4.95 1.87 3.87 4.22 3.68 6.3 3.64 ?

7. What is the mode of data �le 2 5 4 6 4 2 4 2 6 2 2 2 6 4 2?

8. What is the di�erence between general bar graph and histogram?

11.2 Probability and random variable

1. What is random experiment?

2. What is an event?

3. What data produces the experiment of �ipping a coin?

4. What data produces random variable describing the experiment of �ipping a coin?

5. Which are the three important properties of the probability?

6. De�ne classical de�nition of probability.

7. De�ne statistical de�nition of probability.

8. What is the major di�erence between classical and statistical de�nition of proba-
bility.

9. After ten �ips of coin we obtained 3 heads and 7 tails. We concluded that the
probability of head is 0.3. Which de�nition of probability we have used?

10. We inspected a coin and concluded that it is not damaged. So we determined the
probability of head is 0.5. Which de�nition of probability we have used?
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11. What is the de�nition of conditional probability?

12. Consider an experiment of tossing a dice. What is the probability of even number
if we know, that the number that really fell is less than 4.
Hint: Choose only from those that could have fallen.

13. Consider an experiment of drawing colored balls from a box. The drawn ball is
not returned back. Are the draws independent?
Hint: Is the probability of drawing speci�ed color all the same during the draws?

14. We have an experiment of �ipping two coins. The results are: �both heads�, �both
tails� and �di�erent sides�. Are the probabilities of these result equal?

15. A natural de�nition of independence x and y is P (x|y) = P (x) - the knowledge
of y does not in�uence the probability of x. Using the de�nition of conditional
probability, derive the formula f (x, y) = f (x) f (y) .

11.3 Description of random variable and vector

1. What is the di�erence between random experiment and random variable.

2. What types of random variable do you know?

3. Can random variable have negative values?

4. What is the merit of random vector in comparison with random variable?

5. What are realizations of a random vector?

6. De�ne distribution function.

7. What are the basic properties of a distribution function?

8. Determine the probability P (a, b) , b > a using the distribution function.

9. What is the probability P (X = 5) for a continuous random variable X equal to?

10. Is any distribution a continuous function?

11. De�ne probability function of discrete random variable.

12. De�ne density function of continuous random variable.

13. What are the basic properties of any probability or density function.

14. What assertion is correct: all values of any probability function are (i) non-zero,
(ii) positive, (iii) non-negative.

15. What assertion is correct: all values of any density function are (i) non-zero, (ii)
positive, (iii) non-negative.
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16. How the probability P (a, b) , b > a can be computed using probability or density
function?

17. What is the de�nition of expectation for discrete random variable?

18. What is the de�nition of expectation for continuous random variable?

19. De�ne α-quantile and α-critical value of continuous random variable.

20. How can you �nd median of continuous random variable.

21. How can you �nd mode of continuous random variable.

22. We have a function y = kx. Determine the constant k so that this function would
be a density function of the interval x ∈ (0, 5) .

23. The probability function of random variable X is given by the table

x 1 2 3 3 5

f (x) 0.2 0.1 0.3 0.2 0.2

Determine the distribution function.

24. Write the probability functions describing the experiments (i) ��ipping a fair coin�
and (ii) ��ipping some unfair coin�.

25. The random variable X describes the following experiment �time of waiting for a
bus with an interval 5 min if your coming to the bus station is random�. Write
the density and distribution functions of this random variable.

26. We have two random variables X and Y with probability functions f (x) = 2− 2x
and f (y) = 2y, both on x ∈ (0, 1) and zero otherwise. Write the joint density
function f (x, y) .

27. A random vector [X, Y ] has joint density function

f (x, y) = k exp
(
x2 + 2y2

)
for x, y ∈ (−∞, ∞) . k in a normalization constant. Are these random variables
independent?

28. A random vector [X, Y ] has joint density function f (x, y) = 1 on x ∈ (0, 1) and
y ∈ (0, 1) . Determine the probability P ([X,Y ] ∈ (0, 0.1)× (0, .2)).

29. A random vector [X, Y ] has joint probability function given by the table

x/y 1 2 3

1 0.1 0.05 0.3
2 0.35 0.1 k
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Determine the value of k.

30. A random vector [X, Y ] has joint probability function given by the table

x/y 1 2 3

1 0.2 0.1 0.1
2 0.3 0.1 0.2

Determine the marginal f (y) and the conditional f (x|y).

31. A random variable X has probability function f (x) = px (1− p)1−x , x = 0, 1 and
p ∈ (0, 1) .
a) What is the probability that in the next sampled value of X will be 1?
b) What is the expected number of results x = 1 in 100 experiments?

11.4 Important distributions

1. What is the de�nition of Bernoulli distribution?

2. What is the meaning of the parameter p in Bernoulli distribution?

3. The probability that a newborn will be a boy is 0.52. What is the probability that
in a family with 5 children there will be 2 boys and three girls?

4. Describe the experiment connected with a binomial random variable.

5. For several years we have measured accidents in �ve points of a large tra�c region.
The results were

point of measurement 1 2 3 4 5

numb. of accidents 38 147 51 223 197

On the basis of the measured data determine the probability function describing
these accidents.

6. We are �ipping a fair coin. What is the probability, that the �head� appears at
the third �ip for the �rst time.

7. One percent of bits transmitted through a digital transmission are received in
error. Bits are transmitted until the �rst error. Let X denote the number of bits
transmitted until the �rst error. What distribution describes random variable X?

8. Compare the supports of Normal distributions N (0, 1) and N (10, 3) , where the
denotation is N

(
µ, σ2

)
.

9. A �xed distance 10 meters is repeatedly measured. We de�ne two random variables
X - the value of the measurement and Y - the error of measurement from the true
value. What is the distribution of these random variable and what they di�er in?
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10. What are the main assumptions of a uniform distribution.

11. We have a random variable with uniform distribution on the interval (3, 9) .What
is the probability that a realization of X will be within the interval (5, 7).

11.5 Regression analysis

1. Write regression line constructed only for two measured points: x1 = [1, 1] , x2 =
[2, 5]. What will be the correlation coe�cient?

2. The regression line is computed for three data points

x1 = [1, 2] , x2 = [2, 2] , x3 = [3, 5]

Compute the criterion as a sum of squares of residuals.

3. We investigate a pro�t (y) in dependence on invested money (x). We obtained
linear regression y = 0.21x− 100. What will be the pro�t if we invest 5000 (K£)?

4. We investigate a pro�t (y) in dependence on invested money (x). We obtained
linear regression y = 0.21x− 100. How much we need to invest to have the pro�t
equal to 1000 (K£)?

5. We have exponential regression y = b0 exp (b1x). Perform its linearization.

6. Write a quadratic and cubic regression curves.

7. The polynomial regression has coe�cients b0 = 2.1, b1 = 0.6, b2=1.2 and b3 = 0.1.
Write the value of the prediction at x = 2.

11.6 Population and data sample

1. What are the di�erences between population and random sample?

2. What is the di�erence between random sample and sample realization?

3. Is an average of random sample a number or random variable?

4. Is an average of sample realization a number or random variable?

5. We measure speeds of passing cars. What is the population, what random sample
and what sample realization?

6. We throw ten times a dice. What is the population, what random sample and
what sample realization?

7. We monitor speeds of cars on a certain point of a motorway. We assume that the
speeds are normally distributed with the variance 5.83. What parameter we need
to estimate?
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8. What is the di�erence between parameter and its point estimate?

9. What is the statistics in stochastic estimation?

10. What are the most important characteristics of random sample?

11. What are the expectation and variance of sample average equal to?

12. What is the meaning of the formula expressing the expectation of sample average?

13. What is the meaning of the formula expressing the variance of sample average?

14. Which properties has the sample average.

15. When comparing e�ciency of two sample averages with di�erent lengths of sample,
which one would be better (has higher e�ciency)?

11.7 Statistical inference

1. What statistics is suitable for estimation of expectation?

2. What statistics is suitable for estimation of variance?

3. What statistics is suitable for estimation of proportion?

4. What statistics is suitable for testing of independence?

5. A sample of the length n is taken from normal population with expectation µ and
variance σ2. What is the distribution of sample average?

6. We have a population f (x) . We want to compute a con�dence interval for its
unknown parameter µ. We chose the statistics x̄ (sample average). Which distri-
bution is used: f (x) or f (x̄)?

7. What is the di�erence between both-sided, left-sided and right-sided interval?

8. What are zero and alternative hypotheses?

9. What are region of acceptance and critical region?

10. What is realized statistics Tr?

11. Explain the di�erence between both-sided, left-sided and right-sided test.

12. What is the connection between con�dence interval and test of hypothesis.

13. What is the conclusion of a test if the realized statistics lies in the critical region?

14. What is the conclusion of a test if the p-value is smaller then the con�dence level?
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11.8 Important tests

1. What is the di�erence between parametric and nonparametric test.

2. Which are the parametric tests with one sample?

3. Which are the parametric tests with two samples?

4. Which are the parametric tests with more samples?

5. Which are the nonparametric tests with one sample?

6. Which are the nonparametric tests with two samples?

7. Which are the nonparametric tests with more samples?

8. Which samples of independence do you know?

9. Which are the tests of a distribution?

11.9 Validation in regression analysis

1. How can you evaluate the quality of regression analysis according to the xy-graph?

2. What is the statistics for Pearson t-test?

3. Is a regression analysis suitable if the p-value of the Pearson test is very small?

4. Is a regression analysis suitable if the p-value of the F -test is very small?

5. Is a regression analysis suitable if the sum of squares of residuals is very small?

6. Should residuals be independent or dependent?
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12 Answers to the questions

Please, try to answer the questions �rst of all on the basis of the textbook.

These answers should only acknowledge your answers if you think they are

correct.

12.1 Variables and data

1. Data �le is a set of measured data.

2. Plain form stores data in the order how they are measured. Alternative way is to
store only di�erent values and the numbers of their occurrence.

3. The ranks are 6.5, 4, 1, 6.5, 8, 5, 3, 2. For the same values, the average of their
order is taken.

4. Level of data is given by expectation, mode or median, variability corresponds to
variance, standard deviation.

5. Median is 4.

6. Average is 4.228, variance 5.80748.

7. Mode is 2.

8. General graph indicates values, histogram frequencies.

12.2 Probability and random variable

1. It is any action leading to some of correctly de�ned result. Repeating the action
leads accidentally to di�erent results.

2. Event is a set of results. It can be also speci�ed verbally. E.g. at a dice, we can
say �even number� and it determines the set {2, 4, 6}.

3. They are �Head� and �Tail�.

4. They are usually 0 and 1. They also can be 1 and 2 or any other two numbers.

5. They are that probability is (i) non-negative (P (A) ≥ 0) , (ii) less or equal to
1 (P (A) ≤ 1), (iii) σ-additive (for events A, B such that A ∩ B = ∅ it holds
P (A ∪B) = P (A) + P (B).
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6. P = m
n , where m is number of all possible positive results and n is number of all

possible results.

7. P = M
N , where M is number of all performed positive results and N is number of

all performed results.

8. Classical de�nition takes into account possible results while statistical one speaks
about performed results. The former is theoretical and its result is constant, the
latter practical and its results a bit vary with a speci�c setof experiments.

9. Here we have used the statistical de�nition.

10. This relates to the classical de�nition.

11. It is denoted P (A|B) and it is computed plainly as a probability of A but on the
set of results which meet the condition. With a dice P (even| < 5) is a probability
of even on a set {1, 2, 3, 4} which is 2/4 = 0.5.
The de�nition is

P (A|B) =
P (A,B)

P (B)

12. A = ”even” = (2, 4, 6) , B = ” < 4” = {1, 2, 3} . The set B has 3 elements, one of
them is even: P = 1/3.

13. They are not independent as the probability depends on which ball was previously
drown.

14. They are not. �di�erent sides� has twice much possibilities.

15. P (x|y) = P (x, y) /P (y) =︸︷︷︸
def..

P (x) . Multiplication by P (y) gives the result.

12.3 Description of random variable and vector

1. Random variable corresponds to random variable. However, values of random
variable (which correspond to results of experiment) must be numeric. If results
are not numeric (red, yellow, green), we must assign them numbers (e.g. 1,2,3).

2. Discrete and continuous.

3. Yes, it can.

4. There are two things: (i) common treatment of several random variables, (ii)
mutual connection between random variables.

5. They are vectors of numbers.

6. FX (x) = P (X ≤ x), X is random variable, x is a number.
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7. Zero for x→ −∞, one for x→∞ and non-decreasing on the whole support.

8. P (x ∈ (a, b)) = F (b)− F (a) .

9. Probability of each single number is zero for continuous random variable.

10. No, discrete ones are only piece-wise continuous.

11. It is a discrete function with values equal to individual values of random variable.

12. It is a derivative of the distribution function.

13. Non-negative values and sum (integral) equal to one.

14. (iii) is correct.

15. (iii) is correct.

16. P (a, b) =
∫ b
a f (x) dx

17. E [X] =
∑

xi∈X xif (xi)

18. E [X] =
∫∞
−∞ xf (x) dx

19.
∫ ζα
−∞ f (x) dx = α,

∫∞
zα
f (x) dx = α

20. Median x̃ :
∫ x̃
−∞ f (x) = 0.5.

21. Mode x̂ = arg max (f (x))

22. k = 1
5 (integral of f (x) must be 1)

23. Distribution function is a cumulative sum of f (x)

24. (i) f (x) =

{
0.5 for x = 0

0.5 for x = 1
, (ii) f (x) =

{
1− p for x = 0

p for x = 1

25. The density function is a constant 1
5 from x = 0 to x = 5. The distribution

function is: zero on x ∈ (−∞, 0) , F (x) = 1
5x for x (0, 5) and one for x ∈ (0,∞) .

26. Joint is a product (they are independent).

27. Yes, they are. f (x) = k exp
(
x2
)

exp
(
2y2
)

= f (x) f (y) .

28. P = 0.1 · 0.2 = 0.02. It is the volume of a prism with edges 0.1, 0.2 and 1.

29. k = 1− sum(of the rest) = 0.1

30. Marginal (sum over columns) 0.5, 0.2, 0.3; Conditional (joint columns divided by

marginal)
2
5

1
2

1
3

3
5

1
2

2
3

.

31. f (x = 1) = p1 (1− p)1−1 = p; Expected number is p × 100 (p in one experiment,
p× 100 in 100 experiments).
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12.4 Important distributions

1. Random variable with two outcomes 0 and 1, where 1 has probability p (that is
constant). E.g. Selection of a product hat can be either good (1) or defective (0),
if p× 100% of products is good.

2. p is a probability of the result x = 1.

3. Binomial distribution f (x = 2) =
(

5
2

)
0.5220.485−2 = 0.299.

4. We consider a Bernoulli trial with P (x = 1) = p. We perform n experiments a
want to know with probability k of them will be 1. !! p must stay constant during
the experiments) !!

5. It is he same table where the second row is divided by the sum of all its entries.
0.058, 0.224, 0.078, 0.340, 0.300.

6. Geometrical distribution f (x = 3) = 0.5 · (1− 0.5)2 = 0.125.

7. It is the geometrical distribution with p = 0.01.

8. They are both the same (−∞,∞).

9. f (x) = N
(
10, σ2

)
, f (y) = N

(
0, σ2

)
where σ2 is the variance of measurements.

10. For X ∼ U (a, b) it holds a) all values in the range (a, b) are equally probable and
b) all values outside this interval are impossible.

11. f (x) on (3, 9) is 1
6 . So, P (x ∈ (5, 7)) = 1

6 (7− 5)=1
3 .

12.5 Regression analysis

1. y = 4x− 3 (line going through the points); r = 0 (residuals are zero)

2. The regression line is (use Statext) y = 1.5x. The residuals -0.5, 1, -0.5 (= · · · y−
yp, where yp is prediction - value on the line). Sum of squares is 0.25 + 1 + 0.25 =
1.5.

3. It will be 0.21 · 5000− 100 = 950.

4. It i the solution of he equation 1000 = 0.21x− 100; x = 4285.7.

5. ln (y) = ln (b0) + b1x

6. Quadratic: y = b0 + b1x+ b2x
2; cubic: y = b0 + b1x+ b2x

2 + b3x
3.

7. It is y = 2.1 + 0.6 · 2 + 1.2 · 22 + 0.1 · 23 = 8.9.
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12.6 Population and data sample

1. Very roughly: population is big and constant, sample is relatively small and it
changes when taking a new one.

2. Random sample is a vector of equally distributed and independent random vari-
ables and sample realization is a vector on measured numbers.

3. It is random variable (average of realization of sample is a number).

4. It is a number.

5. Population are speeds of all cars in the world. Random sample are speeds of a given
number of cars that will potentially be measured (it is a de�nition of experiment
- measure speeds of n cars), sample realization are really measured speeds.

6. Population are numbers {1, 2, 3, 4, 5, 6} with equal probabilities. Random sample
is a vector of 10 entries - each entry is prepared for a value obtained on the thrown
dice. Sample realization is a vector with numbers that really were obtained on the
dice.

7. Expectation is not mentioned so it must be estimated.

8. Parameter is an unknown constant, estimate is a number computed from measured
data that is close to the true value of the parameter.

9. Statistics is a function of random sample which when a sample realization is in-
serted gives a value near the estimated value of the parameter.

10. They are sample average and sample variance.

11. E
[
X̄
]

= µ and D
[
X̄
]

= σ2

n

12. It says that if we take very many sample realizations, from each we compute sample
average and then we take average from these averages we get practically precise
value of the population expectation.

13. It expresses the fact that the larger the sample is the higher is the precision of the
sample average as an estimate of the expectation.

14. It is unbiased, consistent and the larger is the sample length the higher is its
e�ciency.

15. The one which is computed from larger sample.
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12.7 Statistical inference

1. It is the sample average.

2. It is the sample variance.

3. It is the sample proportion.

4. It is the correlation coe�cient.

5. It is normal with expectation µ and variance σ2

n .

6. For computation of con�dence interval we must use distribution of the statistics
f (x̄) .

7. For both-sided interval we use α
2 on both sides; for left-sided respectively right-

sided interval we use α on the left respectively right side.

8. Zero H0 is currently valid, alternative HA rejects H0.

9. Region of acceptance is equal to the con�dence interval, critical region is its com-
plement.

10. Tt is the value of the statistics with the inserted sample realization.

11. HA for both-sided test says �is not equal to�; for left sided it says �is less than�
and for right-sided �is greater than�.

12. Con�dence interval is equal to the region of acceptance.

13. We reject H0.

14. We reject H0.

12.8 Validation in regression analysis

1. The closer the data points are to the regression curve, the better is the regression.

2. It tests if x and y are uncorrelated. If yes, the regression is not possible.

3. Yes, it is. (x and y are not uncorrelated)

4. Yes, it is.

5. Yes, it is.

6. Yes, they should.
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