1 Random variable

1.1 Example

The density function is given by the formula

$$
f(x)=1-|x-2|
$$

for $x \in(1,3)$ otherwise 0 . Determine distribution function.

1.2 Example

Determine 0.05-quantil of random variable with density function $f(x)=3\left(x^{2}+2 x+5\right) / 19$ for $x \in(0,1)$ otherwise zero.

1.3 Example

Verify that the formula $5 \exp \{-5 x\}$ for $x \geq 0$ is a density function.

1.4 Example

Show that random variables X and Y with density function

$$
f(x, y)=\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{(-x-y)}, \text { on }(0,1) \times(0,1)
$$

are independent.

1.5 Example

a) Show that random variables X and Y with probability function

$x \backslash y$	1	2
1	0.2	0.4
2	0.3	0.1

are dependent.
b) Change the second row of the probability function so that X and Y would become independent.

1.6 Example

Determine expectation $E[X]$ and $E[Y]$ for random variables X and Y with probability density function

$$
f(x, y)=2 x \sin (y), x \in(0,1), y \in(0, \pi / 2)
$$

1.7 Example

Find conditional probability function $f(x \mid y)$ to the joint

$x \backslash y$	1	2	3
1	0.1	0.3	0.2
2	0.2	0.1	0.1

1.8 Example

Random variable X has distribution function

$$
F(x)=\frac{1}{4} x^{2}, x \in(0,2)
$$

Determine the expectation $E[X]$

Solutions

Solution to 1.1

Draw the function.
The formula can be written in the following way

$$
f(x)= \begin{cases}0 & \text { pro } x<1 \\ x-1 & \text { pro } x \in(1,2) \\ 3-x & \text { pro } x \in(2,3) \\ 0 & \text { pro } x>3\end{cases}
$$

The distribution function is the following integral

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

We shall integrate on individual intervals:
For $x<1$ it is $f(x)=0$ and so $F(x)=0$
For $x \in(1,2)$ we have

$$
\begin{gathered}
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{1} f(t) d t+\int_{1}^{x} f(t) d t= \\
=0+\int_{1}^{x}(t-1) d t=\left[\frac{1}{2} f^{2}-t\right]_{1}^{x}=\frac{1}{2} x^{2}-x-\frac{1}{2}+1=\frac{1}{2} x^{2}-x+\frac{1}{2}
\end{gathered}
$$

and for the interval $x \in(2,3)$ we have: up to 1 it is 0 , to 2 it is $F(x=2)=\frac{1}{2}$ (substituted to the previous formula) and so

$$
\begin{aligned}
F(x) & =0+\frac{1}{2}+\int_{2}^{x}(3-t) d t=\frac{1}{2}+\left[3 t-\frac{1}{2} t^{2}\right]_{2}^{x}= \\
& =\frac{1}{2}+3 x-\frac{1}{2} x^{2}-6+2=-\frac{1}{2} x^{2}+3 x-\frac{7}{2}
\end{aligned}
$$

Check - in $x=3$ the distribution function ends, and so, here must be $F(3)=1$ - OK.
For $x>3$ the density is again $f(x)=0$ and so

$$
F(x)=1
$$

Solution to 1.2

$$
F(x)=\int_{0}^{x} 3\left(t^{2}+2 t+5\right) / 19 d t=\frac{3}{19}\left(\frac{x^{3}}{3}+x^{2}+5 x\right)
$$

and now, it should hold

$$
F(\zeta)=0.05 \rightarrow \frac{3}{19}\left(\frac{\zeta^{3}}{3}+\zeta^{2}+5 \zeta\right)=0.05
$$

which is the third order polynomial equation which cannot be simply solved. Must be solved numerically.

Solution to 1.3

It is nonnegative and

$$
\int_{0}^{\infty} 0.5 \exp \{-0.5 x\} d x=-0.5\left[\frac{1}{0.5} \exp \{-0.5 x\}\right]_{0}^{\infty}=1
$$

Solution to 1.4

Yes, they are.

$$
f(x, y)=\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{(-x-y)}=\frac{\mathrm{e}}{\mathrm{e}-1} \mathrm{e}^{-x} \cdot \frac{\mathrm{e}}{\mathrm{e}-1} \mathrm{e}^{-y}=f(x) \cdot f(y)
$$

or by integration

$$
\begin{gathered}
f(y)=\int_{0}^{1}\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{(-x-y)} d x=\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{-y} \int_{0}^{2} \mathrm{e}^{-x} d x= \\
=-\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{-y}\left[\mathrm{e}^{-x}\right]_{0}^{1}=\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{-y}\left(1-\mathrm{e}^{-1}\right)= \\
=\left(\frac{\mathrm{e}}{\mathrm{e}-1}\right)^{2} \mathrm{e}^{-y} \frac{\mathrm{e}-1}{\mathrm{e}}=\frac{\mathrm{e}}{\mathrm{e}-1} \mathrm{e}^{-y}
\end{gathered}
$$

and the same for $f(x)$.

Solution to 1.5

Solution to a)

Yes, they are dependent.

$$
f(x)=[0.6,0.4], \quad f(y)=[0.5,0.5]
$$

and e.g.

$$
f(x=1, x=1)=0.2 \neq 0.6 \cdot 0.5=0.3=f(x) \cdot f(y)
$$

Solution to b)

The probability function will be

$$
\begin{array}{c|cc}
x \backslash y & 1 & 2 \\
\hline 1 & 0.2 & 0.4 \\
2 & a & b
\end{array}
$$

and the marginals are $f(x)=[0.6, a+b]$ and $f(y)=[0.2+a, 0.4+b]$.
Now, it must hold

$$
\begin{aligned}
& f(x=1) f(y=1)=0.2 \\
& f(x=1) f(y=2)=0.4
\end{aligned}
$$

it is

$$
\begin{aligned}
& 0.6 \cdot(0.2+a)=0.2 \\
& 0.6 \cdot(0.4+b)=0.4
\end{aligned}
$$

\rightarrow

$$
a=2 / 15 \text { and } b=4 / 15
$$

Or: the rows (or columns) must be linearly dependent and sum of all is 1 . That is sum of the second column is 0.4 . Then the second row is

$$
\begin{gathered}
q(0.2,0.4)=0.4 \\
q=\frac{0.4}{0.6}=\frac{2}{3}
\end{gathered}
$$

Then the second row is

$$
\frac{2}{3}(0.2,0.4)=\left(\frac{0.4}{3}, \frac{0.8}{3}\right)=(2 / 15,4 / 15)
$$

Solution to 1.6

Hint: $E[X]=\int_{-\infty}^{\infty} x f(x) d x$ where $f(x)$ is the marginal. Similarly for Y.

$$
\begin{gathered}
f(y)=\int_{0}^{1} 2 x \sin (y) d x=\sin (y)\left[x^{2}\right]_{0}^{1}=\sin (y) \\
f(x)=\int_{0}^{\pi / 2} 2 x \sin (y) d y=2 x[\cos (y)]_{0}^{\pi / 2}=2 x \\
E[Y]=\int_{0}^{\pi / 2} y \cdot \sin (y) d y=(*)
\end{gathered}
$$

$$
\left|y=u, \sin (y)=v^{\prime} ; u^{\prime}=1, v=\cos (y)\right|
$$

$$
\begin{gathered}
(*)=[u v]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} u^{\prime} v=[y \cos (y)]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \cos (y) d y= \\
=0-\left(-[\sin (y)]_{0}^{\pi / 2}\right)=1 \\
E[X]=\int_{0}^{1} x \cdot 2 x d x=\left[\frac{2}{3} x^{3}\right]_{0}^{1}=\frac{2}{3}
\end{gathered}
$$

Solution to 1.7

Hint: Use definition of conditional probability function or (which is the same) normalize columns to the sum equal to one.

$x \backslash y$	1		2	3
1	$\begin{aligned} & \hline 0.1 / 0.3 \\ & 0.2 / 0.3 \end{aligned}$	$\begin{aligned} & 0.3 / 0.4 \\ & 0.1 / 0.4 \end{aligned}$		0.2/0.3
2				0.1/0.3
	$x \backslash y$	1	2	3
	1	$1 / 3$		$2 / 3$
	2	$2 / 3$	$1 / 4$	$1 / 3$

Solution to 1.8

$$
\begin{gathered}
f(x)=\frac{1}{2} x, x(0,2) \\
E[X]=\int_{0}^{2} x \cdot \frac{1}{2} x d x=\frac{1}{6}\left[x^{3}\right]_{0}^{2}=\frac{4}{3}
\end{gathered}
$$

