
System



Process - System - Model

• Process - part of reality we are interested in.

• System - variables with their relations.

• Model - mathematical relation of the monitored variable and other explanatory variables.

Remark

If some delayed monitored variables are among the explanatory variables, the system is dynamic.

Otherwise it is static.



Variables in the system

SYSTEM

imput (control)

disturbance

noise

output

state

ut

vt

et

yt

xt

Output: Monitored variable.

Input: Manipulated variable - control.

Disturbance: Can be measured, cannot be manipulated.

State: Cannot be measured, is estimated from data.

Noise: Neither can be measured nor predicted.
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Model



Bayesian view on model

Conditional probability density function (pdf)

f
(
yt|ψ

′

t,Θ
)

ψt = [ut, yt−1, ut−1, · · · , yt−n, ut−n, 1]′ - regression vector;

Θ = {θ, r}; θ = [b0, a1, b1, · · · , an, bn, k]′, θ - regression coe�cients, r - noise variance.

It is a stochastic dependence of yt on ψt with relations expressed by probability density function

(pdf).
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Regression model

The variables are continuous, ψ can have also some discrete ones.

The above pdf expression can be generated by the stochastic equation

yt = b0ut + a1yt−1 + b1ut−1 + · · ·+ anyt−n + bnut−n + k + et =

= ψ
′

tθ + et

where et (noise) is i.i.d. (independent, identically distributed) random variable with zero expectation

and variance r.

E [yt|ψt,Θ] = b0ut + a1yt−1 + b1ut−1 + · · ·+ anyt−n + bnut−n + k,

D [yt] = D [et] = r

Program: T11simCont.sce (page 83)
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Discrete model

All variables are discrete (�nite number of values)

f (yt|ψt,Θ) = Θyt|ψt

[ut, yt−1] yt = 1 yt = 2

1, 1 Θ1|11 Θ2|11

1, 2 Θ1|12 Θ2|12

2, 1 Θ1|21 Θ2|21

2, 2 Θ1|22 Θ2|22

∑2
i=1 Θi|jk = 1 - conditional probabilities.

For given [ut, yt−1] the output yt is generated with the pdf
[
Θ1|ut,yt−1Θ2|ut,yt−1

]
.

Program: T13simDisc.sce (page 86)
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Model of logistic regression

The output is discrete (0 or 1) and it depends on continuous variables.

f (yt|ψt,Θ) =
exp (ytzt)

1 + exp (zt)

where

zt = ψtΘ + et

The model has the following form - transformation from z to p = f (yt = 1|zt)

1

P (yt = 1|zt)

zt
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State-space model

Describes the state variable xt

� state model (state prediction)

xt = Mxt−1 +Nut−1 + wt

� output model (state �ltration)

yt = Axt +But + vt

M, N, A, B are known matrices,

wt, vt are noises with zero expectations and known covariances Rw, Rv
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State form of regression model

For 2nd order regression model

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k + et

the state form is


yt

ut

yt−1

ut−1

1

 =


a1 b1 a2 b2 k

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1




yt−1

ut−1

yt−2

ut−2

1

+


b0

1

0

0

0

ut +


et

0

0

0

0


Program: T15simState.sce (page 88)
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Estimation



Bayesian estimation

Notation: dt data at t, d (t) = {d0, d1, · · · , dt} data up to t, d0 prior.

f (Θ|d (t− 1)) , f (Θ|d (t)) description of parameters (prior, posterior)

Bayes rule

f (Θ|d (t))︸ ︷︷ ︸
posterior

∝ f (yt|ψt,Θ)︸ ︷︷ ︸
model

f (Θ|d (t− 1))︸ ︷︷ ︸
prior

� Natural conditions of control f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1))

� Batch estimation

f (Θ|d (t)) ∝

[
t∏

τ=1

f (yτ |ψτΘ)

]
︸ ︷︷ ︸
LikelihoodLt(Θ)

f (Θ|d (0))

� Self reproducing prior f (Θ|d (t− 1))→ f (Θ|d (t)) - the same form.
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Results of estimation

• Posterior pdf f (Θ|d (t)) probabilities of parameter values

• Point estimate of parameter (expectation)

Θ̂t = E [Θ|d (t)] =

∫ ∞
−∞

Θf (Θ|d (t)) dΘ
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Estimation of regression model

Application of Bayes rule with regression model and prior/posterior in the form of Gauss-inverse-

Wishart distribution

f (Θ|d (0)) ∝ r−0.5κ0 exp

{
[−1, θ′]V0

[
−1

θ

]}

Statistics update

Vt = Vt−1 +Dt

κt = κt−1 + 1

where Dt =

[
yt

ψt

] [
yt, ψ

′
t

]
is data matrix, Vt is information matrix and κt is counter.

Programs: T22estCont_B.sce; T22estCont_B2.sce; T22estCont_B3.sce; (page 93 and fur-

ther)

T22estCont_B4.sce (data from Strahov are on our web)
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Point estimates of parameters

� division of information matrix

Vt =

[
Vy V

′

yψ

Vyψ Vψ

]
· · ·

[
• −−
| �

]
� estimates of regression coe�cients

θ̂t = V −1
ψ Vyψ

� estimate of noise variance

r̂t =
Vy − V

′

yψV
−1
ψ Vyψ

κt
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Batch estimation

For 2nd order regression model

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k + et

Construct

Y =


y1

y2

y3

· · ·
yN

 , X =


u1 y0 u0 y−1 u−1 1

u2 y1 u1 y0 u0 1

u3 y2 u2 y1 u1 1

· · · · · · · · · · · · · · · · · ·
uN yN−1 uN−1 yN−2 uN−2 1


Regression coe�cients are θ̂N = (X ′X)−1X ′Y in the order in which the rows of X are constructed.

Program: T21estCont_LS.sce (page 90)
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Estimation of categorical model

The pdf of parameter has the Dirichlet form

f (Θ|d (t)) ∝
∏
y|ψ

Θ
νy|ψ;0

y|ψ

with the statistics update

νyt|ψt;t = νyt|ψt;t−1 + 1

The update runs as follows:

ν is a matrix with columns denoted by values of yt and rows corresponding to con�gurations of values

of ψt (the same as in model).

In the update we �nd the entry denoted by yt and the row corresponding to the con�guration of ψt

and we increase it by one.

Point estimate of the parameter is given by ν normalized so that the sums of rows are equal to one.

Program: T23estDisc.sce (page 101)
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Estimation of logistic model

It is not recursive - we must construct likelihood (for all measured data) and maximize it numerically.

Likelihood

Lt =
t∏

τ=1

exp {yτzτ}
1 + exp {zτ}

lnLt =
t∑

τ=1

[yτzτ − ln (1 + exp {zt})]

Θ̂t = arg min
Θ

lnLt

page 39



Prediction



De�nition

Predictive pdf (k-step ahead)

f (yt+k|y (t− 1) , u (t+ k))→ f (yt+k|y (t− 1))

Point prediction

ŷt = E [yt|y (t− 1)] =

∫
y∗t

ytf (yt|y (t− 1)) dyt



Zero step prediction

ut given for all t needed.

Model f (yt|y (t− 1) ,Θ)

Predictive density

f (yt|y (t− 1)) =

∫
Θ∗
f (yt,Θ|y (t− 1)) dΘ=

=

∫
Θ∗
f (yt|y (t− 1) ,Θ)︸ ︷︷ ︸

model

f (Θ|y (t− 1))︸ ︷︷ ︸
posterior from t−1

dΘ→

→
∑
θi∈Θ

f (yt|y (t− 1) , θi) f (θi|y (t− 1))

· · · average (expectation) of all possible models weighted by their probabilities.
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One step prediction

ut given for all t needed.

Model f (yt|y (t− 1) ,Θ)

Predictive density

f (yt+1|y (t− 1)) =

∫
y∗t

∫
Θ∗
f (yt+1, yt,Θ|y (t− 1)) dytdΘ =

=

∫ ∫
f (yt+1|y (t) ,Θ) f (yt|y (t− 1) ,Θ) f (Θ|y (t− 1)) dytdΘ = (∗)∫ ∫

(model (yt+1)) (model (yt)) (posterior (t− 1)) dytdΘ



point estimates of parameters · · · f (Θ|y (t− 1))
.
= δ

(
Θ, Θ̂t−1

)
(∗) =

∫ ∫
f (yt+1|y (t) ,Θ) f (yt|y (t− 1) ,Θ) δ

(
Θ, Θ̂t−1

)
dytdΘ

.
=

.
=

∫
f
(
yt+1|y (t) , Θ̂t−1

)
f
(
yt|y (t− 1) , Θ̂t−1

)
dyt = (∗∗)

point estimates of outputs · · · f
(
yt|y (t− 1) , Θ̂t−1

)
.
= δ (yt, ŷt)

(∗∗) =

∫
f
(
yt+1|y (t) , Θ̂t−1

)
δ (yt, ŷt) dyt

= f
(
yt+1|ŷt, y (t− 1) , Θ̂t−1

)
Point prediction

ŷt+1 = E [yt+1|y (t− 1)] =

∫
yt+1f (yt+1|y (t− 1)) dyt+1

· · · expectation conditioned by y (t− 1) .
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Prediction with regression model

Point prediction - repetitive substitution of model.

Example for model

yt = ayt−1 + but + et

Prediction

ŷt = ayt−1 + but

ŷt+1 = aŷt + but+1

ŷt+2 = aŷt+1 + but+2

etc.

Programs: T31preCont.sce; T32preCont_Adapt.sce; T32preCont_Adapt2.sce; (page 104)

T32preCont_Adapt3.sce (with the data on web)
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Full prediction for normal model

yt = ayt−1 + but + et

yt+1 = ayt + but+1 + et+1 =

= a (ayt−1 + but + et) + but+1 + et+1 =

= a2yt−1 + abut + but+1 + aet + et+1

yt+2 = ayt+1 + but+2 + et+2 =

= a3yt−1 + a2but + abut+1 + but+2 + a2et + aet+1 + et+2

and predictive pdf is Nyt+2 (µ̂, r̂) where

µ̂ = E [yt+2|y (t− 1)] = a3yt−1 + a2but + abut+1 + but+2

r̂ = D [yt+2|y (t− 1)] = D [a2et + aet+1 + et+2] = (a4 + a2 + 1) r
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Prediction with discrete model

Predictive pdf is a row of the model matrix. Point prediction is generated from the predictive pdf.

Example: Model f (yt|ut, yt−1) ; yt ∈ {1, 2, 3} , ut ∈ {1, 2}

ut, yt−1 yt = 1 yt = 2 yt = 3

1, 1 0.2 0.5 0.3

1, 2 0.1 0.3 0.6

1, 3 0.7 0.2 0.1

2, 1 0.3 0.3 0.4

2, 2 0.5 0.2 0.3

2, 3 0.6 0.1 0.3

For measured ut = 1 and yt−1 = 3 the predictive pdf is

f (yt|ut = 1, yt−1 = 3) →
yt 1 2 3

f (yt) 0.7 0.2 0.1
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Generation a prediction with discrete model

It is generated as a value from categorical distribution with the predictive pdf. The generation in

Scilab can be done in the following way:

� model matrix

Θ =


0.2 0.5 0.3

0.1 0.3 0.6

· · ·
0.6 0.1 0.3


� �nd row r corresponding to ut, yt−1 (ut/yt−1 have nu/ny values)

r = ny ∗ (ut − 1) + yt−1

� generate from this row

yt = (sum (rand(1,1,'u') > cumsum (Θ (r, :))) + 1

Programs: T33preCat_O�.sce; T34preCat_O�Est.sce; T35preCat_OnEst.sce (page 114

and further) page 48



Filtration



State-space model

� state model (state prediction)

xt = Mxt−1 +Nut−1 + wt

� output model (state �ltration)

yt = Axt +But + vt

M, N, A, B are known matrices,

wt, vt are noises with zero expectations and known covariances Rw, Rv



Filtration

State evolution: prediction → �ltration

f (xt−1|d (t− 1)) →︸︷︷︸
prediction

f (xt|d (t− 1)) →︸︷︷︸
�ltration

f (xt|d (t))

Prediction

f (xt|d (t− 1)) =

∫
x∗t−1

f (xt|xt−1, ut−1) f (xt−1|d (t− 1)) dxt−1

Filtration

f

 xt︸︷︷︸
Θ

|d (t)

 ∝ f (yt|xt, ut)︸ ︷︷ ︸
model

f

 xt︸︷︷︸
Θ

|d (t− 1)
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Kalman �lter

For normal model and initial conditions we get Kalman �lter

[xt,Rx,yp]=Kalman(xt,yt,ut,M,N,F,A,B,G,Rw,Rv,Rx)

xt - state estimate (expectation)

Rx - state covariance matrix

yp - output prediction

yt, ut - output, input

M, N, F, A, B, G - state model parameters (F,G - constants)

Rw, Rv - model noise covariances

Program: T46statEst_KF.sce; T47statEst_Noise.sce (page 122 and further)
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Nonlinear state estimation

Model

xt = g (xt−1, ut) + wt

yt = h (xt, ut) + vt

Model linearization (Taylor expansion)

g (x, ut)
.
= g (x̂t−1, ut) + g′ (x̂t−1, ut) (x− x̂t−1)

h (x, ut)
.
= h (x̂t, ut) + h′ (x̂t, ut) (x− x̂t)

where x̂ is the last point estimate.



Result

xt = M̄xt−1 + F + wt

yt = Āxt +G+ vt

where

M̄ = g′ (x̂t−1, ut) , F = g (x̂t−1, ut)− g′ (x̂t−1, ut) x̂t−1,

Ā = h′ (x̂t, ut) , G = h (x̂t, ut)− h′ (x̂t, ut) x̂t.
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Control



Control

Criterion: E
[∑N

t=1 Jt|d (0)
]

where

Jt = y2
t + ωu2

t or (yt − st)2 + ωu2
t + λ (ut − ut−1)2

Criterion can be minimized sequentially from the end. The recursion (Bellman equations) are

ϕ∗N+1 = 0

for t = N,N − 1, · · · , 1

ϕt = E
[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
expectation

ϕ∗t = min
ut

ϕt minimization

u∗t = arg minϕt control

end
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Control for regression model

It is performed for state form of the model.

RN+1 = 0

for t = N, N − 1, · · · , 1

U = Rt+1 + Ω

A = N ′UN

B = N ′UM

C = M ′UM

St = A−1B

Rt = C − S ′tASt
end

Here, the vectors St are computed and then they are use for control application (in time direction)

for t = 1, 2, · · · , N, ut = ut = −Stxt−1; yt = gener(ut); end

Program: T53ctrlX.sce; T54ctrlXEst.sce (page 128 and further)
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Remarks

1. If in criterion (yt − st)2 is used the output follows the setpoint st

2. If Jt = y2
t + λ (ut − ut−1)2 is used, steady-state deviation is avoided.

3. If the model parameters are not known, we must use sub-optimal control with receding horizon:

(a) for existing parameter estimated design the control and use only the �rst step,

(b) apply the computed control;

(c) measure new output;

(d) with new data recompute parameter estimates

(e) go to (a).
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Control with discrete model

It is performed exactly in the same way as continuous with the discrete model. However, the opera-

tions with tables are somewhat unusual. You can look at them into the text.

Program: T52ctrlDisc.sce (page 135)

page 65-67


