System

Process - System - Model

- Process - part of reality we are interested in.
- System - variables with their relations.
- Model - mathematical relation of the monitored variable and other explanatory variables.

Remark

If some delayed monitored variables are among the explanatory variables, the system is dynamic. Otherwise it is static.

Variables in the system

Output: Monitored variable.
Input: Manipulated variable - control.
Disturbance: Can be measured, cannot be manipulated.
State: Cannot be measured, is estimated from data.
Noise: Neither can be measured nor predicted.

Model

Bayesian view on model

Conditional probability density function (pdf)

$$
f\left(y_{t} \mid \psi_{t}^{\prime}, \Theta\right)
$$

$\psi_{t}=\left[u_{t}, y_{t-1}, u_{t-1}, \cdots, y_{t-n}, u_{t-n}, 1\right]^{\prime}$ - regression vector;
$\Theta=\{\theta, r\} ; \theta=\left[b_{0}, a_{1}, b_{1}, \cdots, a_{n}, b_{n}, k\right]^{\prime}, \theta$ - regression coefficients, r - noise variance.

It is a stochastic dependence of y_{t} on ψ_{t} with relations expressed by probability density function (pdf).

Regression model

The variables are continuous, ψ can have also some discrete ones.
The above pdf expression can be generated by the stochastic equation

$$
\begin{gathered}
y_{t}=b_{0} u_{t}+a_{1} y_{t-1}+b_{1} u_{t-1}+\cdots+a_{n} y_{t-n}+b_{n} u_{t-n}+k+e_{t}= \\
=\psi_{t}^{\prime} \theta+e_{t}
\end{gathered}
$$

where e_{t} (noise) is i.i.d. (independent, identically distributed) random variable with zero expectation and variance r.
$E\left[y_{t} \mid \psi_{t}, \Theta\right]=b_{0} u_{t}+a_{1} y_{t-1}+b_{1} u_{t-1}+\cdots+a_{n} y_{t-n}+b_{n} u_{t-n}+k$,
$D\left[y_{t}\right]=D\left[e_{t}\right]=r$

Program: T11simCont.sce (page 83)

Discrete model

All variables are discrete (finite number of values)

$f\left(y_{t} \mid \psi_{t}, \Theta\right)=\Theta_{y_{t} \mid \psi_{t}}$		
$\left[u_{t}, y_{t-1}\right]$	$y_{t}=1$	$y_{t}=2$
1,1	$\Theta_{1 \mid 11}$	$\Theta_{2 \mid 11}$
1, 2	$\Theta_{1 \mid 12}$	$\Theta_{2 \mid 12}$
2, 1	$\Theta_{1 \mid 21}$	$\Theta_{2 \mid 21}$
2, 2	$\Theta_{1 \mid 22}$	$\Theta_{2 \mid 22}$

$\sum_{i=1}^{2} \Theta_{i \mid j k}=1$ - conditional probabilities.
For given $\left[u_{t}, y_{t-1}\right]$ the output y_{t} is generated with the $\operatorname{pdf}\left[\Theta_{1 \mid u_{t}, y_{t-1}} \Theta_{2 \mid u_{t}, y_{t-1}}\right]$.

Program: T13simDisc.sce (page 86)

Model of logistic regression

The output is discrete (0 or 1) and it depends on continuous variables.

$$
f\left(y_{t} \mid \psi_{t}, \Theta\right)=\frac{\exp \left(y_{t} z_{t}\right)}{1+\exp \left(z_{t}\right)}
$$

where

$$
z_{t}=\psi_{t} \Theta+e_{t}
$$

The model has the following form - transformation from z to $p=f\left(y_{t}=1 \mid z_{t}\right)$

State-space model

Describes the state variable x_{t}

- state model (state prediction)

$$
x_{t}=M x_{t-1}+N u_{t-1}+w_{t}
$$

- output model (state filtration)

$$
y_{t}=A x_{t}+B u_{t}+v_{t}
$$

M, N, A, B are known matrices,
w_{t}, v_{t} are noises with zero expectations and known covariances R_{w}, R_{v}

State form of regression model

For $2^{\text {nd }}$ order regression model

$$
y_{t}=b_{0} u_{t}+a_{1} y_{t-1}+b_{1} u_{t-1}+a_{2} y_{t-2}+b_{2} u_{t-2}+k+e_{t}
$$

the state form is

$$
\left[\begin{array}{c}
y_{t} \\
u_{t} \\
y_{t-1} \\
u_{t-1} \\
1
\end{array}\right]=\left[\begin{array}{ccccc}
a_{1} & b_{1} & a_{2} & b_{2} & k \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
y_{t-1} \\
u_{t-1} \\
y_{t-2} \\
u_{t-2} \\
1
\end{array}\right]+\left[\begin{array}{c}
b_{0} \\
1 \\
0 \\
0 \\
0
\end{array}\right] u_{t}+\left[\begin{array}{c}
e_{t} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Program: T15simState.sce (page 88)

Estimation

Bayesian estimation

Notation: d_{t} data at $t, d(t)=\left\{d_{0}, d_{1}, \cdots, d_{t}\right\}$ data up to t, d_{0} prior.
$f(\Theta \mid d(t-1)), f(\Theta \mid d(t))$ description of parameters (prior, posterior)

Bayes rule

$$
\underbrace{f(\Theta \mid d(t))}_{\text {posterior }} \propto \underbrace{f\left(y_{t} \mid \psi_{t}, \Theta\right)}_{\text {model }} \underbrace{f(\Theta \mid d(t-1))}_{\text {prior }}
$$

- Natural conditions of control $\quad f\left(\Theta \mid u_{t}, d(t-1)\right)=f(\Theta \mid d(t-1))$
- Batch estimation

$$
f(\Theta \mid d(t)) \propto \underbrace{\left[\prod_{\tau=1}^{t} f\left(y_{\tau} \mid \psi_{\tau} \Theta\right)\right]}_{\text {Likelihood } L_{t}(\Theta)} f(\Theta \mid d(0))
$$

- Self reproducing prior $\quad f(\Theta \mid d(t-1)) \rightarrow f(\Theta \mid d(t))$ - the same form.

Results of estimation

- Posterior pdf $f(\Theta \mid d(t))$ probabilities of parameter values
- Point estimate of parameter (expectation)

$$
\hat{\Theta}_{t}=E[\Theta \mid d(t)]=\int_{-\infty}^{\infty} \Theta f(\Theta \mid d(t)) d \Theta
$$

Estimation of regression model

Application of Bayes rule with regression model and prior/posterior in the form of Gauss-inverse-
Wishart distribution

$$
f(\Theta \mid d(0)) \propto r^{-0.5 \kappa_{0}} \exp \left\{\left[-1, \theta^{\prime}\right] V_{0}\left[\begin{array}{c}
-1 \\
\theta
\end{array}\right]\right\}
$$

Statistics update

$$
\begin{aligned}
V_{t} & =V_{t-1}+D_{t} \\
\kappa_{t} & =\kappa_{t-1}+1
\end{aligned}
$$

where $D_{t}=\left[\begin{array}{c}y_{t} \\ \psi_{t}\end{array}\right]\left[y_{t}, \psi_{t}^{\prime}\right]$ is data matrix, V_{t} is information matrix and κ_{t} is counter.
Programs: T22estCont_B.sce; T22estCont_B2.sce; T22estCont_B3.sce; (page 93 and further)
T22estCont_B4.sce (data from Strahov are on our web)

Point estimates of parameters

- division of information matrix

$$
V_{t}=\left[\begin{array}{cc}
V_{y} & V_{y \psi}^{\prime} \\
V_{y \psi} & V_{\psi}
\end{array}\right] \cdots\left[\begin{array}{cc}
\bullet & -- \\
\mid & \square
\end{array}\right]
$$

- estimates of regression coefficients

$$
\hat{\theta}_{t}=V_{\psi}^{-1} V_{y \psi}
$$

- estimate of noise variance

$$
\hat{r}_{t}=\frac{V_{y}-V_{y \psi}^{\prime} V_{\psi}^{-1} V_{y \psi}}{\kappa_{t}}
$$

Batch estimation

For $2^{n d}$ order regression model

$$
y_{t}=b_{0} u_{t}+a_{1} y_{t-1}+b_{1} u_{t-1}+a_{2} y_{t-2}+b_{2} u_{t-2}+k+e_{t}
$$

Construct

$$
Y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\cdots \\
y_{N}
\end{array}\right], \quad X=\left[\begin{array}{cccccc}
u_{1} & y_{0} & u_{0} & y_{-1} & u_{-1} & 1 \\
u_{2} & y_{1} & u_{1} & y_{0} & u_{0} & 1 \\
u_{3} & y_{2} & u_{2} & y_{1} & u_{1} & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
u_{N} & y_{N-1} & u_{N-1} & y_{N-2} & u_{N-2} & 1
\end{array}\right]
$$

Regression coefficients are $\hat{\theta}_{N}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$ in the order in which the rows of X are constructed.

Program: T21estCont_LS.sce (page 90)

Estimation of categorical model

The pdf of parameter has the Dirichlet form

$$
f(\Theta \mid d(t)) \propto \prod_{y \mid \psi} \Theta_{y \mid \psi}^{\nu_{y \mid \psi ; 0}}
$$

with the statistics update

$$
\nu_{y_{t} \mid \psi_{t} ; t}=\nu_{y_{t} \mid \psi_{t} ; t-1}+1
$$

The update runs as follows:
ν is a matrix with columns denoted by values of y_{t} and rows corresponding to configurations of values of ψ_{t} (the same as in model).

In the update we find the entry denoted by y_{t} and the row corresponding to the configuration of ψ_{t} and we increase it by one.

Point estimate of the parameter is given by ν normalized so that the sums of rows are equal to one.

Program: T23estDisc.sce (page 101)

Estimation of logistic model

It is not recursive - we must construct likelihood (for all measured data) and maximize it numerically.
Likelihood

$$
\begin{gathered}
L_{t}=\prod_{\tau=1}^{t} \frac{\exp \left\{y_{\tau} z_{\tau}\right\}}{1+\exp \left\{z_{\tau}\right\}} \\
\ln L_{t}=\sum_{\tau=1}^{t}\left[y_{\tau} z_{\tau}-\ln \left(1+\exp \left\{z_{t}\right\}\right)\right] \\
\hat{\Theta}_{t}=\arg \min _{\Theta} \ln L_{t}
\end{gathered}
$$

Prediction

Definition

Predictive pdf (k-step ahead)

$$
f\left(y_{t+k} \mid y(t-1), u(t+k)\right) \rightarrow f\left(y_{t+k} \mid y(t-1)\right)
$$

Point prediction

$$
\hat{y}_{t}=E\left[y_{t} \mid y(t-1)\right]=\int_{y_{t}^{*}} y_{t} f\left(y_{t} \mid y(t-1)\right) d y_{t}
$$

Zero step prediction

u_{t} given for all t needed.
Model $\quad f\left(y_{t} \mid y(t-1), \Theta\right)$
Predictive density

$$
\begin{gathered}
f\left(y_{t} \mid y(t-1)\right)=\int_{\Theta^{*}} f\left(y_{t}, \Theta \mid y(t-1)\right) d \Theta= \\
=\int_{\Theta^{*}} \underbrace{f\left(y_{t} \mid y(t-1), \Theta\right)}_{\text {model }} \underbrace{f(\Theta \mid y(t-1))}_{\text {posterior from } t-1} d \Theta \rightarrow \\
\rightarrow \sum_{\theta_{i} \in \Theta} f\left(y_{t} \mid y(t-1), \theta_{i}\right) f\left(\theta_{i} \mid y(t-1)\right)
\end{gathered}
$$

... average (expectation) of all possible models weighted by their probabilities.

One step prediction

u_{t} given for all t needed.
Model $\quad f\left(y_{t} \mid y(t-1), \Theta\right)$

Predictive density

$$
\begin{gathered}
f\left(y_{t+1} \mid y(t-1)\right)=\int_{y_{t}^{*}} \int_{\Theta^{*}} f\left(y_{t+1}, y_{t}, \Theta \mid y(t-1)\right) d y_{t} d \Theta= \\
=\iint f\left(y_{t+1} \mid y(t), \Theta\right) f\left(y_{t} \mid y(t-1), \Theta\right) f(\Theta \mid y(t-1)) d y_{t} d \Theta=(*) \\
\iint\left(\operatorname{model}\left(y_{t+1}\right)\right)\left(\operatorname{model}\left(y_{t}\right)\right)(\operatorname{posterior}(t-1)) d y_{t} d \Theta
\end{gathered}
$$

point estimates of parameters $\cdots f(\Theta \mid y(t-1)) \doteq \delta\left(\Theta, \hat{\Theta}_{t-1}\right)$

$$
\begin{aligned}
(*) & =\iint f\left(y_{t+1} \mid y(t), \Theta\right) f\left(y_{t} \mid y(t-1), \Theta\right) \delta\left(\Theta, \hat{\Theta}_{t-1}\right) d y_{t} d \Theta \doteq \\
& \doteq \int f\left(y_{t+1} \mid y(t), \hat{\Theta}_{t-1}\right) f\left(y_{t} \mid y(t-1), \hat{\Theta}_{t-1}\right) d y_{t}=(* *)
\end{aligned}
$$

point estimates of outputs $\cdots f\left(y_{t} \mid y(t-1), \hat{\Theta}_{t-1}\right) \doteq \delta\left(y_{t}, \hat{y}_{t}\right)$

$$
\begin{aligned}
(* *) & =\int f\left(y_{t+1} \mid y(t), \hat{\Theta}_{t-1}\right) \delta\left(y_{t}, \hat{y}_{t}\right) d y_{t} \\
& =f\left(y_{t+1} \mid \hat{y}_{t}, y(t-1), \hat{\Theta}_{t-1}\right)
\end{aligned}
$$

Point prediction

$$
\hat{y}_{t+1}=E\left[y_{t+1} \mid y(t-1)\right]=\int y_{t+1} f\left(y_{t+1} \mid y(t-1)\right) d y_{t+1}
$$

\cdots expectation conditioned by $y(t-1)$.

Prediction with regression model

Point prediction - repetitive substitution of model.
Example for model

$$
y_{t}=a y_{t-1}+b u_{t}+e_{t}
$$

Prediction

$$
\begin{aligned}
\hat{y}_{t} & =a y_{t-1}+b u_{t} \\
\hat{y}_{t+1} & =a \hat{y}_{t}+b u_{t+1} \\
\hat{y}_{t+2} & =a \hat{y}_{t+1}+b u_{t+2} \\
& \text { etc. }
\end{aligned}
$$

Programs: T31preCont.sce; T32preCont_Adapt.sce; T32preCont_Adapt2.sce; (page 104) T32preCont_Adapt3.sce (with the data on web)

Full prediction for normal model

$$
\begin{aligned}
y_{t} & =a y_{t-1}+b u_{t}+e_{t} \\
y_{t+1} & =a y_{t}+b u_{t+1}+e_{t+1}= \\
& =a\left(a y_{t-1}+b u_{t}+e_{t}\right)+b u_{t+1}+e_{t+1}= \\
& =a^{2} y_{t-1}+a b u_{t}+b u_{t+1}+a e_{t}+e_{t+1} \\
y_{t+2} & =a y_{t+1}+b u_{t+2}+e_{t+2}= \\
& =a^{3} y_{t-1}+a^{2} b u_{t}+a b u_{t+1}+b u_{t+2}+a^{2} e_{t}+a e_{t+1}+e_{t+2}
\end{aligned}
$$

and predictive pdf is $N_{y_{t+2}}(\hat{\mu}, \hat{r})$ where
$\hat{\mu}=E\left[y_{t+2} \mid y(t-1)\right]=a^{3} y_{t-1}+a^{2} b u_{t}+a b u_{t+1}+b u_{t+2}$
$\hat{r}=D\left[y_{t+2} \mid y(t-1)\right]=D\left[a^{2} e_{t}+a e_{t+1}+e_{t+2}\right]=\left(a^{4}+a^{2}+1\right) r$

Prediction with discrete model

Predictive pdf is a row of the model matrix. Point prediction is generated from the predictive pdf.
Example: Model $f\left(y_{t} \mid u_{t}, y_{t-1}\right) ; y_{t} \in\{1,2,3\}, u_{t} \in\{1,2\}$

u_{t}, y_{t-1}	$y_{t}=1$	$y_{t}=2$	$y_{t}=3$
1,1	0.2	0.5	0.3
1,2	0.1	0.3	0.6
1,3	0.7	0.2	0.1
2,1	0.3	0.3	0.4
2,2	0.5	0.2	0.3
2,3	0.6	0.1	0.3

For measured $u_{t}=1$ and $y_{t-1}=3$ the predictive pdf is

$$
f\left(y_{t} \mid u_{t}=1, y_{t-1}=3\right) \rightarrow \begin{array}{c|ccc}
y_{t} & 1 & 2 & 3 \\
\hline f\left(y_{t}\right) & 0.7 & 0.2 & 0.1
\end{array}
$$

Generation a prediction with discrete model

It is generated as a value from categorical distribution with the predictive pdf. The generation in Scilab can be done in the following way:

- model matrix

$$
\Theta=\left[\begin{array}{lll}
0.2 & 0.5 & 0.3 \\
0.1 & 0.3 & 0.6 \\
& \ldots & \\
0.6 & 0.1 & 0.3
\end{array}\right]
$$

- find row r corresponding to $u_{t}, y_{t-1}\left(u_{t} / y_{t-1}\right.$ have n_{u} / n_{y} values $)$

$$
r=n_{y} *\left(u_{t}-1\right)+y_{t-1}
$$

- generate from this row

$$
y_{t}=\left(\operatorname{sum}\left(\operatorname{rand}\left(1,1,,^{\prime}\right)>\operatorname{cumsum}(\Theta(\mathrm{r},:))\right)+1\right.
$$

Programs: T33preCat_Off.sce; T34preCat_OffEst.sce; T35preCat_OnEst.sce (page 114 and further)

Filtration

State-space model

- state model (state prediction)

$$
x_{t}=M x_{t-1}+N u_{t-1}+w_{t}
$$

- output model (state filtration)

$$
y_{t}=A x_{t}+B u_{t}+v_{t}
$$

M, N, A, B are known matrices,
w_{t}, v_{t} are noises with zero expectations and known covariances R_{w}, R_{v}

Filtration

State evolution: prediction \rightarrow filtration

$$
f\left(x_{t-1} \mid d(t-1)\right) \underbrace{\rightarrow}_{\text {prediction }} f\left(x_{t} \mid d(t-1)\right) \underbrace{\rightarrow}_{\text {filtration }} f\left(x_{t} \mid d(t)\right)
$$

Prediction

$$
f\left(x_{t} \mid d(t-1)\right)=\int_{x_{t-1}^{*}} f\left(x_{t} \mid x_{t-1}, u_{t-1}\right) f\left(x_{t-1} \mid d(t-1)\right) d x_{t-1}
$$

Filtration

$$
f(\underbrace{x_{t}}_{\Theta} \mid d(t)) \propto \underbrace{f\left(y_{t} \mid x_{t}, u_{t}\right)}_{\text {model }} f(\underbrace{x_{t}}_{\Theta} \mid d(t-1))
$$

Kalman filter

For normal model and initial conditions we get Kalman filter

$$
[\mathrm{xt}, \mathrm{Rx}, \mathrm{yp}]=\operatorname{Kalman}(\mathrm{xt}, \mathrm{yt}, \mathrm{ut}, \mathrm{M}, \mathrm{~N}, \mathrm{~F}, \mathrm{~A}, \mathrm{~B}, \mathrm{G}, \mathrm{Rw}, \mathrm{Rv}, \mathrm{Rx})
$$

xt - state estimate (expectation)
Rx - state covariance matrix
yp - output prediction
yt, ut - output, input
M, N, F, A, B, G-state model parameters (F,G-constants)
Rw, Rv - model noise covariances

Program: T46statEst_KF.sce; T47statEst_Noise.sce (page 122 and further)

Nonlinear state estimation

Model

$$
\begin{aligned}
x_{t} & =g\left(x_{t-1}, u_{t}\right)+w_{t} \\
y_{t} & =h\left(x_{t}, u_{t}\right)+v_{t}
\end{aligned}
$$

Model linearization (Taylor expansion)

$$
\begin{gathered}
g\left(x, u_{t}\right) \doteq g\left(\hat{x}_{t-1}, u_{t}\right)+g^{\prime}\left(\hat{x}_{t-1}, u_{t}\right)\left(x-\hat{x}_{t-1}\right) \\
h\left(x, u_{t}\right) \doteq h\left(\hat{x}_{t}, u_{t}\right)+h^{\prime}\left(\hat{x}_{t}, u_{t}\right)\left(x-\hat{x}_{t}\right)
\end{gathered}
$$

where \hat{x} is the last point estimate.

Result

$$
\begin{aligned}
x_{t} & =\bar{M} x_{t-1}+F+w_{t} \\
y_{t} & =\bar{A} x_{t}+G+v_{t}
\end{aligned}
$$

where

$$
\begin{gathered}
\bar{M}=g^{\prime}\left(\hat{x}_{t-1}, u_{t}\right), \quad F=g\left(\hat{x}_{t-1}, u_{t}\right)-g^{\prime}\left(\hat{x}_{t-1}, u_{t}\right) \hat{x}_{t-1}, \\
\bar{A}=h^{\prime}\left(\hat{x}_{t}, u_{t}\right), \quad G=h\left(\hat{x}_{t}, u_{t}\right)-h^{\prime}\left(\hat{x}_{t}, u_{t}\right) \hat{x}_{t} .
\end{gathered}
$$

Control

Control

Criterion: $E\left[\sum_{t=1}^{N} J_{t} \mid d(0)\right]$ where

$$
J_{t}=y_{t}^{2}+\omega u_{t}^{2} \text { or }\left(y_{t}-s_{t}\right)^{2}+\omega u_{t}^{2}+\lambda\left(u_{t}-u_{t-1}\right)^{2}
$$

Criterion can be minimized sequentially from the end. The recursion (Bellman equations) are

$$
\varphi_{N+1}^{*}=0
$$

$$
\text { for } t=N, N-1, \cdots, 1
$$

$$
\begin{gathered}
\varphi_{t}=E\left[\varphi_{t+1}^{*}+J_{t} \mid u_{t}, d(t-1)\right] \quad \text { expectation } \\
\varphi_{t}^{*}=\min _{u_{t}} \varphi_{t} \quad \text { minimization }
\end{gathered}
$$

$$
u_{t}^{*}=\arg \min \varphi_{t} \text { control }
$$

end

Control for regression model

It is performed for state form of the model.

$$
\begin{aligned}
& R_{N+1}=0 \\
& \text { for } t=N, N-1, \cdots, 1 \\
& \qquad \begin{aligned}
U & =R_{t+1}+\Omega \\
A & =N^{\prime} U N \\
B & =N^{\prime} U M \\
C & =M^{\prime} U M \\
S_{t} & =A^{-1} B
\end{aligned} \\
& \begin{aligned}
R_{t} & =C-S_{t}^{\prime} A S_{t}
\end{aligned} \\
& \text { end }
\end{aligned}
$$

Here, the vectors S_{t} are computed and then they are use for control application (in time direction)
for $t=1,2, \cdots, N, u_{t}=u_{t}=-S_{t} x_{t-1} ; y_{t}=\operatorname{gener}\left(u_{t}\right) ;$ end

Program: T53ctrlX.sce; T54ctrlXEst.sce (page 128 and further)

Remarks

1. If in criterion $\left(y_{t}-s_{t}\right)^{2}$ is used the output follows the setpoint s_{t}
2. If $J_{t}=y_{t}^{2}+\lambda\left(u_{t}-u_{t-1}\right)^{2}$ is used, steady-state deviation is avoided.
3. If the model parameters are not known, we must use sub-optimal control with receding horizon:
(a) for existing parameter estimated design the control and use only the first step,
(b) apply the computed control;
(c) measure new output;
(d) with new data recompute parameter estimates
(e) go to (a).

Control with discrete model

It is performed exactly in the same way as continuous with the discrete model. However, the operations with tables are somewhat unusual. You can look at them into the text.

Program: T52ctrlDisc.sce (page 135)

