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1 Introduction, probability, system

All necessary for study can be found on the web:

www.fd.cvut.cz/personal/nagyivan+ Mat. Models and Applications

Here you can �nd:

• For lectures

� Text for study (both in English and Czech)
It should be ready for self-study. If not, please contact me on mail ibp.nagy@gmail.com

or by phone 739 081 050.

� Schedule of lectures
It is approximate and can be changed (e.g. according to your wish).

• For exercises

� Basic programs
They should be programmed during exercises and they cover the basic tasks of this

course.

� Other programs
Here are programs to other tasks that could be interesting for you.

• Help to Scilab

� Introduction to Probability (for repetition of what has been forgotten)

� Introduction: brief (7 pages), detailed (87 pages)

� Manual for beginners

• Other programs which can be directly used
Here are more programs concerning the basic tasks as well as other ones relating the

topic.

• Home Page of Scilab where it can be downloaded.
This is the Home Page of the Scilab program. Here the latest version of Scilab can be

downloaded for free. Other useful pages can also be reached in references.

1.1 Revision of basic probability notions

If necessary, the basic notions from Probability can be obtained from the webpage

https://people.smp.uq.edu.au/DirkKroese/asitp.pdf

or its copy from our webpage
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https://www.fd.cvut.cz/personal/nagyivan/StochSyst/IntroToProbability.pdf.

• Variable is anything which can be assigned values. The values can be measured and
they form measured data or they cannot be measured (e.g. due to nonexistence or too
high price of some measuring device).

• Random variable is a variable for which even in the same conditions di�erent values
are measured.

Remark: Random variables are (i) continuous - with values form real axis, (ii) dis-
crete - with �nite or countably many di�erent values.

• Distribution gives a full description of random variable.

� Discrete probability function : is given by the following formula

f (x) ≡ P (X = x) ,

i.e. it assigns probabilities to its values.

� Continuous density function : is given by the formula

f (x) =
dF (x)

dx
or F (x) =

∫ x

−∞
f (t) dt

where F (x) = P (X ≤ x) is distribution function.

• Random vector is a column vector of random variables

x = [x1, x2, · · · , xn]′

where ′ denotes transposition.

• Joint distribution (for two variables x1 and x2) is f (x1, x2) and it contains all infor-
mation not only of x1 and x2 separately but also about their mutual relation.

• Marginal distribution is f (x1) or f (x2) and it contains information only about tj
respective variable, the other one being unknown. It holds

f (x1) =

∫ ∞
−∞

f (x1, x2) dx2

and similarly for x2.

• Conditional distribution is distribution of one variable if we know the value of the
other one. It holds

f (x2|x1) =
f (x1, x2)

f (x1)

and similarly for x1|x2.
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• Independence of random variables x1 and x2 is given by

f (x1, x2) = f (x1) f (x2)

• Expectation of random variable
� discrete

E [X] =
∑
xi∈X

xif (xi)

� continuous

E [X] =

∫ ∞
−∞

xf (x) dx

• Variance
D [X] = E

[
(X − E [X])2

]
• Covariance

C [X1, X2] = E [(X1 − E [X1]) (X2 − E [X2])]

• Expectation of random vector

E [X] =

[
E [x1]
E [x2]

]
, C [X] =

[
D [x1] cov [x1, x2]

cov [x1, x2] D [x2]

]
• Random process is random variable indexed by time

time \ values discrete continuous

discrete Markov chains random sequences
continuous queues x

• Categorical distribution

x 1 2 · · · n

f (x) p1 p2 · · · pn

where p1 ≥ 0,
∑
pi = 1. Each realization has its probability.

• Normal distribution

f (X) =
1√

(2π)n |R|
exp

{
−1

2
(x− µ)′R−1 (x− µ)

}
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Example

For the distribution f (x1, x2) determine marginal and conditional ones.

� For discrete case

f (x1, x2)
x1\x2 1 2 f (x1)

1 0.1 0.3 0.4
2 0.4 0.2 0.6

f (x2) 0.5 0.5

f (x2|x1)
1
4

3
4

2
3

1
3

f (x1|x2)
1
5

3
5

4
5

2
5

f (x1) f (x2)

0.2 0.2
0.3 0.3

Here, the joint distribution is introduced as the matrix

[
0.1 0.3
0.4 0.2

]
(sum of all entries must

be 1). Below this matrix the marginal f (x2) is listed with entries as sums of the matrix in
columns and right to the matrix is the marginal f (x1) as a sum of the matrix in rows.

Below-left is the conditional f (x1|x2) for both x2 = 1 and x2 = 2 (in one matrix) and similarly
right is the conditional f (x2|x1), again for x1 = 1 and x1 = 2 in one matrix.

Down-right is the product of marginals. It is not equal to the joint probability, so the variables
are not independent.

� For continuous case

For given joint density function, determine marginals, conditional distributions and decide, if
the random variables are independent.

� joint density

f (x1, x2) = 6x2
1x2, x1, x2 ∈ (0, 1)

� marginal

f (x1) =

∫ 1

0
6x2

1x2dx2 = 3x2
1

f (x2) =

∫ 1

0
6x2

1x2dx1 = 2x2

� conditional
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f (x1|x2) =
6x2

1x2

2x2
= 3x2

1

f (x2|x1) =
6x2

1x2

3x2
1

= 2x2

As it is f (x1, x2) = f (x1) f (x2) the variables are independent.

1.2 System and its variables

System is a part of reality we are interested in, on which we measure data and which we
want to learn about to be able to predict its behavior or to in�uence it by control. It can be
schematically demonstrated in the following picture

SYSTEM

imput (control)

disturbance

noise

output

state

ut

vt

et

yt

xt

• Output - is the modeled variable. It is unknown at prior but after application of a control
it can be measured.

• Input - is some variable that in�uences the output. It can be fully manipulated by us as
a control variable).

• Disturbance - is another variable in�uencing the output. It can be measured, but we
cannot in�uence it.

• State - is hidden variable. It is in�uenced by the input and it in�uences the output. It
cannot be measured and mostly is estimated.

• Noise - is a disturbance that in�uences the system. It can be neither measured nor
predicted

1.3 Model of the system

It is a mathematical equation based on the system variables that expresses the output (or
state) by means of other variables and model parameters. The model with parameters which
are not determined express the structure of the system. The values of the parameters are
determined on the basis of measured data. With correct values of the parameters the output
measured and that produced by th model (output prediction) should be similar (up to the
deviance caused by th noise).

8



Examples

• A controlled crossroads.
(state estimation)
Input - the proportion of green in the signal lights.
Disturbance - the tra�c intensity of vehicles coming to the crossroads.
State - the queue lengths in the crossroads arms.
Output - the intensity of vehicles going out of the arms of the crossroads.
Parameters - saturated �ow in the crossroads arms, directional relations in the cross-
roads.

• Automatic control of a vehicle.

(control)
Input - angle of the gas pedal.
Disturbance - wind, turnings, slope of the road etc.
Output - speed of the vehicle.
Parameters - express bounds between output and other variables. They could be deduced
from th construction parameters of the vehicle or estimated from measured data.

• Tra�c accidents in some area or town.
(classi�cation)
Disturbance - characteristics of situation during the accident (light, weather, · · · ), the
environment in the place of accident (type or surface of the road, view conditions · · · )
or behavior of the the vehicle (speed, power of engine · · · ).
Output - seriousness of the accident (damage, injury, death)
Parameters - estimated probabilities of the type of accident.
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2 Di�erential equations

2.1 Di�erential equations

Dynamic process is described by a di�erential equation. Here we will repeat basic notions con-
cerning stationary (constant coe�cients) and homogeneous (zero right-hand side) equations
of the �rst and second order.

First order

The equation with the initial condition is (′ denotes derivative)

y′ + ay = 0, y (0) = y0

• The solution by Laplace transformation

pY − y0 + aY = 0

(p+ a)Y = y0

Y = y0
1

p+ a
→ y (t) = y0 exp {−at}

• The solution in time domain using characteristic equation

y = α exp {λt}

characteristic equation
λ+ a = 0 → λ = −a

substitution for λ
y = α exp {−at}

α according to initial condition
y (0) = α = y0

the solution is
y = y0 exp {−at}

Second order

The equation with initial conditions is

y′′ + a1y
′ + a0y = 0, y (0) = y0, y

′ (0) = d0

Characteristic equation
λ2 + a1λ+ a0 = 0

Solution
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1. two real roots - two exponentials

2. one double root - exponential and polynomial

3. two complex roots - exponentials and sine, cosine

Stability - real parts of the roots must be in the left half-plane.

2.2 Discretization

Approximate

It can be done by replacing the derivative by the di�erence.

The equation

y′ + ay = 0

Replacing the derivative by the di�erence

y′ (t)→y(t+T )−y(t)
T = yt+1−yt

T - where T is a step of discretization

y (t+ T )− y (t)

T
+ ay (t) = 0

yt+1 − yt + Tayt = 0 → yt+1 = (1− Ta)︸ ︷︷ ︸
Ã

yt

Precise

Here the generated discrete values are equal to the samples from the continuous solution

yt+1 = exp {−aT} yt = Ayt

The derivation of this precise discretization can be found in the Appendix 13.3.

3 Regression model

The basic model for continuous data is the regression one. It has the form of di�erence equation
with the random part. Its equation is

yt = ψ
′
tΘ + et (3.1)
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• yt modeled variable (output) at time t,

• ψt regression vector, containing values of variables in�uencing the output,

• Θ model parameters (regression coe�cients θ and noise variance r),

• et noise, with zero expectation, constant variance, independent of variables in regression
vector - sequence of independent and identically distributed (i.i.d.) random variables.

Here it is

ψt = [ut, yt−1, ut−1 · · · yt−n, ut−n, 1]′

θ = [b0, a1, b1, · · · an, bn, k]′ ,

The model can be written in a more detailed form

yt = b0ut + a1yt−1 + b1yt−1 + · · ·+ anyt−n + bnut−n + k + et

Comments

1. Number of delayed y and u can be di�erent. Number of delayed y is called model

order.

2. The term ψ
′
tθ is at time t known constant. Model represents a transformation of et to

yt according to the model equation.

3. If ψt contains no delayed outputs, the model is static. Otherwise, it is dynamic.

4. yt = ψ
′
tθ is a di�erence di�erence equation.

Model as a pdf

A general description of the model as a tool, describing yt as random variable is distribution

f (yt|ψt,Θ)

Moments of the model are

E [yt|ψt,Θ] = E
[
ψ
′
tθ + et

]
= ψ

′
tθ ≡ ŷt

D [yt|ψt,Θ] = D
[
ψ
′
tθ + et

]
= D [et] = r
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Normal regression model as a pdf

Distribution of the normal noise is

f (et) =
1√
2πr

exp

{
− 1

2r
e2
t

}
The transformation according to (3.1) is yt = ψ

′
tθ + et → et = yt − ψ

′
tθ , with Jacobian equal

to 1. The transformed pdf is the normal model and it has the form

f (yt|ψt,Θ) =
1√
2πr

exp

{
− 1

2r

(
yt − ψ

′
tθ
)2
}

Example of generation

Generate values of yt for t = 1, 2, 3 from the regression model

yt = ut + 0.4yt−1 − 0.2ut−1 + et

with the initial condition y0 = 0.1 and u0 = −0.1; u1 = 1.2; u2 = −0.6; u3 = 0.1.

The values of the noise et will be generated using the function rand. Let them be e =
[0.103,−0.211, 0.125].

Solution

y1 = u1 + 0.4y0 − 0.2u0 + e1 = 1.2 + 0.4 · 0.1− 0.2 · (−0.1) + 0.103 = 1.363

y2 = u2 + 0.4y1 − 0.2u1 + e2 = −0.6 + 0.4 · 1.363− 0.2 · 1.2− 0.211 = −0.5058

y3 = u3 + 0.4y2 − 0.2u2 + e3 = 0.1 + 0.4 · (−0.5058)− 0.2 · (−0.6) + 0.125 = 0.14268

Program

// prgRegGen.sce

// Generation form a regression model

// ------------------------------------------

clc, clear, close, mode(0)

y(1)=.1; // initial y

u=[0 1.2 -.6 .1]; // control

a=.4; b=[1 -.2]; // model parameters

s=.1; // std of noise

for t=2:4 // shift of t due to zero indexes
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e(t)=s*rand(1,1,'n');

y(t)=b(1)*u(t)+a*y(t-1)+b(2)*u(t-1)+e(t); // generation of y

end

y, u // print of results

// the results depend on actual values of rand. generators !

3.1 Regression model in a state-space form

The model describing the evolution of a state is

xt = Mxt−1 +Nut + wt.

The regression model introduced in (3.1) can be given this state form. We will demonstrate
the transformation for the 2nd order regression model with constant term k

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k + et

We de�ne the state as

xt = [yt, ut, yt−1, ut−1, 1]′ → xt−1 = [yt−1, ut−1, yt−2, ut−2, 1]′

and substitute into the state model. Then, the �rst entry of the state is yt and it is given by
the regression model. The second entry is ut and it is directly copied from the term Nut. The
rest of the state entries express just shift of time: yt−1 was the �rst entry of xt−1 and now it is
the third entry of xt. Similarly for ut−1. The constant k is not shifted, so it is plainly copied.

The resulting state model is
yt
ut
yt−1

ut−1

1

 =


a1 b1 a2 b2 k
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1



yt−1

ut−1

yt−2

ut−2

1

+


b0
1
0
0
0

ut +


et
0
0
0
0


The advantage of the state-space model lies in recurrent computations. Its memory is only
one. The computations have a closed form.

Example

For the regression model

yt = b0ut + a1yt−1 + b1ut−1 + a2yt−2 + b2ut−2 + k

express y3 with initial conditions y0, y−1 and known ut.
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The solution using regression model

y1 = b0u1 + a1y0 + b1u0 + a2y−1 + b2u−2 + k

y2 = b0u2 + a1y1 + b1u1 + a2y0 + b2u0 + k

= b0u2 + a1 (b0u1 + a1y0 + b1u0 + a2y−1 + b2u−2 + k) +

+b1u1 + a2y0 + b2u0 + k

y3 = · · · horror

If the regression model is transformed to the state form, we can write

x1 = Mx0 +Nu1

x2 = M (Mx0 +Nu1) +Nu2 = M2x0 +MNu1 +Nu2

x3 = M3x0 +M2Nu1 +MNu2 +Nu3

and
y3 = x1;3

where x1;3 is the �rst entry of the state x3.

We can even write a compact recurrent formula for arbitrary xk.

xk = Mkx0 +

k∑
i=2

Mk−iui

Example of generation

For the regression model from the previous section

yt = ut + 0.4yt−1 − 0.2ut−1 + et

with the initial condition y0 = 0.1 and u0 = −0.1; u1 = 1.2; u2 = −0.6; u3 = 0.1. and
e = [0.103,−0.211, 0.125] use the state form for generation of y1, t = 1, 2, 3.

Solution

The equivalent regression model reads yt
ut
1

 = xt =

 0.4 −0.2 0
0 0 0
0 0 1

xt−1 +

 1
1
0

ut +

 et
0
0


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So, for x1 it is

x1 =

 0.4 −0.2 0
0 0 0
0 0 1

 y0

u0

1

+

 1
1
0

u1 +

 e1

0
0

 =

=

 0.4 −0.2 0
0 0 0
0 0 1

 0.1
−0.1

1

+

 1
1
0

 1.2 +

 0.103
0
0

 =

 1.363
0.1
1


where x1(1) = y1 = 1.363. For x2

x2 =

 0.4 −0.2 0
0 0 0
0 0 1

x1 +

 1
1
0

u2 +

 e2

0
0

 =

=

 0.4 −0.2 0
0 0 0
0 0 1

 1.363
0.1
1

+

 1
1
0

 (−0.6) +

 −0.211
0
0

 =

 −0.5058
−0.6

1


with x2 (1) = y2 = −0.5058. And �nally for x3

x3 =

 0.4 −0.2 0
0 0 0
0 0 1

x2 +

 1
1
0

u3 +

 e3

0
0

 =

=

 0.4 −0.2 0
0 0 0
0 0 1

 −0.5058
−0.6

1

+

 1
1
0

 (0.1) +

 0.125
0
0

 =

 0.14268
0.1
1


and y3 = x3 (1) =0.14268.

By comparison with the previous example with regression model we can see, that the results
(with the same realization of noise) are exactly the same.

Program

// prgRegStGen.sce

// Generation form a logistic regression model

// ------------------------------------------

clc, clear, close, mode(0)

y=.1;

u=[-.1 1.2 -.6 .1];

x=[y(1) u(1) 0]';

M=[
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.4 -.2 0

0 0 0

0 0 1

];

N=[1 1 0]';

for t=2:4

w(:,t)=[.1*rand(1,1,'n') 0 0]'; // state noise

x(:,t)=M*x(:,t-1)+N*u(t)+w(:,t);

y(t)=x(1,t); // generation of y

end

y // print of results

// the results depend on actual values of rand. generators !
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4 Discrete and logistic models

4.1 Discrete model

Discrete model can be used if all the variables entering model are discrete. Then there is a �nite

number of value con�gurations of data vector
[
y
′
t, ψ

′
t

]′
. It enables us to assign a probability

to each con�guration separately and the model is

f (yt|ψt,Θ) = Θyt|ψt (4.1)

yt - output, ψt - regression vector, Θ parameter.

For two-valued variables and ψt =
[
u
′
t, y

′
t−1

]′
the parameters are Θyt|ut,yt−1

. The model can

be given a form of a table

[ut, yt−1] yt = 1 yt = 2

1, 1 Θ1|11 Θ2|11

1, 2 Θ1|12 Θ2|12

2, 1 Θ1|21 Θ2|21

2, 2 Θ1|22 Θ2|22

In the left, there are all con�gurations of the regression vector. The entries of the table denote
all con�gurations of the data vector, each of them is assigned its own parameter Θi|jk where
i ∈ {1, 2} is a value of yt, j ∈ {1, 2} is a value of ut and k ∈ {1, 2} is a value of yt−1.

As all Θ are probabilities, it must hold:

Θi|jk ≥ 0,
∑
i

Θi|jk = 1, ∀jk

Remarks

1. The the model given by the given structure of is practically general. It is dynamic and
possesses control variable. If there are more variables or more di�erent values of th
variables, only the dimension of Θ grows, but the model structure remains the same.

2. The number of all data con�gurations is always �nite. However, with increasing number
of variables and number of values of the variables, its dimension rapidly grows. Very
soon it reaches such extend, that it can hardly be implemented in a standard computer.
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Examples

1. Model of an unfair coin

Tail is assigned by 1 and its probability is Θ1, head is denoted by 2 and its probability
is Θ2. As there are no variables in�uencing the output yt,the model is represented only
by a vector and it has the form

f (yt) = Θyt , yt ∈ {1, 2}

yt = 1 yt = 2

Θ1 Θ2

2. Coin with a memory

In this case we expect, that the output yt of the system (a coin) is in�uenced by the
result of the previous result yt−1. We can imagine, e.g. that the coin landed in a mud,
got dirty and thus is unbalanced. Now, the model is represented by by the 2×2 matrix
parameter as indicated below

f (yt|yt−1) = Θyt|yt−1
, y ∈ {1, 2}

yt−1 yt = 1 yt = 2

1 Θ1|1 Θ2|1
2 Θ1|2 Θ2|2

3. Controlled coin

Here the output yt is in�uenced again, but by the control variable. Otherwise, the
situation is the same as for the coin with memory

f (yt|ut) , y, u ∈ {1, 2}

ut−1 yt = 1 yt = 2

1 Θ1|1 Θ2|1
2 Θ1|2 Θ2|2

4. Controlled coin with memory

In this model, both the in�uencing variables are present. As the regression vector ψt
is really a vector, we must code the combinations of its values. If we write all these
combinations so that the right position in the vector changes more rapidly (as indicated
below), we can denote these combinations by the number of the row in the model matrix.
That is 1,1→1, 1,2→2, 2,1→3, and 2,2→4. Notice! The code numbers correspond to the
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numbers of the matrix row. For this simple case, of the regression vector [ut, yt−1] , the
code numbers j can be determined by the formula

j = 2 (ut − 1) + yt−1.

The model is

f (yt|ut, yt−1) , y, u ∈ {1, 2}

[ut, yt−1] yt = 1 yt = 2

1, 1 0.8 0.2
1, 2 0.7 0.3
2, 1 0.25 0.75
2, 2 0.1 0.9

where yt mostly obeys ut

The meaning of the parameter

Uncertainty of the regression model is given by the noise variance. Here, it is given by Θ. If
its entries are close to 0 or 1, the model is almost deterministic. If they are near to 0.5, the
model is very uncertain. E.g.[

0.1, 0.9
0.9, 0.1

] [
0.4, 0.6
0.6, 0.4

]
or

[
1, 0
0, 1

] [
0, 1
1, 0

]

Example

For the model f (yt|ut, yt−1), the model matrices represent deterministic models. The left one
says: if u1 = 1and yt−1 = 1, then yt = 0;otherwise, yt = 1. The second one, on the right,
means: if ut = 0 then yt = 1; if ut = 1, yt = 1 (independently on yt−1)


1 0
0 1
0 1
0 1




0 1
0 1
1 0
1 0


Another possible verbal expression of the models is: Left - yt is the bigger from ut and yt−1;
right - yt is the opposite to ut.

Models 
0.9 0.1
0.9 0.1
0.1 0.9
0.1 0.9




0.99 0.01
0.99 0.01
0.01 0.99
0.01 0.99


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express both the same rule and are uncertain. The right one is more deterministic.

The model 
0.51 0.49
0.47 0.53
0.52 0.48
0.49 0.51


is very uncertain (it practically carries on information).

Scilab generations

These ways of generation will be useful in our programs. You can or need not understand
them. In the latter case, just use them.

• generate y∈ {1, 2} so that P (y = 1) = 0.3

y=(rand(1,1,'u')>0.3)+1 (one value);

y=(rand(1,nd,'u')>0.3)+1 (nd values);

• generate y ∈ {1, 2, · · · , n} so that P (y = i) = pi; p =[p1 · · · pn]

pp=cumsum(p);

y=sum(rand(1,1,'u')>pp)+1;

• number of row i in the table for ut, yt−1 ∈ {1, 2}

i=2*(u(t)-1)+y(t-1);

• generate output yt from the model f (yt|ut, yt−1)

i=2*(u(t)-1)+y(t-1);

pp=cumsum(th(i,:));

y(t)=sum(rand(1,1,'u')>pp)+1;
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Example of generation

Let us generate three values of the output variable yt from the discrete model

f (yt|ut, yt−1,Θ)

where both y and u are binary variables with values from {1, 2} and the parameter Θ is given
by the matrix 

0.2 0.8
0.9 0.1
0.7 0.3
0.8 0.2


The initial condition is y0 = 1 and the input variable is ut = [1, 2, 2].

Solution

The model with description is

[ut, yt−1] yt = 1 yt = 2

1,1 0.2 0.8
1,2 0.9 0.1
2,1 0.7 0.3
2,2 0.8 0.2

Time 1: The regression vector [ut, yt−1] = [u1, y0] = [1, 1] - so we are at the �rst row of the
table. So we should to generate from categorical (here it is also Bernoulli) distribution with
parameters p1 = P (yt = 1) = 0.2 and p2 = P (yt = 2) = 0.8. According to the above formulas,
we generate random uniform number U(0, 1)=rand(1,1,'u') - let it be 0.7369. Then rand(1,1,'u') > 0.2 = 0.7369 > 0.2
is True and

y1 = (rand(1,1,'u') > 0.2) +1 = 2

because True +1 = 2.

Time 2: The regression vector [ut, yt−1] = [u2, y1] = [2, 2] - it indicates the fourth row in the
table. Let the random generator gives a value 0.3184. Then

y2 =(rand(1,1,'u') > 0.8) +1 = 1,

as 0.3184 > 0.8 = False and False + 1 = 0.

Time 3: The regression vector [ut, yt−1] = [u3, y2] = [2, 1] - third row of the table. Let
rand(1,1,'u') = 0.9417. Then

y3 =(rand(1,1,'u') > 0.7) +1 = 2,

as 0.9417 > 0.7 = True and True + 1 = 2.

So, the generated values are y = [2, 1, 2] .
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Program

// prgDiscGen.sce

// Generation form a discrete model

// ------------------------------------------

clc, clear, close, mode(0)

y(1)=1; // initial y

thy=[ // y-parameter

0.2 0.8

0.9 0.1

0.7 0.3

0.8 0.2

];

thu=[0.6 0.4]; // u-parameter

for t=2:4 // shift of t due to zero indexes

u(t)=(rand(1,1,'u')>thu(1))+1; // generation of u

i=2*(u(t)-1)+y(t-1); // row of the y-parameter

y(t)=(rand(1,1,'u')>thy(i,1))+1; // generation of y

end

y, u // print of results

// the results depend on actual values of rand. generators !

4.2 Logistic model

This model is not entirely in one line with the previous ones because, as we will see later,
its estimation cannot be done recursively. However, it is important because it can describe
a special case when the model output is discrete and regression vector contains at least one
continuous variable.

Neither regression nor discrete model can be used in this situation because the output of a
regression model will not necessary be integer and the matrix of a discrete model would have
in�nite dimension due to the continuous variable in the regression vector.

For yt ∈ {0, 1} the model is

f (yt|ψt,Θ) =
exp {ytzt}

1 + exp {zt}
(4.2)

zt = ψ
′
tΘ + et

ψt regression vector with continuous and possibly discrete variables and the function
exp{·}

1+exp{·} =

Lg (·) is the logistic function.
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The model can be explained in two steps:

First, the regression zt = ψ
′
tΘ with the regression vector ψt is performed and scalar variable

zt ∈ R is obtained. This is an ordinary regression with the output zt.

Then, the real value zt is transformed through the logistic function

Lg (zt) = pt

where pt is the probability that the system output yt is equal to one, on condition that the
regression vector is ψt. The logistic function Lg has the graph

1

P (yt = 1|zt)

zt

From this graph it can be seen that for arbitrary zt ∈ R it always holds that pt ∈ (0, 1) .
Moreover, if zt > 0,then pt > 0.5 and vice versa if zt > 0, then pt < 0.5.

It holds

if zt > 0 then P (yt = 1|zt) > 0.5 estimate: yt = 1
if zt < 0 then P (yt = 1|zt) < 0.5 estimate: yt = 0

Example

Let he output yt denotes �car accidents� with values: 0 - just damage, 1 - injury or death; the
regression vector contains the variables: �light�: 1 - full, 2 - gloom, 3 - dark; �weather�: 1 dry,
2 - slippery; �speed�: continuous variable with positive values.

Here the output is discrete - its values denote system modes (seriousness of the accident),
regression vector are circumstances of the accident.

Remarks

1. The model (4.2) of logistic regression can be written in the form

P (yt = 1|zt) =
exp {zt}

1 + exp {zt}

P (yt = 0|zt) =
1

1 + exp {zt}
because for yt = 0 it is ytzt = 0, too.
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2. Notice, that the conditions for probabilities are satis�ed

exp {zt}
1 + exp {zt}

+
1

1 + exp {zt}
= 1

and both the terms (probabilities) are nonnegative.

3. Other form of logistic model is

logit (pt) = ψ
′
tΘ + et

where logit (p) = ln p
1−P is the logistic function.

4. For yt ∈ {0, 1, 2, · · ·n} the model can be extended

ln
p1

p0
= ψ

′
θ1, ln

p2

p0
= ψ

′
θ2, · · · , ln

pn
p0

= ψ
′
θn

with the parameter Θ = [θ1, θ2, · · · , θn] , where θi are columns. However, we will not
follow this generalization.

Program

// prgLogrGen.sce

// Generation form a logistic regression model

// ------------------------------------------

clc, clear, close, mode(0)

th=[-3 5 8]; // model parameters

x=[ // data (in rows)

.3 .2 -.1

.6 -.8 .5

-.7 .2 -.3

];

for t=1:3

z(t)=x(t,:)*th'; // regression

p(t)=exp(z(t))/(1+exp(z(t))); // logistic function

y(t)=round(p(t)); // generation of y

end

y // print of results

// the results depend on actual values of rand. generators !
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5 Bayesian estimation

Notation

To be able to express the data history, from which the estimation takes information, we
introduce the following notation:

• yt is the value of the output y at time t (we have already used it),

• dt = {yt, ut} is the couple of variables that are usually generated by (measured on) the
system at time instant t,

• d (t) = {d0, d1, d2, · · · , dt} is a set of all values of the system data up to and including
time instant t,

• d (0) = d0 are the prior data, i.e. data measured before the estimation starts or data
(information) provide by an expert.

0 1 2 . . . t

prior

first measurement here we are

d1 = y1, u1

d(0) = d0

d(t) = d0, d1, . . . , dt

time t

5.1 Estimation with Bayes rule

Classical statistics de�ne parameters as unknown constants. Their description is a number
(point estimate) or a con�dence interval within which a true value of the parameter lies with
a given probability.

Bayesian statistics treats parameters as random variables - their description is a distribution.

Types of distributions

In estimation we distinguish two types of distributions

• model distribution
f (yt|ψt,Θ)

which is a distribution of the output,

• parameter distributions

f (Θ|d (t− 1)) , f (Θ|d (t))

which are distributions of the parameter; the �rst one based on old data with respect to the
current time t, the second one using information from all available data at time t.

26



Bayes rule

The estimation runs according to the Bayes rule. It says how you can obtain new (posterior)
parameter distribution f (Θ|d (τ)) from the old (prior) one f (Θ|d (τ − 1)) by means of the
system model f (yτ |ψτ ,Θ) for τ = 1, 2, · · · , t

f (Θ|d (τ)) ∝ f (yτ |ψτ ,Θ) f (Θ|d (τ − 1))

It gives an evolution of the parameter pdf in time, while newly measured data are supported

f (Θ|d (0)) →︸︷︷︸
d1={u1,y1}

f (Θ|d (1)) →︸︷︷︸
d2={u2,y2}

· · · →︸︷︷︸
dt={ut,yt}

f (Θ|d (t))

with the initial (prior) pdf f (Θ|d (0)) constructed from prior data or speci�ed by an expert.

Remarks

1. Derivation of the Bayes rule is very simple

f (A,B|C) = f (A|B,C) f (B|C)

= f (B|A,C) f (A|C)

→ f (A|B,C) = f(B|A,C)f(A|C)
f(B|C)

For estimation of parameters, we lay

A→ Θ, B → dt, C = d (t− 1)

and {B,C} = {dt, d (t− 1)} = d (t) .

2. Natural conditions of control
In derivation of the Bayes rule for model with control variable, we assume so called
Natural conditions of control (NCC)

f (Θ|ut, d (t− 1)) = f (Θ|d (t− 1)) and conversely

f (ut|d (t− 1) ,Θ) = f (ut|d (t− 1)).

Remark
NCC can be explained in the following way: We assume that the person that estimates

also controls. In construction of the control ut he uses only information from d (t− 1) .
That is why (in the former condition) that ut in condition cannot bring any other infor-

mation than that which is already in d (t− 1) - thus it can be omitted in condition.

The latter condition is derived from the former one using Bayes rule.

Thus, in estimation with a model with control, it applies

f (Θ|d (t)) ∝ f (yt|ψt,Θ) f (ut|d (t− 1) ,ΘX) f (Θ|d (t− 1))
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which means that in recursion for Θ the pdf f (ut| · · · ) is only a constant term. In the
recursion it disappears as for the Bayes rule hols only proportionality ∝ .

3. Batch estimation

From the Bayes rule if follows

f (Θ|d (t)) ∝

[
t∏

τ=1

f (yτ |ψtΘ)

]
︸ ︷︷ ︸

Lt(Θ)

f (Θ|d (0)) = Lt (Θ) f (Θ|d (0))

where Lt (Θ) =
∏t
τ=1 f (yτ |ψτ ,Θ) is likelihood and f (Θ|d (0)) is the very prior pdf.

4. Self reproducing form of the Bayes rule
Bayes rule is a recursive for functions (distributions). To be able to work with functions
it is necessary to parameterize them - e.g. normal distribution is given just by two num-
bers expectation and variance. Recursivity requires so that the structure form of prior
pdf after multiplication by the model is reproduced in the posterior pdf. E.g. if the
prior pdf is normal, we need so that the posterior pdf would be normal, too. Only the
statistics of the posterior (which are numbers or vectors) are recomputed.
An example of recursive recomputation is here

Example (recursive)
For the exponential distribution the model is

f (yt|a) = a exp {−ayt}

The form of prior and posterior pdfs can be guessed for th model products (Likelihood)

L = f (a|y1) f (a|y2) f (a|y3) · · · = a exp {−ay1} a exp {−ay2} a exp {−ay3} · · · =

= a3 exp {−a (y1 + y2 + y3)}

We denote (statistics): κ3 = 3 and S3 = y1 + y2 + y3 and we can write the product

L3 = aκ3 exp {−aS3}

The statistics κ and S is simply evolved in time as follows

κτ = κτ−1 + 1

Sτ = Sτ−1 + yτ

for any τ = 1, 2, · · · , with initial statistics κ0 and S0.

Remark

The meaning of the initial statistics is
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• κ0 is a number of prior data samples, from which the prior statistics is constructed.

• S0 =
∑κ0

i=1 yi is a sum of prior data.

If we do not have any prior data but only a prior guess about data average ȳ provided

by some expert we can construct the prior statistics κ0 and S0 according to the formula

ȳ = S0
κ0
. The belief in the prior information is given by the number κ0 (as if number of

data used) and for S0 we have S0 = ȳκ0.
In practice, the larger κ0 and S0 are the greater is their e�ect.

Example (not recursive)
The following models are examples of those, that do not lead to recursive estimation

f (yt|a) =
a

1 + a

(
1

y2
t

+ exp {−ayt}
)

or

f (yt|a) =
1

2 + πa
(sin (yt) + a)

When the product of such models is computed the number of di�erent terms grows and
the form of this product (Likelihood or posterior pdf) is more and more complex until
the computations are unfeasible.

• Results of estimation

(i) Posterior pdf f (Θ|d (t)) is the immediate result following from Bayesian estimation.
It brings all the information available about the estimated parameters. Sometimes it can
be used as it is - e.g. in output prediction

f (yt|d (t− 1)) =

∫
Θ∗
f (yt,Θ|d (t− 1)) dΘ =

∫
Θ∗
f (yt|ψt,Θ) f (Θ|d (t− 1))︸ ︷︷ ︸

posterior for time t-1

dΘ

(ii) Point estimates Θ̂ or ŷ constitute representation of the values of estimated param-
eters or unknown future output. They can be computed using posterior pdf as follows

Θ̂t = E [Θ|d (t)] =

∫
Θ∗

Θ f (Θ|d (t))︸ ︷︷ ︸
posterior

dΘ

ŷt = E [yt|d (t− 1)] =

∫
y∗
yt f (yt|d (t− 1)) dyt =

∫
y∗
yt

∫
Θ∗
f (yt|ψt,Θ) f (Θ|d (t− 1))︸ ︷︷ ︸

posterior for time t-1

dΘ

 dyt
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6 Estimation of speci�c models

6.1 Recursive estimation of normal regression model

It is the most frequently used model. However, the way of its estimation is a bit tricky to
obtain statistics in a nice compact form. The trick concerns a special form of the model into
which it is transformed.

Model

f (yt|ψt,Θ) =
1√
2π
r−0.5 exp

{
− 1

2r

(
yt − ψ

′
tθ
)2
}

For estimation, this model is given a special form. The term under the square it holds

yt − ψ
′
tθ =

[
yt, ψ

′
t

] [ −1
θ

]
= yt − θ′ψt =

[
1, −θ′

] [ yt
ψt

]
Then the square in the exponent of the model can be written in the following way(

yt − ψ
′
tθ
)2

=
(
yt − θ′ψt

)
×
(
yt − ψ

′
tθ
)

=

= (−1)
[
−1, θ′

] [ yt
ψt

]
× (−1)

[
yt, ψ

′
t

] [ −1
θ

]
=

=
[
−1, θ′

] [ yt
ψt

] [
yt, ψ

′
t

]
︸ ︷︷ ︸

Dt

[
−1
θ

]

where Dt is so called data matrix.

Model in modi�ed form

f (yt|ψt,Θ) ∝ r−0.5 exp

{[
−1, θ′

]
Dt

[
−1
θ

]}

Prior pdf

In the same form as model we express the prior pdf - it is Gauss-inverse-Wishart (GiW)
distribution

f (Θ|d (0)) ∝ r−0.5κ0 exp

{[
−1, θ′

]
V0

[
−1
θ

]}
where V0 and κ0 are prior statistics.

The recursion for evolution of the statistics can be derived if we substitute the model and
prior pdf into the Bayes rule and get the �rst posterior f (Θ|d (1))
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Bayes

f (Θ|d (1)) ∝ r−0.5 exp

{[
−1, θ′

]
D1

[
−1
θ

]}
r−0.5κ0 exp

{[
−1, θ′

]
V0

[
−1
θ

]}
=

= r−0.5(κ0+1) exp

{[
−1, θ′

]
(D1 + V0)

[
−1
θ

]}
=

= r−0.5κ1 exp

{[
−1, θ′

]
V1

[
−1
θ

]}
(6.1)

Posterior

The general form of the posterior at time t is (the form of the posterior is �xed, only the
statistics are indexed by t)

f (Θ|d (t)) ∝ r−0.5κt exp

{[
−1, θ′

]
Vt

[
−1
θ

]}

Recursion

By comparison of the second and third part of (6.1) the general form of the recursion for
statistics can be easily derived

κt = κt−1 + 1 (6.2)

Vt = Vt−1 +Dt (6.3)

with κ0 and V0 as prior statistics.

Result

(a) As a result we can take the derived posterior pdf. It is given by the GiW with the computed
statistics κt and Vt inserted.

(b) If needed, the point estimates of parameters can be determined in the following way. Firs
we must divided information matrix as indicted

Vt =

[
Vy Vyψ
Vyψ Vψ

]
· · ·
[
• −−
| �

]

Then it holds: the estimate of regression coe�cients is
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θ̂t = V −1
ψ Vyψ (6.4)

and the estimate of noise covariance is

r̂t =
Vy − V

′
yψV

−1
ψ Vyψ

κt

Point estimate of the output = prediction

ŷt = ψtθ̂t−1 (θ → θ̂t−1, et → 0)

which means that in the model, we substitute the parameter estimates θ̂t for the regression
parameter θ and lay et = 0.

Remark

To be able to see in prediction not only the position (expectation)of the output yt but also its

uncertainty, it is advantageous to make co called simulated prediction. It is

ŷt = ψtθ̂t−1 +
√
r̂tN (0, 1)

where r̂t is the point estimate of the noise variance and N (0, 1) is generator of standard normal

distribution.

If r̂t is a matrix (covariance matrix), instead of the square root, we must perform so called LD
decomposition. It can be done with the function uut.sci from our package of Scilab functions.

Program

// prgRegEst.sce

// Estimation of regression model

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1)+k+e(t)

// ------------------------------------------

clc, clear, close, mode(0)

y=[.5 -.5 .1 .8 .3]; // output

u=[-.1 1.2 -.6 .1 .9]; // input

V=zeros(5,5); // initial statistics

for t=2:5 // loop of statistics update

Ps=[y(t) u(t) y(t-1) u(t-1) 1]'; // extended regression vector

V=V+Ps*Ps'; // update

end

Vyp=V(2:5,1); Vp=V(2:5,2:5); // partitioning of statistics

th=inv(Vp)*Vyp; // point estimates of parametrs

b0=th(1), a1=th(2), b1=th(3), k=th(4) // results of estimation

32



6.2 Batch estimation of regression model

Sometimes, when the dataset is already collected and at disposal, it is advantageous to use
batch estimation. It is very easy and handy. The principle of the estimation is as follows:

The model is

yt = b0ut + · · · anyt−n + bnut−n + k + et

for t = 1, 2, · · · , N

Write the model for each time instant of measurements

y1 = b0u1 + · · · any1−n + bnu1−n + k + e1

y2 = b0u2 + · · · any2−n + bnu2−n + k + e2

· · ·

yN = b0uN + · · · anyN−n + bnuN−n + k + eN

In this way you obtain the following matrix form of the model with all measured data

Y = Xθ + E

The optimization minimizes the following criterion (least squares)

J =
∑

e2
i = E′E = (Y −Xθ)′ (Y −Xθ) = Y ′Y − 2θ′X ′Y + θ′X ′Xθ

∂

∂θ
J = −2X ′Y + 2X ′Xθ = 0

X ′Xθ = X ′Y → θ̂t =
(
X ′X

)−1
X ′Y︸ ︷︷ ︸

the result

where

Y =


y1

y2

· · ·
yN

 , X =


u1 y0 u0 · · · y1−n u1−n 1
u2 y1 u1 · · · y2−n u2−n 1
· · · · · · · · · · · · · · · · · · · · ·
uN yN−1 uN−1 · · · yN−n uN−n 1


Remarks

1. In the derivation we used matrix derivative. If you di�erentiate according to the trans-

posed parameter θ
′
then the rules are the same as for a scalar derivative.

2. The dataset is usually obtained in Excel (or other database program) from which both the

vector Y and the matrix X can be directly copied.
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Program

// prgRegBEst.sce

// Batch estimation of regression model

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1)+k+e(t)

// with data

// y=[.5 -.5 .1 .8 .3]; // output

// u=[-.1 1.2 -.6 .1 .9]; // input

// t 0 1 2 3

// ------------------------------------------

clc, clear, close, mode(0)

Y=[

-.5

.1

.8

.3

];

X=[

1.2 .5 -.1 1

-.6 -.5 1.2 1

.1 .1 -.6 1

.9 .8 .1 1

];

th=inv(X'*X)*X'*Y; // point estomates

b0=th(1), a1=th(2), b1=th(3), k=th(4) // results of estimation

6.3 Categorical model

Estimation of categorical model basically can be explained on an experiment of �ipping a
coin. If we want to verify that the selected coin is fair (the same probability of both sides), we
proceed as follows: We toss the coin many times and count number of heads and tails. Then
divide these numbers by the total number of tosses and you obtain the desired probabilities.

Formally, to obtain procedure of estimation a discrete (categorical) model according to the
Bayes rule, we proceed in the following way.

Product form of the model

We formally express the model in a product form1

1Here y|ψ is a vector index - instead of an integer for a standard index, here it is a vector of indexes.
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f (yt|ψt,Θ) = Θyt|ψt =
∏
y|ψ

Θ
δ(y|ψ; yt|ψt)
y|ψ

i.e. product over all possible con�gurations of y|ψ; but due to the Kronecker function δ (y|ψ; yt|ψt) =
1 for y = yt and ψ = ψt and equal to zero otherwise, only yt|ψt is chosen.

Posterior pdf

Posterior pdf is introduced with the same form as the product form of the model

f (Θ|d (t)) ∝
∏
y|ψ

Θ
νy|ψ;t

y|ψ

where νy|ψ;t for all con�gurations of y|ψ is statistics; νy|ψ;0 is the prior one.

Statistics update

Similarly as for the regression model 6.1 we substitute model and prior (i.e. posterior for time
t− 1) to the Bayes rule we and obtain

νy|ψ;t = νy|ψ;t−1 + δ (y|ψ; yt|ψt) (6.5)

for all con�gurations of y|ψ (or νyt|ψt;t = νyt|ψt;t−1 + 1 for actual data)

Remark

In practice, it means: Choose the statistics entry corresponding to yt|ψt and increment it by

one. It resembled estimation of the coin - if you obtain �head�, take number of heads and

increment it by 1.

Point estimate

Similarly as for the coin, the point estimates are computed as follows

θ̂y|ψ;t =
νy|ψ;t∑
i νi|ψ;t

(6.6)

It is nothing more than normalization of the statistic matrix so that the sum of its row entries
is equal to one.

Remark

The dynamic model with control variable introduced in 4.1 by the table below can be viewed as

four plain models (each given by one row of the table) indexed by the vector index ψ. Thus the
statistics update runs as follows: Look at the regression vector and �nd the corresponding row

(model). Then update this model, i.e. according to the value of y increment the corresponding

entry by adding 1.
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Example

Estimation of a plain coin

Model
f (yt|p) = pyt , y = 1, 2 ; p = [p1, p2]′

where yt is the result of a toss at time t, p1, p2 are probabilities, p1 + p2 = 1.

Product form
f (yt|p) = p

δ(yt,1)
1 p

δ(yt,2)
2

Posterior
f (p|y (t)) ∝ pν1;t1 p

ν2;t
2

Statistics
νt = [ν1;t, ν2;t]

Update

� for y = 1
ν1;t = ν1;t−1 + 1

� for y = 2
ν2;t = ν2;t−1 + 1

For the data
t 1 2 3

yt 1 1 2

and zero initial statistics the, the progress of estimation is indicated here

t 0 1 2 3

ν1 0 1 2 2
ν2 0 0 0 1

p1 x 1 1 2
3

p2 x 0 0 1
3

If we choose the initial statistics 10 for both initial statistics, the progress is di�erent

t 0 1 2 3

ν1 10 11 12 12
ν2 10 10 10 11

p1 x 0.524 0.546 0.522
p2 x 0.476 0.454 0.478

The magnitude of ν entries of the initial statistics expresses our belief in our prior information.
The information in both case is that the coin is fair. In the latter case the belief in our prior
information is higher.
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Output estimate

From estimated model, the output prediction can be constructed through the predictive prob-
ability

f (yt|d (t− 1)) = f
(
yt|ψt,Θ = Θ̂t−1

)
yt 1 2 3 · · · n

f
(
yt|ψtΘ̂t−1

)
P (yt = 1) P (yt = 2) P (yt = 3) P (yt = n)

Point estimate ŷt can be obtained either as the argument of the largest probability ŷt = i for
the greatest P (yt = i) or, better, as the expectation

ŷt =
∑
j

jP (yt = j) .

This latter way does not lead to prediction within the values of yt.

Example

For data y = [1 2 1 1 2 1 2] and u = [1 1 2 2 1 1 2] estimate the categorical model

f (yt|ut, yt−1)

where y (1) and u (1) are initial conditions.

Solution

We de�ne statistics

V0 =


0 0
0 0
0 0
0 0


and we update it with the data

time 1: j = 2 (u1 − 1) + y0 = 2 (1− 1) + 1 = 1

V (j, y1) = V (1, 2) = V (1, 2) + 1

i.e.

V1 =


0 1
0 0
0 0
0 0


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time 2: j = 2 (u2 − 1) + y1 = 2 (2− 1) + 2 = 4

V (4, 1) = V (4, 1) + 1

V2 =


0 1
0 0
0 0
1 0


and similarly for other time instants. See the Program below. In the end we obtain statistic

V6 =


0 2
1 0
1 1
1 0


The point estimates are obtained by normalization of the rows to sum equal to one

Θ =


0 1
1 0

0.5 0.5
1 0


Remark

In the normalization we divide the rows of the model by their sums. If some row stays all zero,

the program ends with error. To this end, it is advantageous to start with the statistics with

small numbers instead with zeros.

Program

// prgDiscEst.sce

// Batch estimation of categorical model

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1)+k+e(t)

// with given data.

// ------------------------------------------

clc, clear, close, mode(0)

y = [1 2 1 1 2 1 2];

u = [1 1 2 2 1 1 2];

//t= 0 1 2 3 4 5 6

V=zeros(4,2);

for t=2:7
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j=2*(u(t)-1)+y(t-1);

V(j,y(t))=V(j,y(t))+1;

end

for i=1:4

th(i,:)=V(i,:)/sum(V(i,:));

end

th

6.4 Model of logistic regression

For estimation, numerical maximization of log-likelihood is used.

For yt ∈ {0, 1} the model is

f (yt|zt) =
exp {ytzt}

1 + exp {zt}
, zt = ψ

′
tΘ + et

Likelihood

Lt =
t∏

τ=1

f (yτ |zτ ) =
t∏

τ=1

exp {yτzτ}
1 + exp {zτ}

lnLt =
t∑

τ=1

[ytzt − ln (1 + exp {zt})] , zt = ψ
′
tΘ

Θ̂t = arg min
Θ

lnLt

for minimization, Newton method can be used.

Output estimation

Substitute ψt into the model with parameter estimates. The value with the biggest probability
can be selected.

Classi�cation

The space of all possible ψ is divided into two subsets - one with ŷ = 0, the other with ŷ = 1.

39



7 Prediction of model output

Prediction means estimation of the future output. We assume, we are at time instant t but
the output yt has not been measured, yet. Its estimation is called zero step prediction.
It serves mainly for validation of the model when the prediction is compared to the output
after its measurement. The estimation of the more remote output, say yt+k is called k-step
prediction where k is number of the steps ahead.

The k-steps prediction is governed by the predictive pdf

f (yt+k|y (t− 1) , u (t+ k))

i.e. probability of values of the output k-steps ahead from the current time t, conditioned by
values of the variables already measured at the present time t, when yt is not known, yet.

Here, the control variable is somehow unhandy, so further on we will consider only models
without control.

7.1 Output estimation (zero step prediction)

Predictive pdf

Te task is: for a regression model without control f (yt|y (t− 1) ,Θ)2 determine the predictive
pdf f (yt|y (t− 1)). This pdf is similar to the model, however, the parameters are missing and
without the parameters, the model is useless. So, we must supply the parameters into the
model. It can be done in the following way (we add the parameters and immediately integrate
them out; then we use the chain rule)

f (yt|y (t− 1)) =

∫
Θ∗
f (yt,Θ|y (t− 1)) dΘ =

=

∫
Θ∗
f (yt|yt−1,Θ) f (Θ|y (t− 1)) dΘ (7.1)

where f (yt|yt−1,Θ) is model and f (Θ|y (t− 1)) is the posterior pdf conditioned on data
actually at disposal (we are at time t, yt has not been measured, yet, so at disposal are data
y (t− 1) .

Remark

The pdf f (Θ|y (t− 1)) can be viewed as prior for time t or, better, as posterior form th last

step t− 1.

2The model as we introduced it is f (yt|ψt,Θ). Without control variable the regression vector is

ψt = [yt−1, yt−2, · · · , yt−n] . Here, for simplicity and lucidity we replaced ψt by y (t− 1) . The variables

yt−n−1,yt−n−2, · · · are independent of yt and thus, in reality, they would be omitted in the condition.
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The derived formula for output prediction requires integration. If we want to get rid of it, we
can rely on point estimates of parameters Θ̂t−1 (again based on past data). To this end we
express the posterior i the following way (something like �deterministic� distribution)

f (Θ|y (t− 1))
.
= δ

(
Θ, Θ̂t−1

)
We substitute into (7.1) and obtain

f (yt|y (t− 1)) =

∫
Θ∗
f (yt|yt−1,Θ) f (Θ|y (t− 1)) dΘ

.
=

.
=

∫
Θ∗
f (yt|yt−1,Θ) δ

(
Θ, Θ̂t−1

)
dΘ = f

(
yt|yt−1, Θ̂t−1

)
where Θ̂t−1 = E [Θ|y (t− 1)] =

∫
Θ∗ Θf (Θ|y (t− 1)) dΘ is the point estimate of Θ based on

the data y (t− 1) .

Point prediction

Point prediction can be determined as expectation of the output, i.e.

ŷt = E [yt|y (t− 1)] =

∫
y∗
ytf (yt|y (t− 1)) dy

The point prediction based on point estimates of the parameters can be evolved directly using
the model equation with point estimates of parameters inserted and without the noise term.
The procedure is very natural. E.g. for model

yt = but + ayt−1 + et

with a, b being either known parameters or their point estimates, we can write

ŷ1 = bu1 + ay0

ŷ2 = bu2 + aŷ1 (7.2)

ŷ3 = bu3 + aŷ2

etc.

Program

Zero step point prediction with 2nd order regression model with known parameters:
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// prg0stPre.sce

// Zero step prediction with the model

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1) for y(t)=0

// ------------------------------------------

clc, clear, close, mode(0);

nd=120; // length of data

b0=.8; a1=.8; b1=1; sd=.2; // model parameters

y(1)=0; yp(1)=0; // initial conditions

u=.5+.1*rand(1,nd,'n'); // generation of control for all t

for t=2:nd // loop simulation and prediction

// prediction

yp(t)=b0*u(t)+a1*yp(t-1)+b1*u(t-1);

// simulation

y(t)=b0*u(t)+a1*y(t-1)+b1*u(t-1)+sd*rand(1,1,'n');

end

// Rsults

plot(1:nd,y,1:nd,yp)

legend('y','yp');

title('Zero step prediction','fontsize',5)

The same program as the previous but with model with unknown parameters:

// Prg0stPreEst.sce

// Zero step prediction with the model with unknown parameters

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1) for y(t)=0

// Prediction is without knowledge of y(t), then we measure y(t)

// and use new data for estimation. First step uses priors.

// ------------------------------------------

clc, clear, close, mode(0);

nd=120; // length of data

b0=.8; a1=.8; b1=1; sd=.2; // model parameters

y(1)=0; yp(1)=0; u(1)=0; // initial conditions

u=.5+.1*rand(1,nd,'n'); // generation of input for all t

V=.0001*eye(4,4); // information matrix

b0E=rand(1,1,'n'); a1E=rand(1,1,'n'); b1E=rand(1,1,'n'); // priors

for t=2:nd // time loop

// prediction

yp(t)=b0E*u(t)+a1E*yp(t-1)+b1E*u(t-1); // prediction
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// simulation

y(t)=b0*u(t)+a1*y(t-1)+b1*u(t-1)+sd*rand(1,1,'n'); // simulation

// estimation

Ps=[y(t) u(t) y(t-1) u(t-1)]'; // ext. regression vector

V=V+Ps*Ps'; // update of statistics

Vyp=V(2:4,1); Vp=V(2:4,2:4); th=inv(Vp)*Vyp; // estimation

b0E=th(1); a1E=th(2); b1E=th(3); // estimated parameters

end

// Rsults

plot(1:nd,y,1:nd,yp)

legend('y','yp');

title('Zero step prediction','fontsize',5)

7.2 One step prediction

It means: We are at time t, have data y (t− 1) at disposal, yt is not measured, yet, and we
want to estimate the output yt+1 at time t+ 1. The procedure is the same as for the unknown
parameters but now for both the parameters Θ and the output yt

f (yt+1|y (t− 1)) =

∫
Θ∗

∫
y∗t

f (yt+1, yt,Θ|y (t− 1)) dytdΘ =

=

∫
Θ∗

∫
y∗t

f (yt+1|y (t) ,Θ)︸ ︷︷ ︸
model at t+1

f (yt|yt−1,Θ)︸ ︷︷ ︸
model at t

f (Θ|y (t− 1))︸ ︷︷ ︸
posterior for t−1

dytdΘ

Again, for point estimates, we get

f (yt+1|y (t− 1)) = f
(
yt+1|ŷt, y (t− 1) , Θ̂t−1

)
where we laid f (Θ|y (t− 1))

.
= δ

(
Θ, Θ̂t−1

)
and f (yt|y (t− 1))

.
= δ (yt, ŷt) with Θ̂t−1 and ŷt

being point estimates.

Remark

• Here, both Θ and yt are missing. We must supply both.

• The result for point estimates is very natural. We use model with substituted point

estimates for the unknown variables Θ and yt

• Comparing both the results (for pdfs and point estimates) we can see the basic principle

of Bayesian estimation. In the former approach (with pdfs) all values of the missing
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unknown variable (Θ and yt) are substituted and they are weighted by its probability (e.g.

for Θ:
∫

Θ︸︷︷︸
value

f (Θ|y (t− 1))︸ ︷︷ ︸
probability

dΘ). In the variant with point estimates, �rst the point

estimates are computed somewhere aside and then they are substituted for the unknown

variables.

7.3 Multi-step prediction

Here, we estimate yt+k being at time t and with the knowledge of y (t− 1) . The procedure is
still the same, only the complexity (too many integrals) arise.

However, if we use points estimates for the unknown variables and want to determine only
point estimate of the future output, we come to simple formulas as in (7.2). We can start at
the present time and perform one step prediction until we reach the time, for which we want
the �nal multi-step prediction of the output.

Regression model with known parameters and point estimation

For a 1st order regression model yt = ayt−1 + but + et with known parameters and point
prediction we have

yt = ayt−1 + but + et

ŷt = ayt−1 + but

ŷt+1 = aŷt + but+1 = a (ayt−1 + but) + but+1 =

= a2yt−1 + abut + but+1

ŷt+2 = aŷt+1 + but+2 =

= a3yt−1 + a2but + abut+1 + but+2

etc.

The point prediction can be achieved by a simple repetitive substitution of the model. For
simulation, directly last estimates can be used.

Program

One step prediction with known model parameters. First prediction is based on measured
actual value of y, the second one uses the prediction of y from the previous step.

// prg1stPre.sce

// One step prediction with the model

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1) for y(t)=0

// Prediction is computed before the actual output is measured!
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// ------------------------------------------

clc, clear, close, mode(0);

nd=80; // length of data

b0=.8; a1=.5; b1=1; sd=.05; // model parameters

y(1)=0; yy=0; // initial conditions

u=.5+.1*rand(1,nd+1,'n'); // generation of control for all t

for t=2:nd // loop simulation and prediction

// prediction

yy=b0*u(t)+a1*y(t-1)+b1*u(t-1); // zero step prediction

yy=b0*u(t+1)+a1*yy+b1*u(t); // one step prediction (repeated)

yp(t+1)=yy;

// simulation

y(t)=b0*u(t)+a1*y(t-1)+b1*u(t-1)+sd*rand(1,1,'n');

end

// Results

plot(1:nd,y(1:nd),1:nd,yp(1:nd))

legend('y','yp');

title('One step prediction','fontsize',5)

Full prediction with regression model under condition of normality

If the model of the system is linear and normal, we can simply obtain even the full (proba-
bilistic) prediction using the following trick based on the fact that the normality is preserved
(the composition of two normal models is also normal).

We perform the one step prediction as in the previous case, but we preserve also the noise
term. This term is during the prediction somehow cummulated. Then, with the �nal model
of the prediction, we compute expectation and variance. With those characteristics we can
express the whole predictive pdf as we know that it is normal. For he two step prediction we
have

yt = ayt−1 + but + et

yt+1 = ayt + but+1 + et+1 =

= a (ayt−1 + but + et) + but+1 + et+1 =

= a2yt−1 + abut + but+1 + aet + et+1

yt+2 = ayt+1 + but+2 + et+2 =

= a3yt−1 + a2but + abut+1 + but+2 + a2et + aet+1 + et+2

→
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E [yt+2|y (t− 1)] = a3yt−1 + a2but + abut+1 + but+2

D [yt+2|y (t− 1)] = D
[
a2et + aet+1 + et+2

]
=
(
a4 + a2 + 1

)
r

Predictive pdf

f (yt+2|y (t− 1)) = Nyt+2 (E [yt+2|y (t− 1)] , D [yt+2|y (t− 1)])

(Normal distribution is determined by its expectation and variance.)

7.4 Prediction with discrete model

Similarly as for regression model, the prediction with control variable is a bit complex. So
again, we will consider the model without it in the form

f (yt|yt−1,Θ) = Θyt|yt−1

yt−1 yt = 1 yt = 2

1 Θ1|1 Θ2|1
2 Θ1|2 Θ2|2

with known parameter Θ.

Zero step prediction

It is done directly by the model

f (yt|yt−1,Θ) = Θyt|yt−1

It means for yt−1 = 1 we have

f (yt|yt−1 = 1) =
[
Θ1|1, Θ2|1

]
and for yt−1 = 2 it is

f (yt|yt−1 = 2) =
[
Θ2|1, Θ2|2

]
Again, th prediction can be either the argument of the maximum parameter or the expectation

ŷt = 1Θ1|yt−1
+ 2Θ2|yt−1

for yt−1 = 1, 2.
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Multi-steps prediction

Repeating the above procedure, we come to the following result for k-step prediction

f (yt+k|y (t− 1)) =
(

Θk+1
)
yt+k|yt−1

where Θk+1 is the (k + 1)th power of the matrix parameter Θ. The derivation is indicated in
the following example.

Program

An example of a one step prediction is in the following program.

// prg1stDPre.sce

// One step prediction with a discrete model

// f( y(t)|u(t),y(t-1) ) - known parameters

// Again, first prediction and then simulation (measurement of y(t))

// ------------------------------------------

clc, clear, close, mode(0);

nd=30; // length of data

th=[.99 .01 // model parameters

.98 .02

.02 .98

.01 .99];

y(1)=1; yy=1; // initial conditions

u=(rand(1,nd,'u')>.5)+1; // generation of control

for t=2:nd // loop simulation and prediction

// prediction

j=2*(u(t)-1)+y(t-1);

yy=sum(rand(1,1,'u')>cumsum(th(j,:)))+1; // 0-step prediction

j=2*(u(t)-1)+yy;

yy=sum(rand(1,1,'u')>cumsum(th(j,:)))+1; // 1-step prediction

yp(t+1)=yy;

// simulation

j=2*(u(t)-1)+y(t-1);

y(t)=sum(rand(1,1,'u')>cumsum(th(j,:)))+1;

end

// Results

plot(3:nd,y(3:nd),'x:',3:nd,yp(3:nd),'o:','markersize',8)

legend('y','yp');
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title('One step prediction','fontsize',5)

set(gca(),'data_bounds',[2 nd+1 0.8 2.2])

Example

Two steps prediction

f (yt+2|y (t− 1)) =
∑
yt+1

∑
yt

f (yt+2|yt−1) f (yt+1|yt) f (yt|yt−1) =

=
∑
yt+1

Θyt+2|yt+1

∑
yt

Θyt+1|ytΘyt|yt−1
=
(
Θ3
)
yt+2|yt−1

For

Θ =

[
0.4, 0.6
0.8, 0.2

]

f (yt+2|y (t− 1)) =

[
0.4, 0.6
0.8, 0.2

]3

=

[
0.544, 0.456
0.608, 0.392

]
That is:

for yt−1 = 1 we have f (yt+2|1) = [0.544, 0.456]

for yt−1 = 2 we have f (yt+2|2) = [0.608, 0.392]

Point prediction based on argument maxima will be

ŷt = 1, for yt−1 = 1

= 1, for yt−1 = 2

Point prediction as the expectation is

ŷt = 1 · 0.544 + 2 · 0.456 = 1.456, for yt−1 = 1

= 1 · 0.608 + 2 · 0.392 = 1.392, for yt−1 = 2.

Program

Scilab program to this example in here

// prgNstDPre.sce

// np-step prediction with a discrete model

// f( y(t)|y(t-1) ) - known parameters

// ------------------------------------------

clc, clear, close, mode(0);
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nd=30; // length of data

np=3; // length of prediction

th=[.4 .6 // model parameters

.8 .2];

thN=th^np;

y(1:np)=1; // initial conditions

yp(1:np+1)=1;

for t=2:nd // loop simulation and prediction

y(t)=sum(rand(1,1,'u')>cumsum(th(y(t-1),:)))+1; // simulation

yp(t+np)=sum(rand(1,1,'u')>cumsum(thN(y(t-1),:)))+1; // np-step prediction

end

// Results

plot(np+1:nd,y(np+1:nd),'x:',np+1:nd,yp(np+1:nd),'o:','markersize',8)

legend('y','yp');

title('One step prediction','fontsize',5)

set(gca(),'data_bounds',[2 nd+1 0.8 2.2])
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8 State-space model, state estimation

We have already met the state equation of the state-space model connected with the state
representation of regression model. In that case, the model was constructed form the measured
values of the input and output. However, the real state variable an immeasurable one which
must be estimated based on measured variables (input and output). The assumption made on
the state is, that its present value depends only on control and its previous value. I.e. it holds

f (xt|u (t) , y (t− 1) , x (t− 1)) = f (xt|ut, xt−1)

which means, that its model is of the �rst order.

Similarly, knowing the value of xt the output variable is modeled with only ut not any older
variables.

8.1 Model

The full state-space model consists of tho equations: state and output ones

f (xt|xt−1, ut−1) model of the state

f (yt|xt, ut) model of the output

is generated by the equations

xt = Mxt−1 +Nut−1 + wt

yt = Axt +But + vt

where M, N, A, B are matrices, wt and vt white noises with covariance matrices rw and rv.

Remark

The �rst equation form the state-space model gives evolution of the state itself, without any
information from measurements. It is also called states prediction. The second equation serves
as predictor of the output yt in dependence on the state estimate xt. If the prediction is good,
the estimate is also good and vice versa. Thus it introduces measured data. It is called state
�ltration. This takes part in the state estimation to which the next paragraph is devoted.

8.2 Estimation

The state at each time is instant is a random variable. That is why, its description is its
density function conditioned by measured data. However, this density function contains two
time indexes - one says to what time the state belongs the other which data were used for
its estimation. So, e.g. f (xt|d (t− 1)) describes the statext (at time instant t) for which the
information pf the data d (t− 1) (data from the beginning up to time t − 1, i.e. old data)
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have been used. The state description is evolved successively: �rst, using the state equation
of the state-space model, the state is predicted one step ahead, i.e. from xt−1 to xt. Then,
in the �ltration step using the output model, the data index is increased including measured
output yt updating f (xt|d (t− 1)) to f (xt|dt). The whole update is illustrated in the following
scheme

f (xt−1|d (t− 1)) →︸︷︷︸
prediction

f (xt|d (t− 1)) →︸︷︷︸
�ltration

f (xt|d (t))

Evolution

As we have said, the evolution of the state description is performed using the state-space
model.

Prediction

The prediction of the state is performed in the standard way for predicting unknown variable
according to (7.1) where the output has been predicted

f (xt|d (t− 1)) =

∫
x∗t−1

f (xt|xt−1, ut−1) f (xt−1|d (t− 1)) (8.1)

Filtration

It consists in application of the Bayes rule, similarly as for estimation of unknown parameter
Θ (as indicated in the formula below)

f

 xt︸︷︷︸
Θ

|d (t)

 ∝ f (yt|xt, ut)︸ ︷︷ ︸
model

f

 xt︸︷︷︸
Θ

|d (t− 1)

 (8.2)

Remark

In the above derivation Natural Conditions of Control are used.

Kalman �lter

The previous considerations were only theoretical. The formula derived holds for the whole dis-
tributions as functions. It cannot be practically used. Its conversion to numbers is performed
further on.

For normal model and normal prior of the state distribution the normality is preserved. Func-
tional recursion becomes algebraic one for expectations and covariance matrices.
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Notation for normal model is

f (xt|xt−1, ut) = Nxt (Mxt−1 +Nut, rw)

f (yt|xt, ut) = Nyt (Axt +But, rv)

and for pdfs from the evolution

f (xt−1|d (t− 1)) = Nxt−1

(
xt−1|t−1, Rt−1|t−1

)
f (xt|d (t− 1)) = Nxt

(
xt|t, Rt|t

)
f (xt|d (t)) = Nxt

(
xt|t, Rt|t

)
Substitution into the evolution equations (8.1) and (8.2) gives Kalman �lter (KF)

Kalman �lter

xt|t−1 = Mxt−1|t−1 +Nut state prediction

Rt|t−1 = rx +MRt−1|t−1M
′

yp = Axt|t−1 +But output prediction

Rp = ry +ARt|t−1A
′

Rt|t = Rt|t−1 −Rt|t−1A
′R−1

p ARt|t−1

K = Rt|tA
′r−1
y Kalman gain

xt|t = xt|t−1 +K (yt − yp) state correction

The �lter starts with prior x0|0 and R0|0, uses data yt, ut, t = 1, 2, · · · , N and currently
computes xt|t and Rt|t. The result is either point state estimate xt|t or the full distribution of
the state f (xt|ut, d (t)) = Nxt

(
xt|t, Rt

)
.

The program of the Kalman �lter is here

function [xt,Rx,yp]=Kalman(xt,yt,ut,M,N,F,A,B,G,Rw,Rv,Rx)

// Kalman filter for state estimtion with the model

// xt = M*xt + N*ut + F + w

// yt = A*xt + B*ut + G + v

// xt state

// Rx state estimate covariance matrix

// yp output prediction
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// yt output

// ut input

// M,N,F state model parameters

// A,B,G output model parameters

// Rw state model covariance

// Rv output model covariance

nx=size(M,1);

ny=size(A,1);

if isempty(F), F=zeros(nx,1); end

if isempty(G), G=zeros(ny,1); end

xt=M*xt+N*ut+F; // time update of the state

Rx=Rw+M*Rx*M'; // time updt. of state covariance

yp=A*xt+B*ut+G; // output prediction

Ry=Rv+A*Rx*A'; // noise covariance update

Rx=Rx-Rx*A'*inv(Ry)*A*Rx; // state est. coariance update

ey=yt-yp; // prediction error

KG=Rx*A'*inv(Rv); // Kalman gain

xt=xt+KG*ey; // data update of the state

endfunction

A program with the state estimation task is in T46statEst_KF.sce and Kalman.sci.
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9 Nonlinear state estimation

The Kalman �lter from the previous chapter holds only for linear state-space model with
normal distribution of noises. If the model is nonlinear, �rst it must be linearized. Then the
Kalman �lter can be used.

9.1 Nonlinear model

Nonlinear model is given by nonlinear functions g and h, as follows

xt = g (xt−1, ut) + wt

yt = h (xt, ut) + vt

Linearization

It is done using �rst two terms of Taylor expansion of the nonlinear functions (here g1) at
the point of the last point estimate of the state. For the state equation it is x̂t−1 and for the
output equation it is x̂t.

For a general value x the expansion around the point x̂t−1 (last point estimate) reads

g (x, ut)
.
= g (x̂t−1, ut) + g′ (x̂t−1, ut) (x− x̂t−1)

h (x, ut)
.
= h (x̂t, ut) + h′ (x̂t, ut) (x− x̂t)

where g′ and h′ denote derivative of g and h.

Remarks

1. xt and xt−1 are random variables. x is their general value, x̂t and x̂t−1 are special values:
x̂t is the point estimate of xt and x̂t−1 is point estimate of xt−1.

2. Linearization can be applied only to nonlinear parts of the model. The linear parts can

stay as they are.

The derivatives of generally vector functions g′ and h′ according to vector argument x are

g′ (x̂t−1, ut) =


∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂xn

· · · · · · · · · · · ·
· · ·

∂gn
∂x1

· · · ∂gn
∂xn


|x=x̂t−1

, h′ (x̂t, ut) =


∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xn

· · · · · · · · · · · ·
· · ·

∂hm
∂x1

· · · ∂hm
∂xn


|x=x̂t
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After substitution of the linearized functions g and h into the model, we have

xt
.
= g (x̂t−1, ut) + g′ (x̂t−1, ut) (x− x̂t−1) + wt

yt
.
= h (x̂t, ut) + h′ (x̂t, ut) (x− x̂t) + vt

and for x = xt−1 in the case of the state equation and x = xt for output equation we obtain
the linearized model

xt = M̄xt−1 + F + wt

yt = Āxt +G+ vt

where

M̄ = g′ (x̂t−1, ut) , F = g (x̂t−1, ut)− g′ (x̂t−1, ut) x̂t−1,

Ā = h′ (x̂t, ut) , G = h (x̂t, ut)− h′ (x̂t, ut) x̂t.

Example

For two dimensional state x and scalar control u and output y

xt =

[
x1

x2

]
t

, ut, yt

let us have the model in the form

x1;t = exp {−x1;t−1 − x2;t−1}+ ut + wt

x2;t = x1;t−1 − 0.3ut + w2;t

yt = x2;t + vt

Here

g=

[
g1

g2

]
=

[
exp {−x1;t−1 − x2;t−1}+ ut

x1;t−1 − 0.3ut

]
h = x2;t

Only the �rst function g1 is nonlinear and is necessary to be linearized

g1 (x, ut) = exp {−x1 − x2}+ ut

g
′
1 (x, ut) =

[
∂g1

∂x1
,
∂g1

∂x2

]
= [− exp {−x1 − x2} , − exp {−x1 − x2}]
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Fully linearized model is

x1;t = g
′
1 (x̂t−1, ut)xt−1 + g1 (x̂t−1, ut)− g

′
1 (x̂t−1, ut) x̂t−1 + wt

x2;t = [1, 0]xt−1 − 0.3ut + w2;t

yt = [0, 1]xt + vt

where

M̄ =

[
g
′
1 (x̂t−1, ut)

[1, 0]

]
, F =

[
g1 (x̂t−1, ut)− g

′
1 (x̂t−1, ut) x̂t−1

−0.3ut

]
,

N =

[
0
0

]
, Ā = [0, 1] , G = 0, B = 0.

With this, we can use subroutine Kalman with in the following form

[xt,Rx,yp]=Kalman(xt,yt,ut,M̄ ,N,F,Ā,B,G,Rw,Rv,Rx)

To run the estimation, it is necessary to choose initial values of recursively recomputed variables
xt and Rx. xt|t=0 = x0 ca be chosen e.g. as zero vector; the matrix Rx (initial covariance matrix
of the state estimate) is usually chosen as diagonal matrix with big numbers on the diagonal.

A problem is with the choice of matrices Rw (covariance of the state noise) and Rv (covariance
of the output noise). They should re�ect the variability of the state and the output.

9.2 Model with unknown parameters

As we have indicated, for the state estimation we assume the parameters of th state-space
model as known (including noise covariances). Here we are going to show, what can be done
if some of these parameters are unknown.

The unknown parameters of the model are added to the state a and estimated together.
However, the model becomes nonlinear - model matrices contain state entries and they are
multiplied by state. So, the technique of linearization must be used, again.

Example

Model

xt = exp {−axt−1}+ but + wt

yt = xt + vt,

where a and b are unknown.
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We de�ne new state

Xt =
[
x
′
t, a, b

]′
, Xt−1 =

[
x
′
t−1, a, b

]′
and obtain new model

Xt =

 exp {−X2;t−1X1;t−1}+X3;t−1ut
X2;t−1

X3;t−1

+

 wt
ε2;t

ε3;t


︸ ︷︷ ︸

Wt

yt = [1, 0, 0]Xt + vt

Only the �rst equation is nonlinear, however, we will treat the whole model as nonlinear (it is
well possible)

g =

 exp {−X2;t−1X1;t−1}+X3;t−1ut
X2;t−1

X3;t−1


Xt−1=X̂t−1

g′ =

 −X2;t−1 exp {−X2;t−1X1;t−1} , −X1;t−1 exp {−X2;t−1X1;t−1} , ut
0 1 0
0 0 1


Xt−1=X̂t−1

Approximated model is

Xt
.
= g′︸︷︷︸

M̄

Xt−1 + g − g′X̂t−1︸ ︷︷ ︸
F

+Wt

yt
.
= [1, 0, 0]︸ ︷︷ ︸

Ā

Xt + vt

and N = [0, 0, 0]′ , B = 0, G = 0.

For the estimation of the linearized model the Kalman �lter can be used in the form

[x, Rx, yp] = Kalman(x, y, u, M̄ , N, F, Ā, B, G, Rw, Rv, Rx)
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10 Control with regression model

The previous tasks (prediction and state estimation) concerned learning about the reality of
interest. This task (control) is about in�uencing the reality so that it would behave according
to out wishes. The control, we are going to speak about is to be an optimal one. So, a criterion
evaluating the control process must be de�ned. The control variable then is constructed so
that the value of this criterion would be minimal. The control is designed for N steps ahead
for so called control interval.

10.1 Derivation of the control in pdf

Criterion

W will use the criterion in the form of a sum

J =
N∑
t=1

Jt (10.1)

where Jt is a penalization for time t. Mostly it is Jt = y2
t + ωu2

t .

We want to construct ut, t = 1, 2, · · · , N that minimizes J . But, J is a random variable, due
to the output yt. As a random variable it can take many di�erent values. That is why it is not
possible to speak about its direct minimization. So, we must minimize its estimate (which is
expectation). So the minimized criterion is

E [J |d (0)] = E

[
N∑
t=1

Jt|d (0)

]

where in condition of the expectation is our preliminary knowledge (from prior data or an
expert).

Remark

For N = 1 we obtain one-step control. Here, we optimize control only for the next output.

This control is dangerous, because the controller does not take into account future evolution of

the system and to act best way in one step it can generate too big outputs. This can excite the

system so much that it is not possible even to stabilize it in the future steps and the control

fails.

The program for this control is very simple - for the model

yt = b0ut + a1yt−1 + b1ut−1 + et

it is here
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// prg1stCon.sce

// One step control demonstrating danger of this strategy

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1) for y(t)=0

// must be u(t)=-1/b0.( a1.y(t-1)+b1.u(t-1) )

// ------------------------------------------

nd=20;

b0=.8; a1=.8; b1=1;

y(1)=3; u(1)=0;

for t=2:nd

u(t)=-1/b0*(a1*y(t-1)+b1*u(t-1));

y(t)=b0*u(t)+a1*y(t-1)+b1*u(t-1)+.1*rand(1,1,'n');

end

plot(1:nd,u,1:nd,y)

legend('u','y');

title('One step control','fontsize',5)

with the result

Here, value of the control grows, output still remains at zero. However, the magnitude of the

control grows to in�nity and due to roundup errors the output will pass away, too.

Indication of criterion minimization

The procedure is recurrent. It starts at the end of the control interval N and subsequently
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min
u1:N

E

[
ϕ∗N+1 +

N∑
t=1

Jt|d (0)

]
=

= min
u1:(N−1)

E

min
uN

E
[
ϕ∗N+1 + JN |uN , d (N − 1)

]︸ ︷︷ ︸
ϕ∗N

+

N−1∑
t=1

Jt

∣∣∣∣d (0)

 =

= min
u1:(N−1)

E

[
min
uN

ϕN +

N−1∑
t=1

Jt|d (0)

]
= min

u1:N
E

[
ϕ∗N +

N−1∑
t=1

Jt|d (0)

]
which reproduces the initial form, only with N → N − 1 and where (due to the reproduction
in general form)

Bellman equations

ϕt = E
[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
expectation (10.2)

ϕ∗t = min
ut

ϕt minimization (10.3)

for t = N, N − 1, N − 2, · · · , 1. Each minimization gives the formula for optimal control -
it is ut = arg minϕt (d (t− 1)) . However, ti cannot be used immediately, because the data
d (t− 1) is not known, yet. Only at time t = 1 we need data d (0) and the control can start
to be generated.

Remark

The operator form of expectation we have used for criterion minimization is elegant but not

very lucid. In the Appendix 13.5 we show the minimization in an integral form. It is longer

but better for understanding.

10.2 Derivation for normal regression model

Regression model can be converted to the state form (see Section3.1). The resulting model is

xt = Mxt−1 +Nut + wt

where xt = [yt, ut, yt−1, ut−1, · · · yt−n+1, ut−n+1]′.

Taking into account the form of the state, the penalty in the criterion (10.1) can be written as

Jt = y2
t + ωu2

t = x′tΩxt (10.4)
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where Ω is a diagonal matrix

Ω =


1

ω
0
· · ·

0


Now the model and criterion is used in general Bellman equations, where we guess the form
of ϕ∗t+1 = x

′
tRt+1xt

E
[
x
′
tRt+1xt + x

′
tΩxt|ut, d (t− 1)

]
= E

[
x
′
tUxt

]
=

where U = Rt+1 + Ω

= (Mxt−1 +Nut)
′ U (Mxt−1 +Nut) + ρ =

where the expectation is performed by

substitution th model for xt and ρ involves
variance of noise

= x
′
t−1M

′UM︸ ︷︷ ︸
C

xt−1 + 2u
′
tN
′UM︸ ︷︷ ︸
B

xt−1 + u
′
tN
′UN︸ ︷︷ ︸
A

ut + ρ =

this is a quadratic form that will

be completed to square to determine
minimum and the rest after minimization

= u
′
tAut + 2u

′
tAA

−1B︸ ︷︷ ︸
St

xt−1 + x
′
t−1S

′
tAStxt−1+

+x
′
t−1Cxt−1 − x

′
t−1S

′
tAStxt−1︸ ︷︷ ︸

xt−1Rtxt−1

+ρ =

this is the completion to square

= (ut + Stxt−1)′A (ut + Stxt−1) + x
′
t−1Rtxt−1 + ρ

and this is the result of completion:
square and the reminder

Optimal control is ut = Stxt−1.
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Recursion for the control synthesis

RN+1 = 0

for t = N, N − 1, · · · , 1

U = Rt+1 + Ω
A = N ′UN
B = N ′UM
C = M ′UM
St = A−1B
Rt = C − S′tASt
ut = Stxt−1.

end

The program realizing this control is here

// PrgNstCon.sce

// N step control with regression model of the second order

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1)+a2.y(t-2)+b2.u(t-2)+k+e(t)

// --------------------------------------------------------------

clc, clear, close, mode(0)

nd=20; // length of control interval

b0=1; a1=.8; b1=.6; a2=-.3; b2=.1; k=3; sd=.1; // parameters

y(1)=3; y(2)=-1; u(1)=0; u(2)=0; // initial data

om=.1; // penaluzation of u

M= [a1 b1 a2 b2 k // state model parameter

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1];

N= [b0 1 0 0 0]'; // output model parameter

Om=[1 0 0 0 0 // state penalization

0 om 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0];

R=zeros(5,5); // initialization of optimization

S=list();

for t=nd:-1:2 // loop of optimization

U=R+Om;

A=N'*U*N;
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B=N'*U*M;

C=M'*U*M;

S(t)=inv(A)*B; // control law

R=C-S(t)'*A*S(t); // remainder (withou noise cov.)

end

for t=3:nd // loop of control

x=[y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // state x(t-1)

u(t)=-S(t)*x; // control

e(t)=sd*rand(1,1,'n'); // noise

y(t)=b0*u(t)+a1*y(t-1)+b1*u(t-1)+a2*y(t-2)+b2*u(t-2)+k+e(t); // output

end

// Results

plot(1:nd,u,1:nd,y,[1 nd],[0 0],':')

legend('u','y','zero');

title('N-step control','fontsize',5)

with the result

Remark

The penalty function (10.4) can be very easily extended to the following form

(yt − st)2 + ωu2
t + λ (ut − ut−1)2

where the �rst term leads to the following the output yt the prescribed set-point st and the

last term introduces penalization of increments of the control variable. Penalizing the control
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increments calms control behavior and at the same time it does not result to steady-state

deviation of the output and the set-point as it is when penalizing the whole control variable.

The solution how to introduce the above requirements for the control lies in construction of the

penalization matrix as follows

Ω =



1 −1
ω + λ −λ

0
−λ λ

· · ·
0

−1 1


which is evident if we take into account that the criterion is

x
′
tΩxt

and xt = [yt, ut, yt−1, ut−1, · · · , 1] .
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11 Control with categorical model

We will show the synthesis for the controlled coin with memory.

model f (yt|ut, yt−1)

penalty Jyt|ut,yt−1

for three steps control, i.e. for t = 1, 2, 3 and the following model and penalization

model ( Θ )

u3, y2 y3 = 1 y3 = 2

1, 1 0.7 0.3
1, 2 0.2 0.8
2, 1 0.9 0.1
2, 2 0.4 0.6

penalty ( J )

u3, y2 y3 = 1 y3 = 2

1, 1 0 1
1, 2 1 0
2, 1 1 2
2, 2 2 1

11.1 Optimization

Step for t = 3: ϕ∗4 = 0

Expectation

ϕ3 = E [J |u3, d (2)] =

2∑
y3=1

Jy3|u3,y2Θy3|u2,y2 =

=


0
1
1
2

 . ∗


0.7
0.2
0.9
0.4

+


1
0
2
1

 . ∗


0.3
0.8
0.1
0.6

 =


0.3
0.2
1.1
1.4


· · · u3 = 1, y2 = 1
· · · u3 = 1, y2 = 2
· · · u3 = 2, y2 = 1
· · · u3 = 2, y2 = 2

Minimization
for : y2 = 1→ min {0.3, 1.1} = 0.3 foru3 = 1

for : y2 = 2→ min {0.2, 1.4} = 0.2 foru3 = 1

→

u3 =

{
1 for y2 = 1

1 for y2 = 2

and reminder after minimization
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y2 = 1 y2 = 2

0.3 0.2
∀u2, y1 →

u2, y1 y2 = 1 y2 = 2

1, 1 0.3 0.2
1, 2 0.3 0.2
2, 1 0.3 0.2
2, 2 0.3 0.2

= ϕ∗3

Step for t = 2:

Expectation

ϕ2 = E [J + ϕ∗3|u2, d (1)] =
2∑

y2=1

(
Jy2|u2,y1 + ϕ∗3;y2|u2,y1

)
Θy2|u2,y1 =

=




0
1
1
2

+


0.3
0.3
0.3
0.3


 .ϕ∗2 = 0 ∗


0.7
0.2
0.9
0.4

+




1
0
2
1

+


0.2
0.2
0.2
0.2


 . ∗


0.3
0.8
0.1
0.6

 =

=


0.8
0.7
1.6
1.9


· · · u2 = 1, y1 = 1
· · · u2 = 1, y1 = 2
· · · u2 = 2, y1 = 1
· · · u2 = 2, y1 = 2

Minimization
for : y1 = 1→ min {0.8, 1.6} = 0.8 foru2 = 1

for : y1 = 2→ min {0.7, 1.9} = 0.7 foru2 = 1

→

u2 =

{
1 for y1 = 1

1 for y1 = 2

and reminder after minimization

y1 = 1 y1 = 2

0.8 0.7
∀u1, y0 →

u1, y0 y1 = 1 y1 = 2

1, 1 0.8 0.7
1, 2 0.8 0.7
2, 1 0.8 0.7
2, 2 0.8 0.7

= ϕ∗2

Step for t = 1:

Expectation

ϕ1 = E [J + ϕ∗2|u1, d (0)] =

2∑
y1=1

(
Jy1|u1,y0 + ϕ∗2;y1|u1,y0

)
Θy1|u1,y0 =
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=




0
1
1
2

+


0.8
0.8
0.8
0.8


 . ∗


0.7
0.2
0.9
0.4

+




1
0
2
1

+


0.7
0.7
0.7
0.7


 . ∗


0.3
0.8
0.1
0.6

 =

=


1.8
1.7
2.6
2.9


· · · u1 = 1, y0 = 1
· · · u1 = 1, y0 = 2
· · · u1 = 2, y0 = 1
· · · u1 = 2, y0 = 2

Minimization
for : y0 = 1→ min {1.8, 2.6} = 1.8 foru1 = 1

for : y1 = 2→ min {1.7, 2.9} = 1.7 foru1 = 1

→

u1 =

{
1 for y0 = 1

1 for y0 = 2

and reminder after minimization

y0 = 1 y0 = 2

1.8 1.7

11.2 Application

For t = 0 let us have y0 = 2.

For y0 = 2 we have u1 = 1; → [1, 2] Θ1,2 =[0.2, 0.8] let us obtain y1 = 2

For y1 = 2 we have u2 = 1; → [1, 2] Θ1,2 =[0.2, 0.8] let us obtain y2 = 1

For y2 = 1 we have u3 = 1; → [1, 1] Θ1,1 =[0.7, 0.3] let us obtain y3 = 2

The �nal value of criterion is J2|12 + J1|12 + J2|11 = 0 + 1 + 1 = 2.
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12 Adaptive control

In the previous two Chapters we dealt with control algorithms based on model with known
parameters. These algorithms were optima with respect to the chosen criterion.

If the model used in control has unknown parameters, the situation is much more di�cult.
The reason is that the design of the control law runs from th end of the control interval against
the time while the algorithm for estimation of unknown parameters goes from the beginning
in the direction of time. This leads to very complex optimal algorithm that even cannot be
implemented in a computer. We say that it is unfeasible.

That is why some suboptimal algorithm instead of the optimal one must be used. Most
frequently, the algorithm with receding horizon is used. This algorithm runs as follows:

At the beginning we have prior data and prior estimates of parameters. Then at time t

1. Design the control for some control interval (t, t+ T ) using the current estimates of
parameters.

2. Use the control law for the current time and compute ut.

3. Apply this control ut and measure the output yt.

4. Use the new data d (t) for recomputation of the parameters.

5. Shift the time t→ t+ 1 and go to 1

The program is in th Paragraph 15.15.

13 Appendix

13.1 Elementary di�erential equations

First order equations

The �rst order homogeneous di�erential equation with constant coe�cients has the form

y′ + a0y = 0, y(0) = ỹ0 (13.1)

Characteristic equation is linear with unique solution

λ+ a0 = 0 → λ = −a0 (13.2)

The solution to the di�erential equation (13.1) is

y(t) = ỹ0e
λt (13.3)
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Second order equations

The second order homogeneous di�erential equation with constant coe�cients has the form

y′′ + a1y
′ + a0y = 0, y(0) = ỹ0, y

′(0) = ỹ1 (13.4)

Characteristic equation is quadratic

λ2 + a1λ+ a0 = 0 (13.5)

with the following types of solution

1. Two di�erent real roots λ1 and λ2

The equation (13.4) is
y′′ − (λ1 + λ2)y′ + λ1λ2y = 0

The solution is
y(t) = c1e

λ1t + c2e
λ2t, (13.6)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 + c2 = ỹ0

λ1c1 + λ2c2 = ỹ1

which gives the solution

c1 = (λ2y0 − y′0)/(λ2 − λ1) and c2 = (λ1y0 − y′0)/(λ1 − λ2)

2. One real double root λ

The equation (13.4) is
y′′ − 2λy′ + λ2y = 0

The solution is
y(t) = c1e

λt + c2te
λt, (13.7)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

λc1 + c2 = ỹ1

which gives the solution
c1 = ỹ0 and c2 = ỹ1 − λỹ0
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3. Two complex roots λ1 = ρ+ ωi and λ2 = ρ− ωi

The equation (13.4) is
y′′ − 2ρy′ + ρ2 + ω2 = 0

The solution is
y(t) = c1e

ρt cos(ωt) + c2e
ρt sin(ωt), (13.8)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

ρc1 + ωc2 = ỹ1

which gives the solution

c1 = ỹ0 and c2 = (ỹ1 − ρỹ0)/ω

13.2 Elementary di�erence equations

Here, we will consider discrete time k for which it holds t = kT , where t is continuous time
and T is a �x period of sampling.

First order equations

The �rst order homogeneous di�erence equation with constant coe�cients has the form

yk+1 + a0yk = 0, y0 = ỹ0 (13.9)

Characteristic equation is linear with unique solution

λ+ a0 = 0 → λ = −a0 (13.10)

The solution to the di�erential equation (13.9) is

yk = ỹ0.λ
k (13.11)

Second order equations

The second order homogeneous di�erence equation with constant coe�cients has the form

yk+2 + a1yk+1 + a0y = 0, y0 = ỹ0, = y1 = ỹ1 (13.12)

Characteristic equation is quadratic

λ2 + a1λ+ a0 = 0 (13.13)

with the following types of solution
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1. Two di�erent real roots λ1 and λ2

The equation (13.12) is

yk+2 − (λ1 + λ2)yk+1 + λ1λ2y = 0

The solution is
yk = c1λ

k
1 + c2λ

k
2, (13.14)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 + c2 = ỹ0

λ1c1 + λ2c2 = ỹ1

which gives the solution

c1 = (λ2ỹ0 − ỹ1)/(1− λ1) and c2 = (λ1ỹ0 − ỹ1)/(1− λ2)

2. One real double root λ

The equation (13.12) is
yk+2 − 2λyk+1 + λ2y = 0

The solution is
yk = c1λ

k + c2kλ
k, (13.15)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

λc1 + λc2 = ỹ1

which gives the solution
c1 = ỹ0 and c2 = ỹ1/λ− ỹ0

3. Two complex roots λ1 = ρ+ ωi and λ2 = ρ− ωi

The equation (13.12) is
yk+2 − 2ρyk+1 + ρ2 + ω2 = 0

The solution is
yk = |c|k[c1 cos(ωk) + c2 sin(ωk)], (13.16)

where the coe�cients c can be obtained as a solution of the set of linear equations

c1 = ỹ0

c1|Reλ|+ c2|Imλ| = ỹ1

which gives the solution

c1 = y0 and c2 = (ỹ1 − ỹ0|Reλ|)/|Imλ|
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13.3 Discretization of a continuous model

Our aim is to construct a discrete regression model whose output is a sampled output of the
corresponding continuous one - homogeneous di�erential equation of 1st or 2nd order with
constant coe�cients. We will call this task discretization.

Let us denote the continuous time by t and the discrete time by k. It holds

t = kT, T is a period of sampling.

First order equation

Consider a homogeneous di�erential equation with constant coe�cient

y′ + a0y = 0, y0 = ỹ0. (13.17)

Then the equivalent di�erence equation (whose response is the sampled response to the di�er-
ential one) is

yk+1 = A0yk, where A0 = e−a0T . (13.18)

Solution: The solution to the di�erential equation is

yt = ỹ0e
−a0t.

To get the discrete version of the solution, we set t = k for actual sample and t + T = k + 1
for the shifted one. So, for the actual sample, the solution the same but the substitution k for
t and for the shifted sample it holds

yk+1 = yt+T = ỹ0e
−a0(t+T ) = ỹ0e

−a0te−a0T = e−a0T yk

which proves (13.18). /

Second order equation

• Two distinct real roots

Let us consider a homogeneous di�erential equation with constant coe�cients

y′′ + a1y
′ + a0y = 0, y0 = ỹ0, y

′
0 = ỹ1 (13.19)

whose characteristic equation λ2 + a1λ+ a0 = 0 has two di�erent real roots λ1 and λ2.

Then the equivalent di�erence equation (whose response is the sampled response to the
di�erential one) is

yk+2 = A1yk+1 +A0yk, (13.20)

where
A1 = eλ1T + eλ2T , A0 = −e(λ1+λ2)T (13.21)

72



Solution: A response to the considered continuous model is

yt = c1e
λ1t + c2e

λ2t.

Sampling with t = kT and the denotation yk = ykT gives

yk = c1e
λ1kT + c2e

λ2kT

This sampled response must obey the di�erence equation

yk+2 = A1yk+1 +A0yk.

We express still the shifted responses

yk+1 = c1e
λ1kT eλ1T + c2e

λ2kT eλ2T

yk+2 = c1e
λ1kT eλ12T + c2e

λ2kT eλ22T

and notice that they all are expressed in the basis with items eλ1kT and eλ2kT . Thus we
substitute into the di�erence equation and obtain

c1e
λ1kT eλ12T + c2e

λ2kT eλ22T = A1(c1e
λ1kT eλ1T + c2e

λ2kT eλ2T ) +A0(c1e
λ1kT + c2e

λ2kT ).

The coe�cients B and A will be obtained by the comparison of items with the same
basis element. We obtain the following system of equations

c1e
λ12T = A1c1e

λ1T +A0c1

c2e
λ22T = A1c2e

λ1T +A0c2.

The coe�cients c get canceled (what is important) and the solution to this system is
just what we want to prove. /

• One double root

Let the characteristic equation of (13.19) has one two-fold solution λ = λ1.

Then the equivalent di�erence equation (13.19) has the coe�cients

A1 = 2eλ1T , A0 = −e2λ1T (13.22)

Solution: The proof is formally the same as for the two distinct roots, only with basis
elements eλ1kT and kT eλ1kT .

The response to the continuous system is

yk = c1e
λ1t + c2te

λ1t

After expressing the sampled response and its shifted variants, substituting into (13.20)
and comparing the terms at the individual basis items, we obtain the following set of
equations

c1e
2λ1T + 2c2T e

2λ1T = A1c1e
λ1T +A1Tc2e

λ1T +A0c1

c2e
2λ1T = A1c2e

λ1T +A0c2

Again, the solution is just what we wanted to proof. /
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• Two complex roots

Let the characteristic equation of (13.19) has two complex roots λ1 = ρ + ωi and λ2 =
ρ− ωi.
Then the equivalent di�erence equation (13.19) has the coe�cients

A1 = 2eρT cos(ωT ), A0 = −e2ρT (13.23)

Solution: Again, the proof is formally the same as for the previous cases, only with the
basis elements eρkT sin(ωkT ) and eρkT cos(ωkT ).

The response of the continuous system is

yk = c1e
ρt cos(ωt) + c2e

ρt sin(ωt)

After expressing the sampled response and its shifted variants, substituting into (13.20)
and comparing the terms at the individual basis items, we obtain the following set of
equations

−c1e
2ρT sin(2ωT ) + c2e

2ρT cos(2ωT ) = −A1c1e
ρT sin(ωT ) +A1c2e

ρT cos(ωT ) +A0c2

c1e
2ρT cos(2ωT ) + c2e

2ρT sin(2ωT ) = A1c1e
ρT cos(ωT ) +A1c2e

ρT sin(ωT ) +A0c1

Once more, the solution is just what we wanted to proof. /

13.4 Point estimate with quadratic criterion

Here we show that for quadratic criterion of optimality, the optimal point estimate of unknown

parameters Θ, based on data d (t), is the conditional expectation
ˆˆ = E [Θ|d]Θ.

Proof

The criterion to be minimized is

J = E

[(
Θ̂−Θ

)2
|d (t)

]
→ min

We derive (completion to square)

min
Θ̂
E

[(
Θ̂−Θ

)2
|d
]

= min
Θ̂
E
[
Θ̂2 − 2Θ̂Θ + Θ2|d

]
=

= min
Θ̂

{
Θ̂2 − 2Θ̂E [Θ|d] + E

[
Θ2|d

]}
=

= min
Θ̂

Θ̂2 − 2Θ̂E [Θ|d] + E [Θ|d]2−E [Θ|d]2 + E
[
Θ2|d

]︸ ︷︷ ︸
D[Θ]

 =

= min
Θ̂

{
Θ̂2 − 2Θ̂E [Θ|d] + E [Θ|d]2

}
+D [Θ] =

= min
Θ̂

{(
Θ̂− E [Θ|d]

)}
+D [Θ]

→ Θ̂ = E [Θ|d].
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13.5 Minimization of the control criterion criterion

We start at the end on the control interval, i.e. at time t = N . In this step, only penalization
for t = N should be minimized, however, we know, that after each step of minimization a
remainder (not depending on control in this step) is obtained and it goes to the next step. So,
we include the term ϕ∗N+1 even if we know that in reality it is zero. It is only a formal step
that helps us to catch the recurrence.

min
u1:N

E

[
ϕ∗N+1 +

N∑
t=1

Jt|d (0)

]
=

we will express the criterion in an integral form

= min
u1:N

∫
· · ·
∫ (

ϕ∗N+1 +
N∑
t=1

Jt

)
f (y (N) , u (N) |d (0)) dy (N) du (N) =

we use chain rule for yN and uN
and put together reminder and last penalization

= min
u1:N

∫
· · ·
∫ ∫ ∫ ([

ϕ∗N+1 + JN
]

+
N−1∑
t=1

Jt

)
f (yN |uN , d (N − 1)) f (uN |d (N − 1))×

×f (y (N − 1) , u (N − 1) |d (0)) dy (N) du (N) =

we integrate over yn (expectation)
and denote the integral by ϕN

= min
u1:(N−1)

{∫
· · ·
∫

min
uN

∫ ∫ (
ϕ∗N+1 + JN

)
f (yN |uN , d (N − 1)) dyN︸ ︷︷ ︸

ϕN (uN ,d(N−1))

f (uN |d (N − 1)) duN+

N−1∑
t=1

Jtf (y (N − 1) , u (N − 1) |d (0)) dy (N − 1) du (N − 1)

}

now we are going to minimize over uN
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min
uN

∫ ∫ (
ϕ∗N+1 + Jt

)
f (yN |uN , d (N − 1)) dyN︸ ︷︷ ︸

ϕN (uN ,d(N−1))

f (uN |d (N − 1)) duN =

= min
uN

∫
ϕN (uN , d (N − 1)) f (uN |d (N − 1)) duN

The minimum is achieved if we give the control uN a deterministic form (its pdf is Dirac
function) and place it into the minimum of the integral ϕN . So, we take:

u∗N = arg minuN ϕN and f (uN |d (N − 1)) = δ (uN , u
∗
N ) - all ut is concentrated into one

point u∗N .

The �nal form of the criterion has the same form as in the beginning, only time indexes are
shifted by one down N → N − 1. So, we can exchange index N for the current index t and we
are coming to the recursion (10.2) and (10.3), i.e.

ϕt = E
[
ϕ∗t+1 + Jt|ut, d (t− 1)

]
expectation

ϕ∗t = min
ut

ϕt minimization.
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14 Introduction to Scilab

Remarks

1. All variables are matrices. Scalar is matrix a(1,1). Vector in �rst row is a(1,:), in �rst
column a(:,1). The sign : means �all�.

2. Semi-column ; means: no response. If there is comma or nothing in the end of a
command, its value is printed on the screen.
Remark: the command mode(0) must be called at the beginning.

3. help �object� gives help on �object�.
Icon ? calls the main help.

4. Comment begins with //.

Variables and operations

There are the following main typed of variables:

• £ísla (matice)

De�nition:

- scalar a=5;
- row vector a=[3 5 1];
- column vector a=[3; 5; 1], which is the same as a=[3 5 1]'
- matrix a=[2 3 4; 8 7 6];
- command a=5:8 creates the vector [5 6 7 8]; 5:2:13 = [5 7 9 11 13]
- command a=zeros(2,3) creates matrix 2×3 from zeros
- command a=ones(2,3) creates matrix 2×3 from ones
- transposition is performed by ' (apostroph)
- matrix b (3×3) can be composed like this: b=[a; 2*a; 5*a];
Operations:

- product of matrices * division / power ^ or ** square root sqrt()
- dot operations .* ./ .^ are performed entry by entry
- in operation * the rules of matrix product hold
- operation a/b means multiplication of a by inversion of b
(inversion itself is inv(b) )

• text: a='hello'. It is a vector of letters can be concatinated:
a='hello '; b='boys' a c=a+b, then c='hello boys'.
Conversion: s=string(a) gives value of variable a as a string

• logical variables - their valies are �true� ( =1) a �false� (=0).
Logical operations: == ∼= < <= > >= & (and) | (or) ∼ (not)
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Examples

Set:

a=[1 2 3] b=[8; 9] c=[11 12 13; 21 22 23; 31 32 33];

Try and justify:

x1=a*a' x2=a'*a y=[[a;5*a] b] c(2,:).*a c(1,2:3)*b

c(3,:).^c(1,:) c(3,:)**2 d1=c(:) dd=c'; d2=dd(:) d2(3:2:7)

Set:

u='�rst' v='attempt' x=%t (setting of �true�) y=5==5 z=5>5

Try and justify:

u+' '+v x & y x & z x | y x | z

Work with variables

• Command who_user(); gives information about de�ned variables.

• [m,n]=size(a), m=size(a,1), n=size(a,2) give dimensions of the matrix a, resp. number of
rows, number of columns. Instead of 1 a 2 one can use 'r' a 'c'.

• n=length(a) number of elements of a.

• n=max(size(a)) length of a vector

• clc clears screen

• clear clears variables

• xdel(winsid()) clears all graphs (close clears the last one)

Programming commands

• Condition if

if b>c,
a=5;

else
a=0;

end
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If b>c is true, it is preformed a=5; otherwise a=0;.

Example

// Determine c as bigger from a, b
a=rand(1,1,'n'); b=rand(1,1,'n');
if a>b, c=a;
else c=b;
end
printf('a = %g, b = %g, c = %g\n',a,b,c)

• Branching of program

select i,
case 1, prikaz_A;
case 2, prikaz_B;
else prikaz_D

end

According to i the respective command is performed.

Example

// According to i perform
// set the vectors
a=[1 3 5]; b=[2 4 6];
// 1 - addition
// 2 - scalar product
// 3 - tenzor product
// set the operation

cont.

i=2;
select i
case 1, d=a+b;
case 2, d=a*b';
case 3, d=a'*b;
end
disp(d,'result')

• Cycle for

for i=1:5
a(i)=2*i;

end

For i=1,2,3,4,5 the command a(i)=2*i; is performed. :Result is a=[2, 4, 6, 8, 10].
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Example 1

// Determine weighted sum
x=[1 2 3 4 5 6]; // numbers
p=[.1 .3 .2 .1 .2 .1]; // weights
n=length(x);
s=0;
for i=1:n
s=s+x(i)*p(i);
end
disp(s,'the average is')

Example 2

// Order numbers according to magnitude
n=10; // how many numbers
a=�x(100*rand(1,n,'u')); // £ísla
disp(a,'original numbers')
b=[];
for i=1:n
[x,j]=min(a);
b=[b x];
a(j)=%nan;
end
disp(b,'ordered numbers')
end

• Control of the program
pause stops the program.
resume resumes the program after pause
abort stops the program de�nitely.

• Calling of subprogram

exec('my_program',-1) runs the program my_program (-1 suppresses response)

• Loading functions to memorry

getd('my_address') loads all subroutines in the address moje_adresa
(Scilab does not have path. It knows only the loaded functions)

Printing

Commands disp and fprintf .

• disp(a) shows value of a.

• disp(a,'text') gives value and the text

• printf('entry %d of vector a is %g\n',i,a(i));
gives e.g.: entry 5 of vector a is 4.12

Graphical output

Two-dimensional graph can be constructed by plot.

Examples:

• plot(y) draws values of y.
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• plot(x,y) draws values of y against of x (so called xy-graf).

• plot(a) draws columns of matrix a.

Formatting of a graph:

Line Points Color

- (full) . (point) r (red)
: (dotted) + (plus) g (green)
-. (dot dashed) o (ring) b (blue)
� (dashed) x (cross) w (white)

For more details, call: help plot or go to Scilab help: Scilab Help >�> Graphics >

GlobalProperty

Examples:

• plot(x,'or') draws x using red crosses.

• plot(x,y,'r-+',u,v,'b-x') draws two curves (x,y) a (u,v); the �rst one is red by full line with
pluses, the second one by blue line with crosses.
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15 Programs for exercises

Basic advises for running programs

Each Scilab program should start with commands clearing screen, memory and closing �gures
from previous run: clc, clear, close. These commands together with other useful ones are
collected in the program ScIntro.sce

// General introduction of a SciLab run

clc, clear, clearglobal() // clear screen, variables, global vars

xdel(winsid()); // clear all existing figures

funcprot(0); // renaming functions without echo

warning('off'); // suppress warnings

printf('Running ...\n\n') // echo of runing program

Here, instead of clearing only one latest �gure, all existing �gures are cleared by the command
xdel(winsid());. Then warnings are suppressed. In the end, an echo of running program is
displayed.

This command should be called at the beginning of each program by

exec("ScIntro.sce",-1)

However, for the program to be found, the working directory containing this program and
other functions if used must be set.

So, the procedure is as follows: put all your programs into your working directory (named
howsoever by you). Then open Scilab and check if in the File Browser you can see your
programs. If not, then at the top of this window you can set your working directory.

Remark

If the File Browser is not visible, put the cursor into the Console Window, click at Applications

and on File Browser down in the menu).

Hint

If you want so that the working directory is automatically set to that from you run your
program, put the following command directly before the command exec(· · · ). It will do the
work itself.

[u,t,n]=�le(); chdir(dirname(n(2))); clear u t n;
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Other useful commands

• If you want so that the values of variables appear automatically of the screen when
program is running, you must insert the command mode(0) after the command exec(· · · )
... not before it.

• If some functions are to be executed during the program run, the command getd() must
be inserted (again after exec). It will load all functions in the current directory. If the
functions are in some other directory, you must call getd('dirertory') where directory is
the address where you have your functions.

15.1 Simulation with regression model

In the program, �rst length of simulation and parameters of the model are set.

As the model is of the second order, initial conditions of y for times -1 and 0 are set. Scilab
uses indexes 1, 2, · · · (not less than one). So times 1 and 2 belong to initial times -1 and 0.
That is why, the simulation must start at time t = 3.

Control variable is de�ned beforehand as a noisy sinusoidal curve.

The simulation itself is realized in the for loop t = 3:nd. First the regression vector ps is
constructed. It is then multiplied with the vector of parameters with the noise term added.
The result is simulated output in a current time t.

In the end of the program, the results are displayed.

// T11simCont.sce

// SIMULATION OF THE SECOND ORDER REGRESSION MODEL

// Experiments

// - change parameters of the model

// - change the input signal

// - try to increase the model order to 3

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

// PARAMETERS OF THE SIMULATION

nd=100; // length of data

a=[.4 .2]; // parameters at yt

b=[1 .2 -.5]; // parameters at ut

k=0; // constant (model absolute term)

s=.1; // noise variance

yt(1)=1; yt(2)=3; // initial conditions for output

ut=sin(10*%pi*(1:nd)'/nd)+.001*rand(nd,1,'n'); // input
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// TIME LOOP OF THE SIMULATION

th=[a b k]'; // vector of parameters

for t=3:nd

// regression vector

ps=[yt(t-1) yt(t-2) ut(t) ut(t-1) ut(t-2) 1]';

// regression model

yt(t)=th'*ps+s*rand(1,1,'norm');

end

// RESULTS OF THE SIMULATION

set(gcf(),"position",[700 100 600 500])

subplot(211),plot(1:nd,ut),title('Input')

subplot(212),plot(1:nd,yt),title('Output')

The result is

The system is excited by a sinusoidal signal (upper picture). The response is also sinusoidal,
corrupted by noise. The dynamic of the system is relatively weak and in the output mainly
ampli�cation is apparent.

To see greater distortion of the output, set a=[.77 .2];

Remarks

1. The ampli�cation of the system in the steady state can be obtained by setting yt = yt−1 =
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yt−2 and ut = 1. From this it follows

y∞ =
b0 + b1 + b2
1− a1 − a2

.

From this formula we can see, e.g. that if a1 + a2 = 1 ten the system is on the border of

stability as y∞ →∞.

2. If a1 + a2 < 1 but a1 + a2 → 1 the system is slow. New output nearly equals to to the

average of the two previous. Thus, it changes very little.

3. If we want to see the dynamic of the system, set ut = ones(1,nd) and perhaps sd very

small. The you obtain so called step response of the system that shows the dynamic
better.

4. If we set the control variable all equal to zero and set initial condition y−1= y(1) to
one, then so called pulse response is generated. It also speaks about the dynamic of the
system.
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15.2 Simulation with discrete model

The beginning of the program is standard - initialization of Scilab (ScIntro), de�nition of
parameters, length of data, input generation and initialization of output.

In the loop of generation, �rst, the row of the model matrix is computed in dependence on
the input and last output: i=2*(ut(t)-1)+yt(t-1); and then from the selected row the output
is generated using the probabilities from the row. The formula for generation is given in the
Lectures in Paragraph 4.1.

In the end of the program, the results are displayed.

// T13simDisc.sce

// SIMULATION OF DISCRETE MODEL

// (multinomial model - controlled coin with memmory)

// f( yt(t) | ut(t),yt(t-1) ), yt,ut=1,2

// Experiments

// - set the parameters to obtain a deterministic model

// - try to extend the model to f(y(t)|u(t),y(t-1),u(t-1))

// and values 1,2,3.

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

// PARAMETERS OF THE SIMULATION

// model parameter (conditional probabilities)

//yt(t)=1 =2 // ut(t) yt(t-1)

// ---------------------------

th= [.2 .8 // 1 1

.6 .4 // 1 2

.9 .1 // 2 1

.3 .7]; // 2 2

nd=50; // number of steps

ut=(rand(1,nd,'u')>.3)+1; // control variable P(ut=1)=.3, P(ut=2)=.7

yt(1)=1; // initial condition for output

// TIME LOOP OF THE SIMULATION

for t=2:nd

i=2*(ut(t)-1)+yt(t-1); // row in the model parameter

yt(t)=(rand(1,1,'u')>th(i,1))+1; // generation of the output

end

// RESULTS OF THE SIMULATION

subplot(211),plot(1:nd,ut,'g:.')

set(gcf(),"position",[700 100 600 500])

title('Input')

86



set(gca(),'data_bounds',[0 nd+1 .9 2.1])

subplot(212),plot(1:nd,yt,'b:.')

title('Output')

set(gca(),'data_bounds',[0 nd+1 .9 2.1])

The result is

Both, the input variable and the output are discrete, so they have �nite number of di�erent
values (here only two).

The model is set as considerably uncertain (the parameters are far from being zeros or ones).
To see a deterministic case, set the parameters equal or close to 0 or 1. E.g. the output of the
model with the parameter

Θ =


1 0
1 0
0 1
0 1


will follow the input.

The output of this model

Θ =


.9 .1
.9 1
.1 .9
.1 .9


will mostly follow the input.
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15.3 Simulation with state-space model

Here is a program generation data from regression model which is realized in the state form -
see Paragraph 3.1.

After a standard beginning of the program, we come to the �rst loop, where a standard
regression simulation is performed.

Then, a transformation of regression model to the state one is performed and the second loop
follows where the same simulation is programmed and realized.

The output of the regression model is denoted by yr, that of the state realization is yt.

In the results both the simulations are compared. The results should be exactly the same.

// T15simState.sce

// SIMULATION WITH RM IN A STATE-SPACE FORM

// Experiments

// - extend to the 3-rd order model

// y(t)=b0.u(t)+a1.y(t-1)+b1.u(t-1)+a2.y(t-2)+b2.u(t-2)+

// +a3.y(t-3)+b3.u(t-3)+k+e(t)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

rand('seed',0)

// PARAMETERS OF THE SIMULATION

nd=100; // number of data

et=rand(1,nd,'n');

ut=rand(1,nd,'n'); // input

a=[.6 .1]; b0=.8; b=[.3 .2]; k=2; cv=.1; // model parameterers

// REGRESSION REALIZATION

yr(1)=0; yr(2)=1;

for t=3:nd

er=sqrt(cv)*et(t);

yr(t)=a*[yr(t-1) yr(t-2)]'+b0*ut(t)+b*[ut(t-1) ut(t-2)]'+k+er;

end

// STATE-SPACE REALIZATION

M=[a(1) b(1) a(2) b(2) k

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1];

N=[b0 1 zeros(1,3)]'
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A=[1 zeros(1,4)];

B=0;

yt(1)=0; yt(2)=1;

xt(:,2)=[yt(2) ut(2) yt(1) ut(1) 1]'; // initial conditions for state

// time loop of simulation

for t=3:nd

es=[sqrt(cv)*et(t) zeros(1,4)]';

xt(:,t)=M*xt(:,t-1)+N*ut(t)+es;

yt(t)=A*xt(:,t);

end

// RESULTS OF SIMULATION

scf(1); plot(1:nd,yt,1:nd,yr,'.','markersize',4)

legend('state model','regression model');

The result is to show that really the outputs generated by regression model and the equivalent
state model are identical.

Remark

So that the outputs are really the same, also the initial conditions must be identical. Here:

xt(:,2)=[yt(2) ut(2) yt(1) ut(1) 1] (see construction of state in Paragraph 3.1).
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15.4 Least squares estimation

Here, a very brief and useful procedure of estimation via least squares. We construct vector

Y =


y1

y2

· · ·
yN

 and X =


x11 x12 · · · x1n 1
x21 x22 · · · x2n 1
· · · · · · · · · · · · 1
xN1 xN2 · · · xNn 1


where x1, x2, · · · , xn are explanatory variables (e.g. [ut, yt−1, ut−1]) and ones stay for model
constant. The presentation of the method can be found in Paragraph 3.1.

Remark

This procedure is suitable especially when the data are obtained e.g. in Excel in the form of

a matrix

 y1 x11 x12 · · ·
y2 x21 x22 · · ·
· · · · · · · · · · · ·

 where the data are practically prepared for construction of

Y and X. It happens frequently in real applications when the output variable y is assumed to

depend on several explanatory variables x1,x2,· · · ,xn at the same time instant and we want to

learn, which of them and how, if at all, in�uences the output.

Here, the program demonstrates estimation of regression model with regression vector ψ =
x = [ut, yt−1, ut−1, · · · ] giving the parameters θ = [b0, a1, b1, · · · ] .

In the �rst loop, the data are simulated from regression model.

The second loop consists of (i) construction Y and X from outputs and regression vectors.
After it, one-shot estimation of parameters is performed.

In the end, the estimated parameters are printed as well as the simulated data are plotted.

// T21estCont_LS.sce

// ESTIMATION OF 2ND ORDER REGRESSION MODEL

// least squares estimation (off-line)

// Experiments

// - increase the model order

// -------------------------------------------------------------------

exec("ScIntro.sce",-1), mode(0)

// SIMULATION

// parameters

nd=100; // length of data

a=[.4 .2]; // parameters at yt

b=[1 .2 -.5]; // parameters at ut

k=0; // constant (model absolute term)

s=.1; // noise variance
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yt(1)=1; yt(2)=3; // initial conditions for output

ut=sin(10*%pi*(1:nd)/nd)'+.001*rand(nd,1,'n'); // input

// time loop

th=[a b k]'; // vector of parameters

for t=3:nd

// regression vector

ps=[yt(t-1) yt(t-2) ut(t) ut(t-1) ut(t-2) 1]';

// regression model

yt(t)=th'*ps+s*rand(1,1,'norm');

end

// ESTIMATION

for t=3:nd

Y(t,1)=yt(t);

X(t,:)=[yt(t-1) yt(t-2) ut(t) ut(t-1) ut(t-2) 1];

end

th=inv(X'*X)*X'*Y; // estimation of regression coefficients

yp=X*th; // prediction (for verification)

r=variance(yt-yp); // noise variance

// Results

disp('Parameter estimates')

th,r

scf(1); // comparison od output and prediction

plot(1:nd,yt,1:nd,yp)

legend('optput','prediction');

title('Verification of the estimates')

The result is
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Remark

The regression vector, in the program, is constructed in a bit di�erent way as usually (�rs

outputs and then inputs)

ψ = [yt−1, yt−2, ut, ut−1, ut−2, 1] .

It is OK, the order does not matter. However, we must keep in mind, that the regression

coe�cients in the parameter θ will have the corresponding order

θ = [a1, a2, b0, b1, b2, k] .
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15.5 Estimation with continuous model

Here is a standard estimation with regression model presented. Standard beginning with def-
inition of data length, model parameters and initial conditions. Also input signal is generated
beforehand for all data length.

First loop generates values of y.

Second loop performs estimation. At each time step, extended regression vector is constructed
(together with the actual output yt) and the information matrix V is updated - see Paragraph
6.1 formula 6.3. Then the information matrix is partitioned and point estimates are computed
- see Paragraph 6.1 below.

The end of the program shows the results.

// T22estCont_B.sce

// ESTIMATION OF 2ND ORDER REGRESSION MODEL

// - Bayesian on-line estimation with statistic update

// Experiments

// - rewrite the program to a single time loop (on-line estimation)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

// SIMULATION

// parameters

nd=100; // length of data

a=[.4 .2]; // parameters at yt

b=[1 .2 -.5]; // parameters at ut

k=0; // constant (model absolute term)

s=.1; // noise variance

yt(1)=1; yt(2)=3; // initial conditions for output

ut=sin(10*%pi*(1:nd)/nd)'+.001*rand(nd,1,'n'); // input

// time loop

th=[a b k]'; // vector of parameters

for t=3:nd

// regression vector

ps=[yt(t-1) yt(t-2) ut(t) ut(t-1) ut(t-2) 1]';

// regression model

yt(t)=th'*ps+s*rand(1,1,'norm');

end

// ESTIMATION

V=1e-8*eye(7,7); // initial information matrix
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for t=3:nd

psi=[yt(t:-1:t-2); ut(t:-1:t-2); 1]; // reg. vector

V=V+psi*psi'; // updt of information matrix

Vy=V(1,1); Vyp=V(2:$,1); Vp=V(2:$,2:$); // divisioning of inf. matrix

thE(:,t)=inv(Vp+1e-8*eye(Vp))*Vyp; // pt estimates of reg. coefficints

r(t)=(Vy-Vyp'*inv(Vp+1e-8*eye(Vp))*Vyp)/t; // pt estimates of noise variance

end

// Results

set(scf(1),'position',[500 60 600 500])

for i=1:6

subplot(6,1,i),plot(thE(i,:))

if i==1, title('Regression coefficients'), end

end

set(scf(2),'position',[50 60 400 200])

plot(r)

title('Noise variance')

The results are: evolution of point estimates of regression coe�cients during estimation (what
is important is that they stabilize - even we can see that 30 samples of data wold be su�cient
for good estimation)

and evolution of point estimate of noise variance. From the picture it is evident that estima-
tion of the variance is more data demanding than it is for regression coe�cients - this holds
generally.
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Estimation under model structure mismatch

In the above example we used the same structure of both models for simulation and estimation.
I.e. we simulated data from the regression model with given parameters and for estimation
we used the same regression model with unknown parameters, indeed. In this case, agreement
on the values of the corresponding parameters can be expected for a good estimate. However,
the reality is much more di�cult. To approach it we will model structure mismatch in the
three following examples. First two with simulated data then one with real ones.

• Simulation of 3rd order model, estimation with 1st order one

Here, a third-order model is used for simulation. The input signal can be chosen by setting
the option inp as constant, sin function, jumps or random noise. It can be shown, that the
�rst three signals are not very convenient as with them the excitation of the system is not
good.

The success of estimation cannot be checked by agreement in simulated and estimated param-
eters! However, it can be judged by monitoring the evolution of parameter estimates. They
should be stabilized as soon as possible and then stay constant.

// T22estCont_B2.sce

// ESTIMATION OF 2ND ORDER REGRESSION MODEL

// The model for simulation differs from that for estimation

// i.e. MODEL STRUCTURE MISMATCH is tackled.

// - Bayesian on-line estimation with statistic update

// Experiments

// - try various input signals - set inp = 1,2,3,4

// - set different noise variance r=0,.1,1,10

// - define other regression coefficients a,b,k

// - you can also change the orders of models for simulation

// as well as for estimation (adjust the beginning of loop)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

// SIMULATION

// parameters
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nd=100; // length of data

a=[.1 -.8 .3]; // parameters at yt

b=[1 .2 -.5 -.8]; // parameters at ut

k=0; // constant (model absolute term)

s=.01; // noise variance

inp=1; // selection of input

yt(1)=0; yt(2)=0; yt(3)=0; // initial conditions for output

// inputs at disposal

select inp

case 1, ut=ones(nd,1); // one jump

case 2, ut=sin(10*%pi*(1:nd)/nd)'; // several jumps

case 3, ut=sign(10*sin(10*%pi*(1:nd)/nd))'; // sine wave

case 4, ut=.1*rand(nd,1,'n'); // white noise

end

// time loop

th=[a b k]'; // vector of parameters

for t=4:nd

// regression vector

ps=[yt(t-1) yt(t-2) yt(t-3) ut(t) ut(t-1) ut(t-2) ut(t-3) 1]';

// regression model

yt(t)=th'*ps+s*rand(1,1,'norm');

end

// ESTIMATION

V=1e-8*eye(5,5); // initial information matrix

for t=3:nd

psi=[yt(t:-1:t-1); ut(t:-1:t-1); 1]; // reg. vector

V=V+psi*psi'; // updt of information matrix

Vy=V(1,1); Vyp=V(2:$,1); Vp=V(2:$,2:$); // divisioning of inf. matrix

thE(:,t)=inv(Vp+1e-8*eye(Vp))*Vyp; // pt estimates of reg. coefficints

r(t)=(Vy-Vyp'*inv(Vp+1e-8*eye(Vp))*Vyp)/t; // pt estimates of noise variance

end

// Results

set(scf(1),'position',[500 60 600 500])

for i=1:4

subplot(6,1,i),plot(thE(i,:))

if i==1, title('Regression coefficients'), end

end

set(scf(2),'position',[50 60 400 200])

plot(r)

title('Noise variance')
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set(scf(3),'position',[50 360 400 200])

plot(1:nd,yt,1:nd,ut)

legend('output','input');

title 'Dataset for estimation'

disp(th','Simulated parameters')

disp(thE(:,$)','Easimated parameters')

• Simulation of 1st order model, estimation with the order that can be set

Here, the situation is the same with the di�erence, that the model for simulation is of the
�rst-order and that for estimation can be set with arbitrary order using the option ord which
is pre-set to 3. It means again model mismatch.

// T22estCont_B3.sce

// ESTIMATION OF 2ND ORDER REGRESSION MODEL

// The model for simulation differs from that for estimation

// i.e. MODEL STRUCTURE MISMATCH is tackled.

// - Bayesian on-line estimation with statistic update

// Experiments

// - try various input signals - set inp = 1,2,3,4

// - set different noise variance r=0,.1,1,10

// - define other regression coefficients a,b,k

// - you can also change the orders of models for simulation

// as well as for estimation (adjust the beginning of loop)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

// SIMULATION

// parameters

nd=100; // length of data

a=[.1 ]; // parameters at yt

b=[1 .2]; // parameters at ut

k=0; // constant (model absolute term)

s=.01; // noise variance

inp=1; // selection of input

ord=3; // order of the estimated model

yt(1)=0; yt(2)=0; yt(3)=0; // initial conditions for output

// inputs at disposal

select inp

case 1, ut=ones(nd,1); // one jump

case 2, ut=sin(10*%pi*(1:nd)/nd)'; // several jumps

case 3, ut=sign(10*sin(10*%pi*(1:nd)/nd))'; // sine wave
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case 4, ut=.1*rand(nd,1,'n'); // white noise

end

// time loop

th=[a b k]'; // vector of parameters

for t=2:nd

// regression vector

ps=[yt(t-1) ut(t) ut(t-1) 1]';

// regression model

yt(t)=th'*ps+s*rand(1,1,'norm');

end

// ESTIMATION

nth=2*(ord+1)+1;

V=1e-8*eye(nth,nth); // initial information matrix

for t=(ord+1):nd

psi=[yt(t:-1:t-ord); ut(t:-1:t-ord); 1];// reg. vector

V=V+psi*psi'; // updt of information matrix

Vy=V(1,1); Vyp=V(2:$,1); Vp=V(2:$,2:$); // divisioning of inf. matrix

thE(:,t)=inv(Vp+1e-8*eye(Vp))*Vyp; // pt estimates of reg. coefficints

r(t)=(Vy-Vyp'*inv(Vp+1e-8*eye(Vp))*Vyp)/t; // pt estimates of noise variance

end

// Results

set(scf(1),'position',[500 60 600 500])

for i=1:nth-1

subplot(nth,1,i),plot(thE(i,:))

if i==1, title('Regression coefficients'), end

end

set(scf(2),'position',[50 60 400 200])

plot(r)

title('Noise variance')

set(scf(3),'position',[50 360 400 200])

plot(1:nd,yt,1:nd,ut)

legend('output','input');

title 'Dataset for estimation'

disp(th','Simulated parameters')

disp(thE(:,$)','Easimated parameters')

• Estimation of real data

Here, real dataset of intensities measured in the Strahov tunnel is used for estimation. The
dataset contains measurements with 5 minutes period of sapling for approximately nine weeks.
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One day contains 288 samples. Here we have selected third day and we start here with the 50th

sample (it is sometimes in the morning - approximately at 4 o'clock). The end is at midnight.

Again, the order of the estimated model (there is no other one) has the order that can be set
by the option ord.

Here, again, the veri�cation of the estimation success is problematic. The best way of ver-
i�cation is making a prediction and comparing the real data with this prediction. We shall
demonstrate this case in the Paragraph 15.8.

// T22estCont_B4.sce

// ESTIMATION OF 2ND ORDER REGRESSION MODEL

// Estimation with REAL DATA (intensities of traffic in Strahov tunnel)

// i.e. MODEL STRUCTURE MISMATCH is tackled.

// - Bayesian on-line estimation with statistic update

// - cannot be done without estimation !!!

// Experiments

// - change the order of model for estimation

// Result: estimated parameters (better with prediction - T32preCont_Adapt3.sce)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

ord=5; // order of the estimated model

// selection of dataset

k=3; // selected day

nz=50; // beginning of the day

nd=288; // length of the whole one day data

// DATA

dtAll=csvRead('STRAHOV.csv',';');

dt=dtAll((k-1)*288+(nz+1:nd),1);

yt=dt(:,1);

// ESTIMATION

nth=ord+2;

V=1e-8*eye(nth,nth); // initial information matrix

for t=(ord+1):(nd-nz)

psi=[yt(t:-1:t-ord); 1];// reg. vector

V=V+psi*psi'; // updt of information matrix

Vy=V(1,1); Vyp=V(2:$,1); Vp=V(2:$,2:$); // divisioning of inf. matrix

thE(:,t)=inv(Vp+1e-8*eye(Vp))*Vyp; // pt estimates of reg. coefficints

r(t)=(Vy-Vyp'*inv(Vp+1e-8*eye(Vp))*Vyp)/t; // pt estimates of noise variance

end

// Results
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set(scf(1),'position',[500 60 600 500])

for i=1:nth-1

subplot(nth,1,i),plot(thE(i,:))

if i==1, title('Regression coefficients'), end

end

set(scf(2),'position',[50 60 400 200])

plot(r)

title('Noise variance')

set(scf(3),'position',[50 360 400 200])

plot(1:nd-nz,yt)

legend('output');

title 'Dataset for estimation'

disp(thE(:,$)','Easimated parameters')
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15.6 Estimation with discrete model

Program performs current estimation of model parameters. It begins in a standard way.

The �rst loop is simulation. First, determination of the row in model matrix and then gener-
ation of the output from the row see Paragraph 4.1.

The second loop is estimation. Determination of the row, update of the statistics V (see (6.5))
and computation of point estimates of the parameters by normalization of the statistics (see
(6.6)).

Finally, plot of the results - time evolution of the estimated parameters.

// T23estDisc.sce

// ESTIMATION OF DISCRETE MODEL

// f(y(t)|u(t),y(t-1)) with y,u from {0,1}

// Experiments

// - change number of values of individual variables

// - increase the model order

// -------------------------------------------------------------------

exec("ScIntro.sce",-1)

// SIMULATION

nd=500; // number of steps

// parameters of simulation

thS= [.2 .8

.6 .4

.9 .1

.3 .7];

ut=(rand(1,nd,'u')>.3)+1; // control variable P(ut=1)=.3, P(ut=2)=.7

yt(1)=1; // initial condition for output

// time loop of simulation

for t=2:nd

i=2*(ut(t)-1)+yt(t-1); // row in the model parameter

yt(t)=(rand(1,1,'u')>thS(i,1))+1; // generation of the output

end

// ESTIMATION

V=zeros(4,2); // initial statistics

for t=2:nd

i=2*(ut(t)-1)+yt(t-1); // row of model matrix

V(i,yt(t))=V(i,yt(t))+1; // updt of statistics

thp=V./(sum(V,2)*ones(1,2)); // pt estimates of parameters

thE(:,t)=thp(:,1);
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end

// Results

set(scf(1),'position',[600 60 600 500])

for i=1:4

subplot(4,1,i)

plot(thE(i,:)) // estimated

plot((nd-199:nd),ones(1,200)*thS(i,1),':r','linewidth',2) // true

set(gca(),'data_bounds',[0 nd -.1 1.1])

if i==1,

title('Evolution ot parameter estimates (left column, only)')

legend('estimated','true',[350 1.2]);

end

end

disp(thS,'Simulated parameter')

disp(thp,'Estimated parameter')

The result is

where the evolution of estimated parameters (probabilities for y1 = 1) are displayed (blue
curves) and compared to the true values of these parameters (red piece of line). Again, as in
the previous program we can see that some 100 data would be enough for good estimation.
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Remark

Only probabilities of yt = 1 are treated. Those for yt =2 are complementary to one.
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15.7 Prediction with continuous model

The program performs general np-nstep prediction with the regression model. The prediction
gives point estimate of the future output and in th regression vector it uses also point estimates
of the unknown output. The program runs as if in real time. It has only one time loop in
which both simulation and subsequently prediction runs.

The prediction is simple - it consists in repetitive use on the model always shifted one step
ahead. However, its realization is a bit tricky. We must distinguish the �rst step of the np-nstep
prediction when the regression vector get the really measured values of the output. For the
subsequent steps the output is unknown and is replaced by its prediction from the previous
time instants. So, in the part of prediction, the �rst step is performed with the regression
vector ps �lled by measured values of the inputs and outputs. Then a local loop begins with
time tj which is a virtual time of future steps of the prediction tj = t+1, t+2, ..., t+np. For
these steps the regression vector is constructed from the old one, so that it takes new value
of input, then last predicted output, then the old regression vector with the last three steps
committed (too old data) and with 1 at its end.

Example

If e.g. the old regression vector was ψ3 = [u3, y2, u2, y1, u1, 1] then the new (shifted) one, using

prediction for y3 = ŷ3 will be ψ4 = [u4, ŷ3, u3, y2, u2, 1] where the part u3, y2 is taken from ψ3.

// T31preCont.sce

// NP-STEP PREDICTION WITH CONTINUOUS MODEL (KNOWN PARAMETERS)

// Experiments

// Change: - np = number of steps of prediction

// - r = noise variance

// - th = model parametrs

// - u = input signal

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

nd=100; // number of data

np=5; // length of prediction (np>=1)

// b0 a1 b1 a2 b2 k

th=[1 .4 -.3 -.5 .1 1]'; // regression coefficients

r=.02; // noise variance

u=sin(4*%pi*(1:nd)/nd)+rand(1,nd,'norm'); // input

y(1)=1; y(2)=-1; // prior data

// TIME LOOP

for t=3:(nd-np) // time loop (on-line tasks)

// prediction
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ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // first reg. vec for prediction

yy=ps'*th; // zero prediction for time = t (np=0)

for j=1:np // loop of predictions for t+1,...,t+np

tj=t+j; // future times for prediction

ps=[u(tj); yy; ps(1:$-3); 1]; // reg.vecs with predicted outputs

yy=ps'*th; // new prediction (partial)

end

yp(t+np)=yy; // final prediction for time t+np

// simulation

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // regression vector for sim.

y(t)=ps'*th+sqrt(r)*rand(1,1,'norm'); // output generation

end

// Results

s=(np+3):(nd-np);

scf(1);

plot(s,y(s),'.:',s,yp(s),'rx')

set(gca(),"data_bounds",[1 nd -3 5])

legend('output','prediction');

title(string(np)+'-steps ahead prediction')

RPE=variance(y(s)-yp(s))/variance(y) // relative prediction error

After the local loop for j=2:np the �nal predicted value for time t+np is remembered at
yp(t+np).

In the end the results are plotted - here the generated and predicted outputs are compared.

The result is

Relative prediction error RPE = 0.07
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The 5-step prediction is demonstrated, here. The di�erences between output (blue points)
and their predictions (red crosses) are small for 5 steps. This fact is also expressed by the
Relative prediction error

RPE =
var (y − yp)

var (y)

which says how great is the prediction error relative to the output noise. The reason is: (i)
the prediction knows precisely the model parameters, (ii) the same regression model is used
for both simulation and prediction, (iii) the variance of the model noise is small (r = 0.02).

Prediction under model structure mismatch

Prediction without estimation in case of models mismatch does not make any sense. We will
show individual cases of this task in the following Paragraph 15.8 where prediction combined
with estimation is treated.
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15.8 Adaptive on-line prediction with continuous model

Here, the prediction based on the model with unknown parameters is realized. The program
is a combination of those performing estimation and prediction.

It starts in a standard way: length of data nd and prediction np, de�nition of regression model
parameters (for simulation - at prediction they are as if unknown) and initialization of both
estimation and prediction.

The time loop performs three subsequent steps. First simulation then, with the newly gener-
ated data, estimation and �nally prediction. All these steps are described earlier. Namely at
Paragraphs 15.1, 15.5 and 15.7.

In the end of the program the results are printed and plotted. The parameter for simulation
are compared to those coming from estimation, the evolution of estimated parameters are
shown and the output and predicted output are compared.

// T32preCont_Adapt.sce

// N-STEP PREDICTION WITH CONTINUOUS MODEL (WITH ESTIMATION)

// Experiments

// Change: - np = number of steps of prediction

// - r = noise variance (effect on estimation)

// - th = model parametrs

// - u = input signal (effect on estimation)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

nd=100; // number of data

np=5; // length of prediction (np>=1)

nz=3; // starting time (ord+1)

// b0 a1 b1 a2 b2 k

th=[1 .4 -.3 -.5 .1 1]'; // regression coefficients

r=.2; // noise variance

u=sin(4*%pi*(1:nd)/nd)+rand(1,nd,'norm'); // input

y(1)=1; y(2)=-1; // prior data

Eth=rand(6,1,'n'); // prior parametrs

nu=zeros(4,2);

for t=nz:(nd-np) // time loop (on-line tasks)

// prediction

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // regression vector

yy=ps'*Eth; // first prediction at t+1

for j=1:np // loop of predictions for t+2,..,t+np

tj=t+j; // future times for prediction

ps=[u(tj); yy; ps(1:$-3); 1]; // reg.vecs with predicted outputs
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yy=ps'*Eth; // new prediction (partial)

end

yp(t+np)=yy; // final prediction for time t+np

// simulation

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // regression vector for sim.

y(t)=ps'*th+sqrt(r)*rand(1,1,'norm'); // output generation

// estimation

Ps=[y(t) u(t) y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // reg.vect. for estim.

if t==nz, V=1e-8*eye(length(Ps)); end // initial information matrix

V=V+Ps*Ps'; // update of statistics

Vp=V(2:$,2:$);

Vyp=V(2:$,1);

Eth=inv(Vp+1e-8*eye(Vp))*Vyp; // point estimates

Et(:,t)=Eth(:,1); // stor est. parameters

end

// Results

disp(' Simulated parameters')

disp(th)

disp(' Estimated parameters')

disp(Eth)

set(scf(1),'position',[100 100 1200 400]);

subplot(121),plot(Et')

set(gca(),"data_bounds",[0 nd+1 -1 2])

title('Evolution of estimated parameters')

subplot(122)

s=(np+3):(nd-np);

plot(s,y(s),'.:',s,yp(s),'rx')

set(gca(),"data_bounds",[1 nd -3 5])

legend('output','prediction');

title([string(np),'-steps ahead prediction'])

Results of the program are here
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The left picture shows evolution of parameters point estimates (you can see that they satis-
factorily stabilize) and the right one presents comparison of outputs and their predictions.

The values of the simulation parameters and their estimates is here

b0 a1 b1 a2 b2 k

simulation 1 0.4 -0.3 -0.5 0.1 1
estimation 1.026 0.441 -0.386 00.521 0.093 1.023

As the structures of both models is the same, the parameters should correspond. And they
do.

Prediction under model structure mismatch

Here, no parameters that could be inserted into the model exist. So, we must estimate (mostly
continuously point estimates) and use them in the task of prediction. The theoretical basis
for prediction is given in(7.2) and point estimation is according to (6.4).

• Prediction with 3rd order model in simulation and 2nd order one used for estimation

Here, the dataset is simulated with the model of the third order and a model of the second
order is used for estimation. It is a �rst step of approaching reality, where no parameters that
can be used in model exist.

The task resembles an on-line real application where no data are known beforehand (up to
some prior ones). So, there is only one loop simulating time progress. Here, (i) the simulation
produces new data (input ut is given for the whole task time interval). Then (ii) the estimation
is performed giving actual point estimates of parameters. Last (iii) the prediction is computed
based on point estimates of parameters and providing point estimates of the future output.

The excitation of the system is in the optimal form - a sine function with the added noise. Other
types of excitation can be also tested - see programs with estimation with model mismatch.
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// T32preCont_Adapt2.sce

// N-STEP PREDICTION WITH CONTINUOUS MODEL (WITh ESTIMATION)

// The model for simulation differs from that for estimation

// i.e. MODEL STRUCTURE MISMATCH is tackled.

// Experiments

// Change: - np = number of steps of prediction

// - r = noise variance (effect on estimation)

// - th = model parametrs

// - u = input signal (effect on estimation)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

nd=100; // number of data

np=3; // length of prediction (np>=1)

// b0 a1 b1 a2 b2 a3 b3 k

th=[1 .4 -.3 -.5 .1 .6 .1 1]'; // regression coefficients

r=.2; // noise variance

u=sin(4*%pi*(1:nd)/nd)+rand(1,nd,'norm'); // input

y(1)=1; y(2)=-1; y(3)=0; // prior data

Eth=rand(8,1,'n'); // prior parametrs

nu=zeros(4,2);

yp=ones(1,nd);

nz=4;

for t=nz:(nd-np) // time loop (on-line tasks)

// prediction

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) y(t-3) u(t-3) 1]'; // regression vector

yy=ps'*Eth; // first prediction at t+1

for j=1:np // loop of predictions for t+2,...,t+np

tj=t+j; // future times for prediction

ps=[u(tj); yy; ps(1:$-3); 1]; // reg.vecs with predicted outputs

yy=ps'*Eth; // new prediction (partial)

end

yp(t+np)=yy; // final prediction for time t+np

// simulation

ps=[u(t) y(t-1) u(t-1) y(t-2) u(t-2) y(t-3) u(t-3) 1]'; // regression vector for sim.

y(t)=ps'*th+sqrt(r)*rand(1,1,'norm'); // output generation

// estimation

Ps=[y(t) u(t) y(t-1) u(t-1) y(t-2) u(t-2) y(t-3) u(t-3) 1]'; // reg.vect. for estim.

if t==nz, V=1e-8*eye(length(Ps)); end // initial information matrix

V=V+Ps*Ps'; // update of statistics

Vp=V(2:$,2:$);
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Vyp=V(2:$,1);

Eth=inv(Vp+1e-8*eye(Vp))*Vyp; // point estimates

Et(:,t)=Eth(:,1); // stor est. parameters

end

// Results

disp(' Simulated parameters')

disp(th)

disp(' Estimated parameters')

disp(Eth)

set(scf(1),'position',[100 100 1200 400]);

subplot(121),plot(Et')

set(gca(),"data_bounds",[0 nd+1 -1 2])

title('Evolution of estimated parameters')

legend('b0E','a1E','b1E','a2E','b2E','kE');

subplot(122)

s=(np+nz):(nd-np);

plot(s,y(s),'.:',s,yp(s),'rx')

set(gca(),"data_bounds",[1 nd -6 10])

legend('output','prediction');

title([string(np),'- step ahead prediction'])

• Prediction with real data and model of the optional order ord pre-set for 5

Here, the prediction with real data is demonstrated.

The results can be evaluated by the quality of prediction (with bad estimation we cannot have
good prediction) either visually in graphs or numerically by Relative Prediction Error RPE
which shows the ratio of noise in the prediction with respect to the noise in the output.

// T32preCont_Adapt3.sce

// np-STEP PREDICTION WITH CONTINUOUS MODEL (WITh ESTIMATION)

// REAL DATA (intensity) from Strahov tunnel are used

// i.e. MODEL STRUCTURE MISMATCH is tackled.

// Experiments

// Change: - np = number of steps of prediction

// - ord = order of the model for estimation

// Result: - visual comparison of yt and yp

// - RPE = relative prediction error

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

np=5; // length of prediction (np>=1)

ord=2; // order of the estimated model
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// data selection

k=3; // which day is selected

nz=50; // beginning of the day

nd=288*2; // length of the whole one day data

// DATA

dtAll=csvRead('STRAHOV.csv',';');

dt=dtAll((k-1)*288+(nz+1:nd),1);

nth=ord+2; // size of V

V=1e-8*eye(nth,nth); // initial information matrix

thE=rand(nth-1,1,'n'); // prior parametrs

yt=dt(1:ord); // prior data

for t=ord+1:(nd-np-nz) // time loop (on-line tasks)

// PREDICTION

ps=[yt(t-1:-1:t-ord); 1]; // regression vector

yy=ps'*thE; // first prediction at t+1

for j=1:np // loop of predictions for t+2,...,t+np

tj=t+j; // future times for prediction

ps=[yy; ps(1:(ord-1)); 1]; // reg. vector

yy=ps'*thE; // new prediction (partial)

end

yp(t+np,1)=yy; // final prediction for time t+np

// DATA MEASUREMENT (as if)

yt(t)=dt(t); // measuring of output

// ESTIMATION

psi=[yt(t:-1:t-ord); 1]; // reg. vector

V=V+psi*psi'; // updt of information matrix

Vy=V(1,1); Vyp=V(2:$,1); Vp=V(2:$,2:$); // divisioning of inf. matrix

thE(:,1)=inv(Vp+1e-8*eye(Vp))*Vyp; // pt estimates of reg. coefficints

r(t)=(Vy-Vyp'*inv(Vp+1e-8*eye(Vp))*Vyp)/t; // pt estimates of noise variance

Et(:,t)=thE; // stor est. parameters

end

// Results

// evolution of parametrs

set(scf(1),'position',[100 100 1200 400]);

subplot(121),plot(Et')

set(gca(),"data_bounds",[0 nd+1 -1 5])

title('Evolution of estimated parameters')

legend('b0E','a1E','b1E','a2E','b2E','kE');

// comparison of yt and yp
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subplot(122)

s=1:length(yt);

plot(s,yt(s),'.:',s,yp(s),'rx')

set(gca(),"data_bounds",[1 nd -4 max(yt)+5])

legend('output','prediction');

title([string(np),'- step ahead prediction'])

RPE=variance(yt(s)-yp(s))/variance(yt(s))
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15.9 Prediction with discrete model

Here, we are going to make a prediction with discrete (categorical) model with data simulated
o�-line, i.e. the whole dataset is generated beforehand. Indeed, in prediction we do as if the
present and future outputs are unknown and measured continuously.

The program starts as always. Then goes the loop for simulation and the loop for prediction
follows. The simulation is according to Paragraph 15.2.

The loop for prediction, that is the core of this program, follows the prediction with regression
model - see Paragraph 15.7 with only the di�erence, that for both simulation and prediction
is used discrete model. The simulation is discussed in Paragraph 15.2 and the same command
is used also in prediction.

As a result, output and predicted output are compared in graph.

// T33preCat_Off.sce

// PREDICTION WITH DISCRETE MODEL (OFF-LINE)

// Experiments

// Change: - np = number of steps of prediction

// - th1 = model parametrs

// - u = input signal (effect on estimation)

// - uncertainty of the system (effect on estimation)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

nd=50; // length of data sample

np=0; // length of prediction (np>=1)

th1=[0.98 0.01 0.04 0.97]'; // parameters for simulation (for y=1)

th=[th1 1-th1]; // all parameters

u=(rand(1,nd)>.3)+1; // input

y(1)=1;

// SIMULATION

for t=2:nd

i=2*(u(t)-1)+y(t-1); // row of the table

y(t)=(rand(1,1,'u')>th(i,1))+1; // output generation

end

// PREDICTION

yy=ones(1,nd); // fictitious predicted output

for t=2:(nd-np)

i=2*(u(t)-1)+y(t-1); // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

for j=1:np
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i=2*(u(t+j)-1)+yy; // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

end

yp(t+np)=yy; // np-step predction

end

// Results

disp(th,' Model parameters'), disp(' ')

s=(np+3):nd;

plot(s,y(s),'.:',s,yp(s),'rx')

set(gcf(),'position',[600 100 800 400])

set(gca(),"data_bounds",[0 nd+1 .9 2.1])

legend('output','prediction');

title(string(np)+'-steps ahead prediction')

Wrong=sum(y(:)~=yp(:)), From=nd

The result of the program is in the following �gure

The model for simulation is near to deterministic one, s even if the prediction is �ve steps
ahead it is not bad. Only 16 out of 50 predictions is wrong.
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15.10 Adaptive prediction with discrete model

Here, a prediction based on a discrete model with unknown parameters is demonstrated. The
program is practically identical with the previous one, only estimation is inserted between
simulation and prediction. The combination of estimation and prediction can be seen also in
Paragraph 15.8.

// T34preCat_OffEst.sce

// PREDICTION WITH DISCRETE MODEL (OFF-LINE)

// Experiments

// Change: - length of prediction

// - uncertainty of the simulated model

// - imput signal (effect on estimation)

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

nd=50; // number of data

np=5; // length of prediction

th1=[0.8 0.1 0.4 0.7]'; // parameters for simulation (for y=1)

th=[th1 1-th1]; // all parameters

u=(rand(1,nd)>.3)+1; // input

y=ones(1,nd);

// SIMULATION

for t=2:nd

i=2*(u(t)-1)+y(t-1); // row of the table

y(t)=(rand(1,1,'u')>th(i,1))+1; // output generation

end

// ESTIMATION

nu=zeros(4,2);

for t=2:nd

i=2*(u(t)-1)+y(t-1); // row of the table

nu(i,y(t))=nu(i,y(t))+1; // statistics update

end

Eth=nu./(sum(nu,2)*ones(1,2)); // estimate of parameters

// PREDICTION

yy(1)=1; // fictitious predicted output

for t=2:(nd-np)

i=2*(u(t)-1)+y(t-1); // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

for j=1:np

i=2*(u(t+j)-1)+yy; // row of the table
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yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

end

yp(t+np)=yy; // np-step predction

end

// Results

disp(' Simulated parameters')

disp(th)

disp(' Estimated parameters')

disp(Eth)

s=(np+3):nd;

plot(s,y(s),'.:',s,yp(s),'rx')

set(gcf(),'position',[300 100 500 400])

set(gca(),"data_bounds",[0 nd+1 .9 2.1])

legend('output','prediction');

title(string(np)+'-steps ahead prediction')

Wrong=sum(y(:)~=yp(:))

From=nd

The results are here

where again with 5-steps ahead predictions is used and 27 out of 50 of them are wrong.

The simulated and estimated parameters are:
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Simulation Estimation
ut, yt−1 yt = 1 yt = 2 yt = 1 yt = 2

1 1 0.8 0.2 1 0
1 2 0.1 0.9 0.083 0.917
2 1 0.4 0.5 0.211 0.789
2 2 0.7 0.3 0.765 0.235
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15.11 Adaptive on-line prediction with discrete model

Again the same case as in the previous program is presented here with the di�erence that all
the tasks (simulation, estimation and prediction) are performed in one time loop. It means, the
situation that occurs in a practical task, when the data are measured and used continuously.

// T35preCat_OnEst.sce

// PREDICTION WITH DISCRETE MODEL (ON-LINE)

// Change: - length of prediction

// - uncertainty of the simulated model

// - imput signal

// - study the beginning when estimation is not finished

// how can we secure quicker transient phase of estimation?

// Remark: another way og generation is

// y(t)=sum(rand(1,1,'u')>cumsum(th(i,:)))+1;

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),mode(0)

nd=150; // number of data

np=2; // length of prediction

th1=[0.98 0.01 0.04 0.97]'; // parameters (for y=1)

th=[th1 1-th1]; // all parameters

u=(rand(1,nd+np,'u')>.3)+1; // input

y(1)=1;

// TIME LOOP

nu=1e-8*ones(4,2);

Et=zeros(4,nd-np);

for t=2:nd // time loop

// prediction

i=2*(u(t)-1)+y(t-1); // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

for j=1:np

i=2*(u(t+j)-1)+yy; // row of the table

yy=(rand(1,1,'u')>th(i,1))+1; // prediction generation

end

yp(t+np)=yy; // np-step predction

// simulation

i=2*(u(t)-1)+y(t-1);

y(t)=(rand(1,1,'u')>th(i,1))+1;

// estimation

i=2*(u(t)-1)+y(t-1); // row of model matrix
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nu(i,y(t))=nu(i,y(t))+1; // statistics update

Eth=nu./(sum(nu,2)*ones(1,2)); // pt estimates

Et(:,t)=Eth(:,1);

end

// Results

disp(' Simulated parameters')

disp(th)

disp(' Estimated parameters')

disp(Eth)

s=np+2:np+51;

set(scf(),'position',[100 100 1000 400])

subplot(121),plot(Et')

title('Evolution of estimated parameters')

set(gca(),"data_bounds",[0 nd-np+1 -.1 1.1])

subplot(122),plot(s,y(s),s,yp(s),'.:')

title('First 50 outputs and their prediction')

set(gca(),"data_bounds",[s(1) s($) .9 2.1])

s=np+2:nd;

Wrong=sum(y(s)~=yp(s))

From=nd-np

The results of the program are
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where the picture shows time evolution of parameter point estimates (only left column of the
model matrix is shown - the other one is a complement to one) The accuracy of the prediction
(i.e. the ratio of the good predictions relative to the data length) is 0.162 which is due to only
2-steps ahead prediction and the mode near to deterministic one.
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15.12 State estimation

This program deals with an unknown variable, called state, whose values must be estimated
on the basis of information gained from the measured input and output. The estimation uses
Kalman �lter.

At the beginning of the program, parameters of the state-space model for simulation, input
signal and initialization of simulation are performed.

Then loop for simulation follows.

After the simulation, all what is necessary for Kalman �lter is prepared. They are covariance
matrices and values of the initial state. As we have said in the theory (see Paragraph 8.2) the
covariance of the state estimate Rx is set as a diagonal one with large diagonal (here 1000).
The covariances Rw of the state noise and Rv of the output noise are problematic. Here, the
situation is simple, as we work with simulated data and thus we know these covariances from
simulation. However, in practice we must sometimes experiment with their setting.

The estimation itself is very simple and it consists in recursive call of the Kalman �lter function.
It recomputes the state expectation xp and covariance Rx. What we are mostly interested is
continuous point estimate of the state.

Remarks

1. The square brackets [] in the argument of Kalman �lter stay for constants of the space

state model - here they are not used. The full state-space model has the form

xt = Mxt−1 +Nut−1 + F + wt

yt = Axt +But +G+ vt

where F and G are constants of the model.

2. Do not forget to use the command getd() at he beginning of the program to load the

Kalman �lter at memory.

// T46statEst_KF.sce

// STATE ESTIMATION (KALMAN FILTER)

// Experiments

// - change model parameters M,N,A,B

// - set different system and model covariances rw,rv and Rw,Rv

// - try lower stat-estimate covariance Rx

// -------------------------------------------------------------------

exec("ScIntro.sce",-1), getd()

nd=200; // number of data

// SIMULATION

// parameters of simulation
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M=[.8 .1

.3 .6];

N=[.5 -.5]';

A=[.9 -.2];

B=0;

rw=.1*eye(2,2);

rv=.1;

xt(:,1)=[0 0]';

ut=rand(1:nd,'n');

// time loop of simulation

for t=2:nd

xt(:,t)=M*xt(:,t-1)+N*ut(t)+rw*rand(2,1,'n');

yt(t) =A*xt(:,t)+B*ut(t)+rv*rand(1,1,'n');

end

// ESTIMATION

// initialization of estimation

Rw=.1*eye(2,2); // state noise covariance

Rv=.1; // output noise vovariance

Rx=1000*eye(2,2); // estimated state covariance

xp(:,1)=zeros(2,1); // initial state

// loop for state estimation

for t=2:nd

[xp(:,t),Rx,yp(t)]=Kalman(xp(:,t-1),yt(t),ut(t),M,N,[],A,B,[],Rw,Rv,Rx);

end

// RESULTS

subplot(311),plot(1:nd,xt(1,:),1:nd,xp(1,:))

set(gcf(),"position",[700 100 600 500])

title('First state entry')

legend('state','estimate')

subplot(312),plot(1:nd,xt(2,:),1:nd,xp(2,:))

title('Second state entry')

legend('state','estimate')

subplot(313),plot(1:nd,yt,1:nd,yp')

title('Output')

legend('output','estimate')

The result is
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Here, two dimensional state and scalar output are considered. The �rst two graphs in the
picture show two components of the state in comparison with their estimates. The last graph
shows comparison of the output and its prediction.

The data are simulated, so, the exact covariances of state and output are known and used.
That is why the convergence of the algorithm is so fast. Also the precision is very good.
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15.13 Noise �ltration

Kalman �lter is often used as a noise �lter. Here, we will show how it can be done.

Let us have a true signal gt that is corrupted by noise vt. We can measure only the corrupted
signal yt = gt + vt. We introduce the pure unknown variable as a state xt = gt. Then the
state-space model takes the form

xt = xt−1 + wt

yt = xt + wt

where we say: the unknown signal is smooth (it changes only by small increments -values of
the noise wt with relatively small variance). What we measure is the pure signal with noise.

Now, variance of the noise wt determines how big changes in the unknown signal are admitted;
variance of the noise vt says how big changes of the noise vt are expected. I.e. which changes
are to be assigned to signal changes and which are to be covered by noise.

After a de�nition of the state-space model and setting the values to Rw and Rv,standard
Kalman �lter i called.

As a result, we plot both the noisy and estimated signals. Here, we can judge quality of the
estimate and possibly change the covariances.

Remark

If the estimated signal is too noisy, we should enlarge the covariance of the output model.

If the estimated signal does not follow the average of the measured variable, we should enlarge

the covariance of the state noise.

// T47statEst_Noise.sce

// KALMAN AS A NOISE FILTER

// Experiments

// - change Rw and Rv to catch properly the signal

// - Rw ... changes of the signal

// - Rv ... changes of the noise

// -------------------------------------------------------------------

exec SCIHOME/ScIntro.sce, mode(0), getd()

// SIMULATION

tt=0:.1:(2*%pi);

nt=length(tt);

sd=2; // simulation noise

e=[sd*rand(1,nt,'n'); sd*rand(1,nt,'n')];

g=[10*cos(tt); 15*sin(tt)]; // pure signal (ellipse)

x=g+e; // measured noisy signal
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// FILTRATION

Rz=1e6*eye(2,2); // state-estimate cov. matrix

Rw=.01*eye(2,2); // state-model cov. matrix

Rv=.1*eye(2,2); // output-model cov. matrix

M=[1 0 // state-model matrices

0 1];

A=[1 0

0 1];

N=[0 0]';

F=[0 0]';

B=0;

G=0;

zt(:,1)=[0 0]'; // initial state

for t=2:nt

[zt(:,t),Rz,yp]=Kalman(zt(:,t-1),x(:,t),0,M,N,F,A,B,G,Rw,Rv,Rz);

end

// Results

plot(g(1,:),g(2,:),'k:')

plot(x(1,:),x(2,:),'b.')

plot(zt(1,:),zt(2,:),'r.:')

legend('signal','measurements','estimate');

The result is here
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The pure signal forms the circle. The output (pure signal + noise) is denoted by the blue dots.
The estimate of the pure signal is the red curve. The goal is to obtain as smooth estimate
as possible, however, following the pure signal. To this end the covariances of the state and
output should be tuned.

Remark

In the simulated case, as this, we can see both the pure signal and its estimate. In a real case,

we cannot see the pure signal. Then we demand the estimate to be smooth enough and to

approximate the measured output well.
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15.14 Control with regression model

This program demonstrates optimal control on a �nite interval with a regression model with
known parameters. The derivation of the control synthesis is based on the state-space model
(see Paragraph 3.1) and uses the Bellman equations (see Paragraph 10.2). The penalty must
be accommodated for the state-space approach.

The program starts with de�nition of regression model parameters and the penalization matrix
Om (for its constructions see Paragraph 10.2). Also the variables S and R are introduced as
list() (they will be vectors of matrices).

Then the control optimization follows in the loop for t=nd:-1:2 here the matrix S(t) of the
optimal control is constructed against the direction of time.

After it, the value of the control variable u(t) is computed in the direction of time using the
corresponding entry of the list S: u(t)=-Sx(t-1) where the last state is x(t-1)=[y(t-1) u(t-1)
y(t-2) u(t-2) 1]. After computing of u(t), it is immediately used for generation of new value of
the output y(t).

As a result the controlled output is plotted.

Remark

The program listed uses a control of the output to the de�ned setpoint st. This can be done, if

the control penalization is introduced in the form

(yt − st)2 + ωu2
t .

The criterion aims at achieving yt − st → 0 and thus yt → st. The setpoint st must be

de�ned and then it enters the program only in the penalization matrix in the loop of control

optimization.

// T53ctrlX.sce

// Control with scalar 2nd order regression model

// - simulated data

// y(t)=b0*u(t)+a1*y(t-1)+b1*u(t)+a2*y(t-2)+b2*u(t-2)+k+e(t);

// - state realization of the model for synthesis

// - control on a single control interval with the length nd

// - following a settpoint s(t)

// Experiments

// - change penalizations of input(om) and input increments (la)

// - set new setpoint s

// -------------------------------------------------------------------

exec("ScIntro.sce",-1), mode(0)

nd=100; // length of control interval

a1=.6; a2=-.2; b0=1; b1=.4; b2=-.1; k=-3; sd=.1; // regression model parameters

om=0; la=.1; // penalization (input, increment)
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s=sign(10*sin(18*(1:nd)/nd)); // setpoint generation

// conversion to state-space model

M=[a1 b1 a2 b2 k

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1]; // state matrix with set-point

N=[b0 1 0 0 0]';

Om=diag([1 om+la 0 la 0]); // matrix penalization

Om(2,4)=-la; Om(4,2)=-la;

S=list();

R=list();

R(nd+1)=zeros(Om); // initial condition for dyn. progr.

// CONTROL

// computation of control-law

for t=nd:-1:2

Om(1,$)=-s(t); Om($,1)=-s(t); Om($,$)=s(t)**2;

T=R(t+1)+Om;

A=N'*T*N;

B=N'*T*M;

C=M'*T*M;

S(t)=inv(A)*B;

R(t)=C-S(t)'*A*S(t);

end

// control-law realization

y(1)=5; y(2)=-1;

u(1)=0; u(2)=0;

for t=3:nd

u(t)=-S(t)*[y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // optimaal control

y(t)=a1*y(t-1)+a2*y(t-2)+b0*u(t)+b1*u(t-1)+b2*u(t-2)+k+sd*rand(1,1,'n'); // simulation

end

// RESULTS

x=1:nd;

plot(x,y(x),'--',x,u(x),x,s(x),':')

title 'Control with the 2nd order regression model'

legend('y','u','s');

The result of the control is in the following picture

129



The output follow the setpoint well, especially in the jumps. That is because the setpoint is
known beforehand and the controller can get prepared for it.

130



15.15 Adaptive control with regression model

Adaptive control is suboptimal one. It uses so called receding horizon method. It consists in
the following scheme (let us be at time t consider 3 steps control interval):

1. For existing point estimates of model parameters it designs control law for the control
interval (from the end t+ 3 to the beginning t). From the designed control, we use only
the �rst control (at time t), apply it and measure new output yt.

2. With the newly measured data ut and yt we recompute estimation and obtain new point
estimates of parameters.

3. We shift the control interval one step, i.e. for times t+ 1 up to t+ 3 + 1.

These three steps are repeated with the parameters estimates continuously improved. With
improved parameters also the control should improve.

The program starts with de�nitions of various constants including model parameters for sim-
ulation.

Then pre-estimation runs - it is estimation with prior data still without control. This phase
is almost necessity. If we would enter the full adaptive control with accidentally values of
parameters then the control would be very bad and the worse the response of the system after
application this control. Thus the system could be over-excited and and very probably the
control would fail. After this pre-estimation we hope the parameters will be good enough to
obtain a stabilized control process.

After pre-estimation the setpoint s(t) is de�ned, initial condition set and penalization matrix
and matrices of the state-space model constructed.

Now, we have several loops. The above one is the loop for running time. Then the optimization
loop follows running against the time. Here the �rst control is computed and immediately
applied into the simulation. Ten, with the new data, the estimation goes, providing recomputed
point estimates of parameters.

In the end, the results are shown.

// T54ctrlXEst.sce

// Control with scalar 1st order regression model

// - simulated data y(t)=a*y(t-1)+b*u(t)+k+e(t);

// - state realization of the model for synthesis

// - control on a receding control interval with the length nh

// - following a settpoint s(t)

// Experiments

// - change setpoint and system parameters (slow - quick system)

// - penalization of input variable

// - initial condition for estimation (better or worse initial param.)
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// - length of control interval nh

// -------------------------------------------------------------------

exec("ScIntro.sce",-1), mode(0)

nd=100; // number of data to be controlled

ni=20; // length of pre-etimation

nh=15; // length of control interval

a1=.6; a2=.2; b0=1; b1=-.4; b2=.1; k=-3; // parameters for simulation

sd=.1; // stdev for simulation

om=.01; la=.001; // penalization of input / increments

// PRE-ESTIMATION

V=1e-8*eye(7,7); // initial information matrix

ui(1:2)=zeros(1,2); yi(1:2)=zeros(1,2);

for t=3:ni

ui(t)=rand(1,1,'n');

yi(t)=a1*yi(t-1)+a2*yi(t-2)+b0*ui(t)+b1*ui(t-1)+b2*ui(t-2)+k+.01*rand(1,1,'n');

Ps=[yi(t) yi(t-1) yi(t-2) ui(t) ui(t-1) ui(t-2) 1]';

V=V+Ps*Ps';

end

Vyp=V(2:$,1); Vp=V(2:$,2:$); thi=inv(Vp)*Vyp; // point estimates

a1E=thi(1); a2E=thi(2); b0E=thi(3); b1E=thi(4); b2E=thi(5); kE=thi(6);

thi=[a1E a2E b0E b1E b2E kE];

s=sign(100*sin(18*(1:nd+nh)/(nd+nh))); // set-point

y(1)=1; y(2)=-1; // initial output

u(1)=0; u(2)=0; // initial control

Om=diag([1 om+la 0 la 0]); // matrix penalization

Om(2,4)=-la; Om(4,2)=-la;

M=[a1E b1E a2E b2E kE

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1]; // state-space model

N=[b0E 1 0 0 0]'; // state-space model

// COMPUTATION OF CONTROL-LAW

for t=3:nd // loop for control

R=0; // initial condition for dyn.prog.

for i=nh:-1:1 // loop for receding horizon

Om(1,$)=-s(t+i-1);

Om($,1)=-s(t+i-1);

Om($,$)=s(t+i-1)**2;
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T=R+Om; // dynamic

A=N'*T*N; // programming

B=N'*T*M;

C=M'*T*M;

S=inv(A)*B;

R=C-S'*A*S;

end

// CONTROL REALIZATION (simulation)

u(t)=-S*[y(t-1) u(t-1) y(t-2) u(t-2) 1]'; // optimal control value

y(t)=a1*y(t-1)+a2*y(t-2)+b0*u(t)+b1*u(t-1)+b2*u(t-2)+k+sd*rand(1,1,'n'); // simulation

// ESTIMATION

Ps=[y(t) y(t-1) y(t-2) u(t) u(t-1) u(t-2) 1]';

V=V+Ps*Ps';

Vyp=V(2:$,1);

Vp=V(2:$,2:$);

th=inv(Vp)*Vyp; // point estimates

a1E=th(1); // regression

a2E=th(2); // coefficients

b0E=th(3);

b1E=th(4);

b2E=th(5);

kE=th(6);

end // of loop for control

// RESULTS

th=[a1 a2 b0 b1 b2 k]; // simulated parameters

thE=[a1E a2E b0E b1E b2E kE]; // estimated parameters

z=1:nd;

set(scf(),'position',[900 50 600 500])

plot(z,y(z),'--',z,u(z),z,s(z),':')

legend('y','u','s');

disp(th,'simulated parametrs')

disp(thi,'initial parametrs')

disp(thE,'estimated parametrs')

The result of th program is here
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In th �gure we can see the setpoint (blue), the controlled output (red) as well as the control
signal (green). We can see that the estimation is very fast - practically from the very beginning
the output follows the setpoint satisfactorily.
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15.16 Control with discrete model

This control runs similarly as those with continuous model according to the Bellman equations
(see Paragraph 11.1). However, its realization is not easy and we let the reader to look at
the program, if he is interested. In any case, the program should run and it is possible to
experiment with it.

// T52ctrlDisc.sce

// CONTROL WITH DISCTRETE DYNAMIC MODEL

// Experiments

// Change: - criterion om

// - uncertainty of the system

// -------------------------------------------------------------------

exec("ScIntro.sce",-1),getd()

// VARIABLES TO BE SET

nh=30; // length of control interval

y0=1; // initial condition for output

//y 1 2 u y1 = criterion

om=[1 2 // 1 1

2 3 // 1 2

2 3 // 2 1

3 4]; // 2 2 ... preference of lower indexes

//y 1 2 u y1 = system model

th=[.9 .1 // 1 1

.4 .6 // 1 2

.8 .2 // 2 1

.1 .9]; // 2 2 ... rather uncertain system

// computed variables and initializations

fs=zeros(1,2);

// CONTROL LAW COMPUTATION

for t=nh:-1:1

fp=om+ones(4,1)*fs; // penalty + reminder from last step

// expectation

f=sum((fp.*th),'c'); // expectation over y

// minimization

if f(1)<f(3), // for y(t-1)=1

us(t,1)=1; fs(1)=f(1); // optimal control, minimum of criterion

else

us(t,1)=2; fs(1)=f(3); // optimal control, minimum of criterion
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end

if f(2)<f(4), // for y(t-1)=2

us(t,2)=1; fs(2)=f(2); // optimal control, minimum of criterion

else

us(t,2)=2; fs(2)=f(4); // optimal control, minimum of criterion

end

end

J=fs(y0); // final value of criterion

// CONTROL APPLICATION

y(1)=y0;

for t=1:nh

u(t+1)=us(t,y(t)); // optimal control

y(t+1)=dsim(u(t+1),y(t),th); // simulation

end

// RESULTS

plot(1:nh+1,y,'ro',1:nh+1,u,'g+')

set(gcf(),"position",[700 100 600 500])

legend('output','input')

set(gca(),'data_bounds',[.8 nh+.2, .8 2.2])

title('Optimal control with discrete model')

printf('\n Minimal value of the expectation of criterion: %g\n',J)

The result is here
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The penalization gives preference to lower numbers for both input and output. We can see
this preference in the �gure. The errors are caused by uncertainty in th model.
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16 Supporting subroutines

16.1 Simulation of discrete data

This function performs simulation of the output from the discrete model

f (yt|ut, yt−1,Θ) = Θyt|ut,yt−1

We call the case simulation of a controlled coin with memory. It is because it contains control
variable ut and remembers the last output yt−1. The model is given by the matrix of conditional
probabilities for individual yt, ut, yt−1 ∈ {1, 2} see Paragraph 4.1.

function y=dsim(u,y1,th)

// y=dsim(u,y1,th) Simulation of a disctrete system

// y new output

// u input

// y1 old nput

i=psi2row([u y1]); // index of conditional regressor

yy=rand(1,1,'unif')<th(i,1); // probability of conditional regressor

y=2-yy; // output (with values 1, 2)

endfunction

138



16.2 Kalman �lter

This procedure performs the algorithm of Kalman �ltering. It was discussed in Paragraph
15.12

function [xt,Rx,yp]=Kalman(xt,yt,ut,M,N,F,A,B,G,Rw,Rv,Rx)

// Kalman filter for state estimtion with the model

// xt = M*xt + N*ut + F + w

// yt = A*xt + B*ut + G + v

// xt state

// Rx state estimate covariance matrix

// yp output prediction

// yt output

// ut input

// M,N,F state model parameters

// A,B,G output model parameters

// Rw state model covariance

// Rv output model covariance

nx=size(M,1);

ny=size(A,1);

if isempty(F), F=zeros(nx,1); end

if isempty(G), G=zeros(ny,1); end

xt=M*xt+N*ut+F; // time update of the state

Rx=Rw+M*Rx*M'; // time updt. of state covariance

yp=A*xt+B*ut+G; // output prediction

Ry=Rv+A*Rx*A'; // noise covariance update

Rx=Rx-Rx*A'*inv(Ry)*A*Rx; // state est. coariance update

ey=yt-yp; // prediction error

KG=Rx*A'*inv(Rv); // Kalman gain

xt=xt+KG*ey; // data update of the state

endfunction
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16.3 Coding of discrete variables

This procedure performs coding of several discrete variables into a single one with more values.
The resulting code is equal to the order of the row of matrix, where individual combinations
of the values of the entering variables are listed. The combinations are generated so that
the index of the rightmost variable changes most rapidly. An example for three variables
a ∈ {1, 2} , b ∈ {1, 2, 3} and c ∈ {1, 2} is here

row a b c

1 1 1 1
2 1 1 2
3 1 2 1
4 1 2 2
5 1 3 1
6 1 3 2
7 2 1 1
etc. for a = 2

The values of the variables must start by 1.

function i=psi2row(x,b)

// i=psi2row(x,b) i is row number of a model table with

// the regression vector x with the base b;

// elements of x(i) are 1,2,...,nb(i)

// it is based on the relation

// i=b(n-1)b(n-2)...b(1)(x(n)-1)+...+b(1)(x(2)-1)+x(1)

n=length(x);

if argn(2)<2, b=2*ones(1,n); end

bb=b(2:n);

bb=bb(:)';

b=[bb 1];

i=0;

for j=1:n

i=(i+x(j)-1)*b(j);

end

i=i+1;

endfunction
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