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In a variety of practical situations such as reverse engineering of boundary representation from

depth maps of scanned objects, range data analysis, model-based recognition and algebraic surface

design, there is a need to recover the shape of visible surfaces of a dense 3D point set. In particular,
it is desirable to identify and fit simple surfaces of known type wherever these are in reasonable

agreement with the data. We are interested in the class of quadric surfaces, i.e. algebraic surfaces
of degree 2, instances of which are the sphere, the cylinder and the cone. A comprehensive

survey of the recent work in each subtask pertaining to the extraction of quadric surfaces from

triangulations is presented.

Categories and Subject Descriptors: G.2 [Mathematics of Computing]: General; I.3 [Computing Method-
ologies]: Computer Graphics; I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling; I.4
[Computing Methodologies]: Image Processing and Computer Vision; I.4.6 [Image Processing and Computer
Vision]: Segmentation

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Shape recovery, local geometry estimation, mesh fairing, data
fitting, geometry enhancement

1. INTRODUCTION

Broadly speaking, the class of problems this paper examines can be stated as follows:
given a piecewise-linear surface, identify, to the extent possible, the regions of the surface
well described by curved patches drawn from a given simple class of shapes. Shape recov-
ery problems of this sort occur in diverse scientific and engineering application domains,
including:

• Reverse engineering: Efficiently manufacturing curved objects is an important issue in
modern industry. Indeed, more and more industrial products are being designed with
free-form surfaces. When an object has been designed with a CAGD (Computer-Aided
Geometrical Design) system, subsequent manipulation and modification can be per-
formed easily, the object being made up of parts of simple geometric shapes. This is
not so, however, if a physical prototype is produced and modified directly or if some
existing object has not been originally described using a CAGD system. There is thus
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a need to create geometric models of existing objects. This process constitutes the ge-
ometric aspect of reverse engineering (cf. [Várady et al. 1997] for an introduction). An
important step in the reverse engineering of solid models from 3D depth maps of scanned
objects is the segmentation of the input data, i.e. the grouping of the points in the origi-
nal dataset into subsets each of which logically belong to a single primitive surface (see
Figure 1).

a. b. c.

Fig. 1. Reverse engineering of a steering arm [Thompson et al. 1999]. a. Original part. b. Sensed 3D position
points. c. Exploded view of the features making up the reverse engineered part.

• Surface reconstruction and geometry enhancement: The problem of reconstructing sur-
faces from a sparse set of unorganized points arises in various contexts such as computer
graphics, computer vision and computational chemistry (see [Mencl and Müller 1998]
for a survey of ongoing research). Most currently known methods output a polyhedral
mesh interpolating the input data ([Boissonnat and Cazals 2000] is a notable exception).
But this may not be enough. For instance, people in the CAGD community consider
computing a piecewise-linear surface from a point cloud as only a first step of a more
global process and what they mean by reconstruction is fully recovering the geomet-
ric structure of the data, i.e. the surfaces underlying the point set, be them low-degree
surfaces or more complex rational B-splines.
For other applications, a partial recovery of simple shapes (spheres, cylinders, . . . ) is
sufficient. As an example, it was recently shown in the field of global illumination that
it is both physically more accurate and computationally more efficient to render low-
degree parametric surfaces directly than to tessellate them in dozens of triangles as in
traditional radiosity approaches [Alonso et al. 2001] (see Figure 2). But since the bulk
of the models known to the computer graphics community are piecewise-linear models,
it is important to be able to recover surfaces of simple geometric type in triangulated
surfaces. This is all the more so true that most man-made objects can be modeled exactly
or at least well approximated by a small set of simple surface patches. Indeed, according
to Nourse et al. [1980], 85 percent of all mechanical pieces are well described by patches
of planes, cones, spheres and cylinders. If in addition toroidal surfaces are allowed,
then this primitive set encompasses 95 percent of conventional, unsculptured parts in
industrial environments [Requicha and Voelcker 1982].

• Model-based recognition and object registration: Model-based recognition is the task of
determining which, if any, of a given set of objects appears in a given 2D image or image
sequence. Thus, object recognition is a problem of matching models from a database
with representations of those models extracted from image data. To deal with the many
possible transformations that an object may undergo in the imaging process, a popular
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a. b.

Fig. 2. Illuminating a piecewise-linear mesh (a.) and the quadrics-based model recovered (b.) [Alonso et al.
2001].

approach is to find measurements of the object that are invariant to these types of trans-
formations [Besl and Jain 1986]. If the objects considered are free-form and described
by high-order surfaces, matching may prove difficult to achieve. One possible approach
is to divide both the base models and the measured data into low-degree surface patches
and use the component patches as features in the object recognition system [Bolle and
Cooper 1986; Nguyen et al. 1999]. Such a strategy can also be useful to register objects
in the input data, i.e. to estimate their pose.

• Matching overlapping range images: The data produced by laser range scanning sys-
tems typically consists of a rectangular grid of distances from the sensor to the object
being scanned. If more sophisticated systems are capable of digitizing some types of
curved objects (e.g. cylindrical objects), the scanning of topologically more complex
objects (like those having handles) cannot be accomplished directly. Clearly, multiple
view points must be used. Matching overlapping range images is a key problem in the
construction of CAGD models from full range images (reverse engineering) and for re-
covering scene descriptions from multiple views in computer vision.
To put a set of overlapping range images in a common 3D reference frame, the tradi-
tional approach consists in first determining the motion parameters used to describe the
correspondence between points in adjacent images and then reconstructing a compos-
ite surface by mapping each range data point into a common reference frame [Soucy
and Ferrie 1997; Eggert et al. 1998]. For motion parameter calculation, it is usually
necessary to estimate local surface geometry and recover simple surface patches.

• Analytical representation of segmented volume data: The development of Magnetic Res-
onance and Computer Tomography imaging techniques has led to the ability to create
3D data sets and to view, for instance, areas of the human anatomy not previously reach-
able without invasive procedures. If one is interested not just in viewing the data but
also exploring and analyzing them (like for instance modeling the blood flow through a
diseased artery), then tools are needed to accurately and precisely recover the shape of
objects in an image. Analytically representing the digital shapes obtained by segmenting
volumetric industrial or medical images can help in this respect (see, e.g., [Sanderson
1996]).

• Surface sketching and algebraic surface design: A major task of CAGD is to automate
the design process of such industrial objects as car parts and airplane wings, usually
represented by smooth meshes of curves and surfaces. Ideally, one would like to po-
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sition a number of key points and curves and let the system infer the interpolating or
approximating shape [Bajaj et al. 1993]. Related is interactive surface sketching, where
free-form surfaces are created according to a sketch made by the user with the help of a
stylus or a mouse [Sachs et al. 1991].

While shape recovery algorithms addressing these problems have often been crafted on
a case by case basis to exploit partial structure in the data or in the problem formulation,
there are common themes to all methods. In particular, the following tasks always appear,
in one form or another:estimation (computing the local surface geometry by way of
differential parameters such as normals, curvatures, . . . ),segmentation(dividing the point
set into subsets having similar geometric characteristics),classification(deciding to which
surface type – e.g. spherical vs. cylindrical – segmented points belong) andreconstruction
(finding the surface best fitting a set of points).

This idealized separation of the tasks is an oversimplification. For instance, differential
parameters are more reliable when estimated from a fitted surface, but reconstruction needs
segmentation to be done first and segmentation is usually driven by estimates of the cur-
vatures and other differential parameters. In the field of computer vision, researchers have
advocated carrying out the three stages of segmentation, classification and fitting simulta-
neously rather than sequentially [Besl and Jain 1988]. For the sake of clarity of exposition,
we shall however follow the natural order proposed above.

Given a polyhedral surface as input, most shape recovery methods start by estimating
the local surface geometry at each point. The importance of such intrinsic properties such
as surface curvatures for describing shape has been recognized early [Besl and Jain 1986].
Indeed, such properties are unaffected by the choice of the coordinate system and the
particular parameterization of the surface. For all practical purposes, the local geometry at
a point of a differential surfaceS is well captured by a second-order surface which locally
“looks” like S. This is because differential objects like tangents, normals, curvatures and
inflections make use of first- and second-order derivatives only.

If this initial step is more or less common to all shape recovery methods, the remaining
steps depend heavily on the class of surfaces to be looked for in the data. The search for
feature lines along which the mesh is to be segmented is intimately linked to the type of
curved surfaces one wants to recover, even though some features, like sharp edges, have to
be identified regardless of which surfaces one is after.

In this paper, we are interested in second-order surfaces [Blinn 1997]. This class of
surfaces includes such shapes as ellipsoids, hyperboloids, cones, cylinders and paraboloids
(see Figure 3). We survey the shape recovery methods that have been specifically tailored
for extracting quadric surfaces or that can be nicely adapted to that class of surfaces. We
focus on triangulations more than on range images. Shape recovery methods developed
for data from structured light sensors such as the laser range finder or depth images from
stereo pairs (see [Arman and Aggarwal 1993] for a survey) rarely apply to triangle meshes.
Indeed, data from these techniques result in 3D points having a natural parameterization
(the one given by the grid on which the points are aligned) which is exploited by shape
extraction algorithms. For instance, Jiang and Bunke [1999] use the natural structure of
range images to perform a segmentation based on a scan-line algorithm. By contrast,
triangulated surfaces have no such natural parameterization [Stokely and Wu 1992].

Note that we are primarily interested in extracting quadrics from discretized data com-
ing from physical objects with exactly quadric boundaries. Indeed, close studies of the
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Fig. 3. Some instances of quadric surfaces. First row: ellipsoid, cone, hyperboloid of one sheet, hyperboloid of
two sheets. Second row: elliptic cylinder, parabolic cylinder, paraboloid, hyperbolic paraboloid.

problem have led to the conclusion that implicit quadrics are inappropriate for approxi-
mating arbitrary data [Moore and Warren 1991; Sapidis and Besl 1995]. In other words,
quadric-based segmentation fails to produce acceptable results when the data originate
from arbitrarily shaped curved objects (for instance the final regions may be small and
have many gaps).

The organization of the paper follows the succession of tasks introduced above. After
recalling some notions of differential geometry (Section 2), we review in Section 3 some
of the best methods for estimating local surface geometry, i.e. essentially normal and prin-
cipal curvatures. After differential parameters have been estimated at each data point, we
examine in Section 4 how they can be made consistent over the entire triangulation. Then
we move on to the segmentation and classification tasks in Section 5. Finally, Section 6 is
devoted to the final reconstruction and fitting step, before concluding.

2. DIFFERENTIAL GEOMETRY: A FLAVOR

As already indicated, differential geometry provides a convenient basis for describing the
local behavior of a surface in the vicinity of some particular point. It has been widely used
in computer vision and object recognition as a tool for describing surfaces. Differential
geometry parameters are also essential elements of shape recovery methods. Indeed, many
methods for estimating the local geometry of a surface approximating a set of points start
by computing some differential properties of that surface.

In this section, we recall a few key notions of differential geometry (the interested reader
should refer to [do Carmo 1976] for proofs and additional details).

In what follows,S is assumed to be a surface embedded inR3, described by an arbitrary
parameterization of two variablesX(u, v) and smooth in the vicinity of pointp.

2.1 Fundamental forms and shape operator

Up to orientation of the surface, the unit normaln to S atp is given by:

n =
Xu ×Xv

‖Xu ×Xv‖
,
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where subscripts indicate partial derivatives and× denotes the cross product. The first and
secondfundamental formsof S are defined as

I(u, v, du, dv) = dX · dX = duTGdu, II(u, v, du, dv) = −dX · dn = duTDdu,

wheredu = (du, dv)T and

G =

(
Xu ·Xu Xu ·Xv

Xu ·Xv Xv ·Xv

)
, D =

(
n ·Xuu n ·Xuv

n ·Xuv n ·Xvv

)
.

The first fundamental form measures the small amount of movement on the surface for a
given small movement in the space of the parameters(u, v). It is invariant to surface pa-
rameterization changes and to translations and rotations of the surface. It does not depend
on the way the surfaceS is embedded in 3D space, and is therefore anintrinsic property
of the surface. By contrast, the second fundamental form, which measures the change in
the unit normal for a movement in parameter space, depends on the embedding ofS and is
thus anextrinsicproperty of the surface.

For t a vector tangent toS atp, i.e. t · n = 0, define theshape operatoror Weingarten
mapβ by

β(t) = −∇tn,

where∇tn is thedirectional derivativeof n in the directiont (also calledcovariant deriva-
tiveof n by t):

(∇tn)(p) = lim
τ→0

n(p + τt)− n(p)
τ

.

The shape operator is a linear operatorΓp → Γp, whereΓp is the space tangent toS atp.
In matrix form, it writes down as

β(t) = G−1Dt.

LetS be the matrixG−1D. One can view the matrixS as the entity that determines surface
shape by relating the intrinsic geometry of the surface to the Euclidean geometry of 3D
space. It is a generalization of the curvature of plane curves.

2.2 Principal curvatures and directions

Let t again be a tangent vector atp. Thenormal curvatureof S at p in the directiont is
the curvature of the plane curve formed by the intersection of the plane defined byt andn
with the surface. It is defined by:

κn(t) =
β(t) · t
‖t‖2

.

The principal curvaturesκ1 andκ2 at p are the maximum and minimum values ofκn

respectively. The unit directionse1 ande2 for which these values are reached are called
theprincipal directionsof S atp. κ1 andκ2 are the eigenvalues of the shape operator.e1

ande2 are the corresponding eigenvectors. Withn, they form an orthonormal frame atp,
theprincipal coordinate frame. This frame is well-defined except atumbilic points, which
are points at which the principal curvatures are equal.

If θ is the angle frome1 to t in the orientation of the tangent plane toS at p, the
expression of the second fundamental form in the basis{e1, e2} is:

κn(θ) = κ1 cos2 θ + κ2 sin2 θ.
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It is known as theEuler formula. Also, if C is a curve lying onS of curvatureκ, N its
normal vector andϕ the angle betweenn andN atp, then the normal curvature ofS atp
in the direction of the tangentt toC is

κn = κ cosϕ.

This isMeusnier’s theorem.
Useful shape descriptors can be derived from the principal curvatures. Themean curva-

tureH is defined as the average of the normal curvatures:

H =
1
2π

∫ 2π

0

κn(θ) dθ. (1)

Using the Euler formula, this reduces toH = (κ1 + κ2)/2. TheGaussian curvatureK is
defined as the product of the two principal curvatures:K = κ1κ2. In other words,K is the
determinant ofS andH is its half-trace. A point of the surface is calledelliptic if K > 0,
hyperbolicif K < 0, parabolic if K = 0 andH 6= 0, andplanar if K = H = 0.

2.3 Principal quadric

A neighborhood of a smooth pointp on S can be represented in the formz = h(x, y),
wherep is the origin of the local coordinate frame and thez axis is directed by the normal
n atp. h is a differentiable function and by Taylor’s expansion atp, we have:

h(x, y) =
1
2
(hp

xxx
2 + 2hp

xyxy + hp
yyy

2) +R(x, y) with lim
(x,y)→(0,0)

R(x, y)
x2 + y2

= 0,

wherehp
xx meanshxx evaluated atp. (Note thathp

x = hp
y = 0 becausen is along thez

axis.) The quadratic surfaceQ defined as the zero-set of the equation

z =
1
2
(hp

xxx
2 + 2hp

xyxy + hp
yyy

2)

approximatesS up to order 2 and is called theprincipal or osculatingquadric ofS at p.
At a hyperbolic point,Q is a hyperbolic paraboloid. At an elliptic point, it is an elliptic
paraboloid. At a parabolic point, it is a parabolic cylinder. And at a planar point, it is a
plane.

Locally, S can be parameterized byX(x, y) = (x, y, h(x, y))T with n = (0, 0, 1)T . In
turn, this means that

G =
(

1 0
0 1

)
, D =

(
hp

xx hp
xy

hp
xy hp

yy

)
, S =

(
hp

xx hp
xy

hp
xy hp

yy

)
.

In other words, sinceκ1 andκ2 are the eigenvalues ofS, the principal quadric has the
following equation in the principal coordinate frame:

z =
1
2
(κ1x

2 + κ2y
2).

The principal quadric thus encodes all the relevant differential information of the surface
S atp.

3. LOCAL SURFACE GEOMETRY ESTIMATION

Estimating the local surface geometry at a vertexp of a piecewise-linear surface amounts
to computing what Sander and Zucker called theaugmented Darboux frame[Sander and
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Zucker 1990] atp, i.e.

∆p = (p, e1, e2,n, κ1, κ2).

Computing Darboux frames is a prerequisite to most segmentation and shape recovery
methods. It is also a key ingredient of surface re-parameterization, geometry-based subdi-
vision, mesh simplification [Heckbert and Garland 1999] and surface denoising [Desbrun
et al. 1999] algorithms. In fact, many surface-oriented applications require an approxima-
tion of the first- and second-order differential properties of a piecewise-linear surface with
as much accuracy as possible.

Estimating the Darboux frames of a subjacent, unknown, piecewise-smooth surface from
a polyhedral approximation is difficult because of the inherently discrete nature of the data.
In addition, differential quantities such as principal curvatures and directions, involving
second-order partial derivatives, are very sensitive to measurement and quantization errors.
In practice, this means that estimates computed on a local basis must be improved in a
second global stage of processing (Section 4).

This section examines some of the most powerful methods for locally estimating the
differential properties of a triangle mesh1. There are three ways to take the information
provided by the surface into account:

1. forget the point-to-point connectivity and estimate local geometry using only the 3D
vertex set;

2. use the mesh connectivity as a purely topological attribute;

3. interpolate the data using the mesh structure.

We believe the two extremes (1. and 3.) are poor ways of approaching the problem con-
sidered. Indeed, methods of the first kind (see, e.g., [Várady et al. 1998]) may have a hard
time defining surface orientation and normal in regions where the vertex set is not dense
enough, while methods of the third kind need to build an interpolating mesh with high-
order continuity (as in [Samson and Mallet 1997], where Bézier patches are used to build
a mesh withG2 continuity), which is hard to achieve. Consequently, this paper focuses on
methods of the second type only.

In many methods, vertex normal and principal directions are computed in a single pass.
Some iterative methods, however, need an initial estimate of the normal. So we start by
indicating how vertex normal can be estimated based on the normals of the incident faces
(§ 3.1). We then examine how the principal quadric – and thus the Darboux frame – can be
directly estimated by local surface fitting (§ 3.2). We next present some methods based on
interpretations in the “discrete” domain of results of differential geometry (§ 3.3), before
turning our attention to techniques having a signal processing flavor, which are largely
immune to the inherent difficulties of computing differential quantities of quantized objects
(§ 3.4). We conclude by saying a word on the comparison between these different methods
(§ 3.5).

In what follows,T is assumed to be an oriented and consistent triangulated surface with
boundary [Foley et al. 1992]. In other words, neighboring triangles have their normals
pointing to the same side of the surface. Forp a vertex ofT , we call1-ring neighborhood

1Though we use triangulations for our presentation, some of the methods presented below are also applicable to
more general piecewise-linear surfaces.
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of p the set of triangles incident top. We denote byN(p) the set of 1-ring neighbor
verticespi of p andm the cardinal ofN(p) (the valence ofp).

3.1 Vertex normal estimate

It is commonly suggested to compute the normal at a vertexp of a piecewise-linear surface
as a (possibly weighted) average of the normals of the faces adjacent top, i.e.

n =
∑m

i=1 wini

‖
∑m

i=1 wini‖
,

where theni are the unit normals to the triangles in the 1-ring neighborhood ofp.
Various kinds of averages have been proposed in the literature, in particular arithmetic,

area-weighted and angle-weighted averages [Meek and Walton 2000]. Gouraud [1971]
takeswi = 1, i.e. he considers unweighted averages. Obviously, this definition depends
heavily on the local meshing aroundp and two different meshings may result in two differ-
ent normals. Arguing that the normal vector should be independent of the shape or length
of the adjacent faces, Thürmer and Ẅuthrich [1998] propose an angle-weighted average,
i.e. wi = θi, whereθi is the angle of thei-th face at vertexp (see Figure 7.c). However,
this estimate may be worse than the unweighted average when all vertices are on a smooth
surface. Max [1999] derives weights which give the exact normal atp if the triangulation
is a (possibly irregular) tessellation of a sphere, i.e.

wi =
sin θi

‖ppi‖ ‖ppi+1‖
.

Others have proposed taking weights proportional to the areas (or the areas of subregions)
of the incident faces. For instance, to stay in line with what is advocated in [Desbrun et al.
2000], one can use weights equal to the areas of the local barycentric cells, as in Figure 7.a.

3.2 Fitting for principal quadric estimation

To robustly estimate the local surface geometry ofT , a good start may be to compute the
principal quadric at each vertexp. We show in this section how the principal quadric can be
directly estimated by local surface fitting. Our exposition largely follows that of [McIvor
and Valkenburg 1997].

Note that since the differential parameters to be estimated are functions of derivatives
up to second order, it is intuitively sufficient to fit second-order surfaces. This is confirmed
by experimental results. For instance, Krsek et al. [1998] report little advantage working
with third- and fourth-order surfaces over second-order surfaces.

3.2.1 General approach.Let xw be a point with coordinates expressed in the global
(world) coordinate frame in which the data is obtained. Letx = (x, y, z)T be the co-
ordinates of that point in the principal coordinate frame associated with a given pointp.
Then

x = R(xw − pw),

whereR is a rotation matrix called theattitude matrix.
Estimating all the parameters of the principal quadric atp at the same time may not

be easy. In general, this task is separated into two subproblems: estimating the surface
normal and estimating the principal directions. This is achieved by making use of arotated
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principal quadric, which is the principal quadric expressed in a coordinate framex′ =
(x′, y′, z′)T related to the principal frame by a rotation about the surface normal:

x =

 cosα sinα 0
− sinα cosα 0

0 0 1

x′. (2)

The rotated principal quadric has the form

z′ = a′x′
2 + b′x′y′ + c′y′

2 (3)

and the associated shape operator matrix is

S =
(

2a′ b′

b′ 2c′

)
.

Its eigenvalues and eigenvectors are the principal curvatures and directions. A straightfor-
ward calculation gives:

κ1 = a′ + c′ +
√

(a′ − c′)2 + b′2, κ2 = a′ + c′ −
√

(a′ − c′)2 + b′2,

α =
1
2

atan2(b′, a′ − c′), K = 4a′c′ − b′2, H = a′ + c′.
(4)

The transformation from the world coordinate frame to a rotated principal frame is then

x′ = R′(xw − pw). (5)

One useful rotated principal frame is defined by choosingR′ = (r1, r2, r3)T as follows:

r3 = n, r1 =
(I − nnT )i
‖(I − nnT )i‖

, r2 = r3 × r1, (6)

wherei is along the first axis in the global coordinate frame andI is the identity matrix. In
other words, rotationR′ alignsx′ with the projection ofxw onto the tangent plane defined
by n.

A typical method (e.g. [Sander and Zucker 1990; Stokely and Wu 1992; Ferrie et al.
1993; Hamann 1993]) for estimating the principal quadric then goes as follows:

1. Estimate the surface normal atp with one of the definitions of§ 3.1 or by finding the
plane best fittingp and its 1-ring neighbors.

2. Construct the rotation matrixR′ using (6).
3. Map the world data to the rotated principal frame with (5).
4. Fit the mapped data to the rotated principal quadric (3), and solve the resulting system,

giving a′, b′, c′.
5. Computeκ1, κ2, α from a′, b′, c′ using (4).
6. Estimate the attitude matrix by concatenating the transformations (2) andR′.

The coefficients of the rotated principal quadric (Step 4) are obtained by solving the
following over-determined system of linear equations:x

2
1 y2

1 x1y1
...

...
...

x2
n y2

n xnyn


a′b′
c′

 =

z1...
zn

 .
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This system can be solved using a least-squares method.

3.2.2 Improvements.Several improvements can be made to this basic principal quadric
estimation scheme.

First, it is clear that with the above method, the estimation of the Darboux frame relies
heavily on the accuracy of the estimation of the surface normal. Inaccuracies in the sur-
face normal estimate can be allowed by fitting an extended quadric instead of the rotated
principal quadric. Compared to the basic method described above, Steps 1-3 and 6 are
unchanged and Steps 4-5 now become [McIvor and Valkenburg 1997]:

4. Fit the mapped data to the extended quadric

ẑ = a′x̂2 + b′x̂ŷ + c′ŷ2 + d′x̂+ e′ŷ,

giving a new estimate of the surface normal atp:

n =
(−d′,−e′, 1)T

1 + d′2 + e′2
.

From this, the rotation needed to alignẑ with n can be calculated. The data is mapped
into this new coordinate frame and a new quadric fitted. The iteration stops when the
incremental change in the direction of the normal falls below some tolerance level.

5. Estimate the differential parameters as follows:

K =
4a′c′ − b′2

(1 + d′2 + e′2)2
, H =

a′ + c′ + a′e′
2 + c′d′

2 − b′d′e′

(1 + d′2 + e′2)3/2
,

wherea′, b′, c′, d′, e′ are the parameters of the last quadric fitted.

An iterative method similar to this one is described in [Fitzgibbon and Fisher 1993].
A further improvement is obtained by adding a zero-order term to the quadric to be

fitted. This is the same as removing the constraint that the pointp has to lie on the fitted
surface [McIvor and Valkenburg 1997].

An alternative to the linear iterative scheme above is the following 7-dimensional non-
linear optimization problem [McIvor and Valkenburg 1997]:

min
R̃,a′,b′,c′,f ′

∥∥∥z̃ − (a′x̃2 + b′x̃ỹ + c′ỹ2 + f ′)
∥∥∥, (7)

wherex̃ = (x̃, ỹ, z̃)T = R̃(x̃w − p̃w), where the parameterf ′ is added to accommodate
noise in the data atp. Note that Eq. (7) has 4 linear (a′, b′, c′, f ′) and 3 non-linear (the
three Euler angles of̃R) parameters, so special techniques for separable least-squares can
be used.

3.3 Surface description from differential geometry

Apart from the above fitting techniques, many methods have been proposed for estimating
local surface geometry based on results from differential geometry. We elaborate here on
some of the most interesting ones.

3.3.1 Approximation by curves.Fast methods for estimating differential parameters
result from approximating planar sections of the surface by simple curves.

One such method is the circle fitting algorithm [Martin 1998]. Letp be the point at
which principal curvatures are to be estimated. The algorithm roughly goes as follows:
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• Choose triples of points, each havingp and two other vertices in the 1-ring neighborhood
of p (one on each side ofp) in common. Letl be the number of such triples (l is
necessarily≥ 3).

• Compute the circleCj interpolating each triple,j = 1, . . . , l. Let kj be the curvature of
Cj (i.e. the inverse of the radius ofCj) andnj the normal of the plane containingCj .

• For eachCj , the line throughp and tangent toCj (let tj be its direction) can be con-
sidered as being tangent to the surface. The normaln atp is perpendicular to each such
tangent line. Estimates of this normal are obtained either by taking tangentstj pairwise
and computing the average of the cross products, or by finding the planeP best fitting
all tangents (least-squares fit).

• Let t′j be the projection oftj onP , i.e.

t′j = tj − (tj · n)n.

EachCj can be considered as being contained in the surface. So the normal curvature
κn(t′j) of the surface atp in the directiont′j is, by Meusnier’s theorem,κn(t′j) =
kj cosϕj , whereϕj is the angle betweenn andnj .

• Let t0 be an arbitrary reference direction inP andθ0 the angle between the first principal
direction andt0. Let θj be the angle betweent′j andt0. Then, using the Euler formula,
we are left with a set of equations

κn(t′j) = κ1 cos2 (θj − θ0) + κ2 sin2 (θj − θ0)

in the variablesκ1, κ2 andθ0 which can be solved using a least-squares method. Rotat-
ing t0 by an angle ofθ0 andθ0 + π

2 then givese1 ande2 respectively.

A closely related method is the quadratic complexity algorithm of [Chen and Schmitt
1992], which is also based on fitting circles to triples of points. However, given the pointp
at which curvature is to be measured and one of its neighborspi, not all triples(p,pi,pj)
with pj on the opposite side ofp are taken into account. The strategy is to define a measure
of geometric oppositenessM = (p − pi) · (pj − p), computeM for all possible triples,
sort the results in decreasing order and keep only the triples corresponding to the firstl
values ofM (there are at least 3). This way, the curvesC interpolating the retained triples
are close to the normal section and the angleϕ betweenn and the normal to the plane
containingC is close to 0 orπ. Since Meusnier’s theorem involvescosϕ, this limits the
effects of computation error forϕ and allows for some noise in vertex position to be taken
into account.

3.3.2 Surface normal changes.Another method considering local approximation by
circular arcs is presented in [Karbacher and Häusler 1998]. Assume that the sampling
density is high enough so as to neglect variations of surface curvature between adjacent
sample points. Letni,nj be the normals estimated at neighboring verticespi,pj (again
with any of the definitions of§ 3.1). Consider the circleSij going throughpi andpj and
tangent to the surface at these points (i.e.Sij is orthogonal toni atpi and tonj andpj).
Let pij be the center ofSij anddij the distance between the two vertices (Figure 4). Then
the curvature ofSij can be estimated as:

cij ≈ ±
∠pipijpj

dij
≈ ± arccos (ni · nj),

ACM Computing Surveys, Vol. 2, No. 34, July 2002.



A Survey of Methods for Recovering Quadrics in Triangle Meshes · 13

wherecij > 0 for a concave area andcij < 0 for a convex area. The principal curvatures
atpi are then estimated as the extrema ofcij over all verticespj neighboringpi:

κ1 ≈ max
j

(cij), κ2 ≈ min
j

(cij).

Knowingκ1, κ2 and a set of normal curvatures atpi (thecij) in several different directions,
one can deduce the principal directions by applying Meusnier’s theorem and solving the
resulting system.

S

d

n
n

pp

ij

j

j

i

i

ij

ijp

Fig. 4. Approximating the surface by a mesh of circular arcs.

Other authors have considered estimating differential parameters as functions of surface
normal changes. The method of [Hoschek et al. 1998] relies on an estimate of the angular
variation of the normal close to a particular vertex, while [Krsek et al. 1998] discuss the
use of the angular deficit at a vertex as a measure of the curvature. Unfortunately, these
two methods may not get the magnitude of the curvature right and they may have troubles
with noisy data.

Now consider the following general approach [Flynn and Jain 1989]. For any pair of
triangles which share an edgepipj , compute the curvature of the sphere passing through
the four vertices involved. (Set this curvature to zero if the four points are coplanar.) The
sign of the curvature is taken to be positive if the center of the sphere is on the same side of
the surface as the normals atpi andpj , negative otherwise. An estimated curvature value
for a given triangle is then taken as the average of the curvatures obtained when it is paired
with each of the triangles with which it shares an edge. However, results can be affected
by noise in the data.

To compensate for the effect of errors in the positions of triangle vertices, Sacchi et
al. [1999] proposed the following algorithm. First, compute an interpolated normal at each
vertex of the triangulation as the weighted average of the normals of the incident triangles,
with weights equal to the areas of the triangles. Take as compensated normal of a triangle
the weighted average of the three interpolated normals at the vertices of the triangle, using
as weight, for each vertex, the sum of the areas of the incident faces. Similarly, define
the compensated center of each triangle as the weighted average of the vertices using the
same weights as before. For a pair of triangles with compensated normalsn1 andn2 and
compensated centersc1 andc2, take as estimate of the curvature of their common edge

c12 =
‖n1 × n2‖
‖c1 − c2‖

.

For a given triangle, we thus obtain three curvature values. Pairing the compensated nor-
mal of the triangle with the interpolated normals at the three vertices of the triangle and
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applying Meusnier’s theorem gives three additional curvature values. The estimated mean
curvature of a triangle is then taken as the average of the maximum and the minimum of
the six curvature measures.

Application of this curvature estimation method on the a surface representing a technical
device is shown on Figure 5.

Fig. 5. From left to right: a triangle mesh, regions of high mean curvature (in blue) and identification of planar
regions [Sacchi et al. 1999].

3.3.3 Tensor of curvature.Using the notations of Section 2, consider the following
symmetric3× 3 matrix

M =
1
2π

∫ π

−π

κn(t) ttT dθ,

wheret = cos θe1 + sin θe2. Taubin [1995b] proves thatM can be factored as follows:

M = ET
12

(
m1 0
0 m2

)
E12,

whereE12 = [e1, e2] is the3× 2 matrix constructed by concatenating the column vectors
e1 ande2 and

κ1 = 3m1 −m2, κ2 = 3m2 −m1. (8)

That is, the eigenvectors ofM are 0,m1,m2 and the corresponding eigenvectors are
n, e1, e2. In other words, an estimation of the tensor of curvature (i.e. the map which
assigns each pointp of S to κn(t), the normal curvature ofS at p in the direction of the
unit vectort) follows from an estimation ofM.

Taubin [1995b] proposes the following algorithm, which is both linear in time and space,
to perform this estimation. Letp be a vertex ofT ,N(p) its set of 1-ring neighbor vertices.
Let n be an estimate of the unit normal atp. Then the matrixM can be approximated as
follows:

Mp =
∑

pi∈N(p)

wiκ
i
ntitT

i ,

where the weightwi is chosen to be proportional to the sum of the surface areas of the
triangles incident to bothp andpi (there is only one such triangle ifp andpi are both on
the boundary ofT , two otherwise) and such that

∑
pi∈N(p) wi = 1, ti is the normalized

projection ofpi − p onto the tangent plane〈n〉⊥ andκi
n is an estimate of the normal
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curvature in the directionti:

ti =
(pi − p)− [(pi − p) · n]n
‖(pi − p)− [(pi − p) · n]n‖

, κi
n =

2n · (pi − p)
‖pi − p‖2

.

Justification for this approximation ofκn is best explained with the help of Figure 6: the
radiusRi of the osculating circle throughp andpi must be such that there is a right angle
at vertexpi:

(p− pi) · (p− pi − 2Rin) = 0.

Sinceκi
n is just the inverse ofRi, the approximation follows2. (Note that there is an error

in the formula given by [Taubin 1995b].)

p
p

n

R

i

i

Fig. 6. Osculating circle for edgeppi.

By construction,n is an eigenvector ofMp associated with the eigenvalue 0. To com-
pute the remaining eigenpairs,Mp is restricted to the tangent plane〈n〉⊥ using a House-
holder transformation and then diagonalized. Leti = (1, 0, 0)T be the first coordinate
vector and let

Wp =
i + εn
‖i + εn‖

, Qp = I − 2WpWT
p ,

whereε = −1 if ‖i − n‖ > ‖i + n‖, ε = 1 otherwise.Qp is the Householder matrix, an
orthogonal matrix havingεn as its first column. The other two columns (ẽ1 andẽ2) define
an orthonormal basis of the tangent space. Thus:

QT
pMpQp =

0 0 0
0 m̃1 m̃3

0 m̃3 m̃2

 .

The2× 2 nonzero minor can be diagonalized, given an angleη such that

e1 = cos η ẽ1 − sin η ẽ2, e2 = sin η ẽ1 + cos η ẽ2

2This formula leads to a straightforward calculation ofH and K as follows [Watanabe and Belyaev 2000].
Applying a trapezoid approximation to Eq. (1) yields:

H =
1

2π

∫ 2π

0
κn(θ) dθ = κn

( θm + θ1

2

)
+ · · ·+ κn

( θm−1 + θm

2

)
,

whereθi is the angle of thei-face atp. This gives an estimate ofH. A similar calculation leads to:

1

2π

∫ 2π

0
κ2

n(θ) dθ =
3H2 −K

2
.

Applying again a trapezoid rule gives an estimate ofK.

ACM Computing Surveys, Vol. 2, No. 34, July 2002.



16 · Sylvain Petitjean

are the remaining eigenvectors ofMp, i.e., the estimates of the principal directions of the
surface atp. The principal curvatures are obtained from the two corresponding eigenvalues
ofMp using Eq. (8).

Note that the above method, even though it was described for a surface triangulation,
can be extended to a discrete set of points, as recently proposed by Gopi et al. [2000] in
the context of surface reconstruction.

3.3.4 Spatial averages and 1-ring patches.Recently, Desbrun et al. [2000] have ar-
gued that the best way of extending to discrete meshes the definitions of differential quan-
tities in the continuous case is by computing spatial averages around vertices. For instance,
the average Gaussian curvature at vertexp of T should be defined in its discrete form as:

K(p) =
1
A

∫∫
A

K dA,

for A a properly chosen area aroundp. The authors show that strong analogies between
the continuous and the discrete case are obtained by restricting the averaging domain at
vertexp to a family of special regionsAM (calledfinite volumes) contained within the
1-ring neighborhood ofp, with piecewise-linear boundaries crossing the mesh edges at
their midpoints. Two main types of finite volumes are used. In the first, the point inside
each triangle of the 1-ring neighborhood ofp is the barycenter of the triangle (Figure 7.a).
In the second, this inside point is the circumcenter of the triangle and the finite volume is
recognized as the local Voronoi cell (Figure 7.b).

a.

p

b.

p

c.

p

p

pθi

i

i+1

d.

α i
βi

p

p
i

Fig. 7. Local regions around a vertex [Desbrun et al. 2000]. a. Finite volume region using barycentric cells. b.
Local region using Voronoi cells. c. External angles of a Voronoi region. d. 1-ring neighbors and angles opposite
to an edge.

A discrete equivalent of the Gaussian curvature is obtained by applying the Gauss-
Bonnet theorem to the finite volumeAM . Roughly speaking, this theorem says that given
a regionR of a surface, theintegral curvature

∫∫
R
K dA measures the solid angle filled

by all unit normals toR, translated to one point. In the discrete domain, this means that∫∫
AM

K dA = 2π −
∑

pi∈N(p)

θi,

whereθi is the angle of thei-th face at vertexp (see Figure 7.c). This formula holds for
any surface patch within the 1-ring neighborhood whose boundary crosses the edges at their
midpoint. But one finite volume region must be chosen to provide an accurate estimate of
the spatial average. Desbrun et al. [2000] show that the Voronoi cells provide provably
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tight error bounds under mild assumptions of smoothness. If the 1-ring neighborhood ofp
is made only of non-obtuse triangles, then the local patch has area

AVoronoi =
1
8

∑
pi∈N(p)

(cotαi + cotβi)‖pi − p‖2.

whereαi andβi are the two angles opposite to the edgeppi as depicted in Figure 7.d. To
ensure a perfect tiling of the triangulationT and an optimal accuracy in the presence of
obtuse triangles in the 1-ring neighborhood, the authors advocate the use ofmixed areas:
if a triangle is obtuse, take its barycenter as inside point; otherwise, take its circumcenter.
Denoting the area of the corresponding local patch byAMixed, an estimate of the Gaussian
curvature atp is:

K(p) =
1

AMixed

(
2π −

∑
pi∈N(p)

θi

)
.

Resorting to the Gauss-Bonnet theorem to find a discrete equivalent of the Gaussian curva-
ture is not new and has been proposed in the past notably in [Lin and Perry 1982; Pinkall
and Polthier 1993; Alboul and van Damme 1996]. For instance, Lin and Perry [1982]
proposed to use the following as approximation of the Gaussian curvature:

K(p) =
3
A

(
2π −

∑
pi∈N(p)

θi

)
,

whereA is the total area of the triangles in the 1-ring neighborhood ofp.
To compute estimates of the mean curvature and vertex normal atp, the authors intro-

duce theLaplace-Beltrami operatorK. On a piecewise-smooth surfaceS, this operator
maps a pointp to the vectorK(p) = 2Hpnp. On a triangulationT , the integral of the
Laplace-Beltrami operator over the finite volumeAM can be transformed into a line inte-
gral over the boundary of the finite volume. Computing this line integral gives∫∫

AM

K dA =
1
2

∑
pi∈N(p)

(cotαi + cotβi)(pi − p).

As before, this expression holds even for 1-ring neighborhoods with obtuse triangles. To
provide an estimate of the Laplace-Beltrami operator atp, the mixed area is chosen:

K(p) =
1

2AMixed

∑
pi∈N(p)

(cotαi + cotβi)(pi − p).

This vector, after normalization, provides a reasonable estimate of the vertex normal atp.
As for the mean curvature, it can be estimated by taking half of the magnitude ofK(p).
When the mean curvature atp is zero, the vertex normal is obtained by averaging the 1-ring
face normal vectors (as in§ 3.1).

The mean quadrature has an interesting interpretation as a quadrature of the integral of
Eq. (1):

H(p) =
∑

pi∈N(p)

wiκ
i
n,

whereκi
n is an estimate of the normal curvature along the edgeppi (the same approxi-

mation used in [Taubin 1995b] in the estimation of the tensor of curvature) and thewi are
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weights which sum to one for eachp having no obtuse triangle in its 1-ring neighborhood:

κi
n =

2n · (pi − p)
‖pi − p‖2

, wi =
1

8AMixed
(cotαi + cotβi)‖pi − p‖2.

To determine the principal directions, the idea is to use theκi
n as samples of the2 × 2

curvature tensorS. In other words, the goal is to findS satisfying

dT
i Sdi = κi

n, i = 1, . . . ,m,

wheredi is the unit direction in the tangent plane of the edgeppi:

di,j =
(pi − p)− [(pi − p) · n]n
‖(pi − p)− [(pi − p) · n]n‖

.

A least-squares approximation ofS is found by minimizing the errorE

E(S) =
∑

i

wi

∣∣∣dT
i Sdi − κi

n

∣∣∣,
subject to the constraints that the determinant ofS is K(p) and its trace is2H(p). The
eigenvectors ofS then give estimates of the principal directions atp. An illustration is
given in Figure 8.

Fig. 8. Principal directions on a triangle mesh [Desbrun et al. 2000].

A different discrete formulation of the mean curvature is given in [Alboul and van
Damme 1996]. Using Eq. (1) and the Euler formula, it is a simple matter to see that at
any point of a piecewise-smooth surfaceS the mean curvature is the half-sum of the nor-
mal curvatures in any two orthogonal directions:

H =
1
2

(
κn(t) + κn(n× t)

)
.

This formula can be applied to a triangulationT . For a point on an edgee, choose as
one direction the direction along this edge and the orthogonal direction⊥e. The curve
defined bye is a straight line, so its curvature is zero. As for the curve defined by⊥e, the
equivalent of its curvature is the angle between the plane normals of the faces adjacent to
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e. The discrete mean curvatureH(e) of e is thus one-half of this angle. For a domainU ,
the mean curvature is then:

H(U) =
∑

edgee⊂U

H(e) length(e ∩ U).

The ratio ofH(U) to the area ofU gives an estimate of the average mean curvature over
the part ofT which corresponds toU . Using the notations above, and takingU = AMixed,
this gives another estimate of the mean curvature atp:

H(p) =
1

4AMixed

∑
pi∈N(p)

‖pi − p‖ϕi,

whereϕi is the dihedral angle between the two triangles meeting along the edgeppi.

3.4 Covariance matrices

Many of the original methods for measuring surface normals and curvature at points of a
range image used derivatives estimates which may not be robust under additive noise. In
addition, the image considered may not have adequate “smoothness” to support the use
of differential operators. This led several authors to explore an alternate signal processing
basis for computing local shape measures, using covariance matrices [Liang and Todhunter
1990; Berkmann and Caelli 1994]. The main advantage of this covariance approach is that
it provides ideal ways of treating signals embedded in additive Gaussian or white noise.

The covariance matrices method can be easily adapted to triangulations. Let again the
verticespi be the 1-ring neighbors ofp. Define the first-order,3 × 3, surface covariance
matrix atp as:

CI =
1
m

m∑
i=1

(pi − p̄) (pi − p̄)T , (9)

wherep̄ = 1
m

∑m
i=1 pi is the mean position vector. This matrix may be seen as a discrete

equivalent of the first fundamental form matrixG. Two of its eigenvectors (t1 and t2)
define the plane which minimizes, in the least-squares sense, the orthogonal distance from
all points to that plane. As originally proposed in [Liang and Todhunter 1990], this plane
is a reasonable approximation to the surface tangent plane atp. Consequently, the other
eigenvector forms the equivalent of the surface normaln.

An analogous definition of the second fundamental form matrix follows by projecting
the difference vector that points fromp topi onto the “tangent plane” as determined by (9)
and weighting the resulting vector by a measure of the orthogonal distance from pointpi

to the “tangent plane” [Berkmann and Caelli 1994]:

CII =
1
m

m∑
i=1

(yi − ȳ) (yi − ȳ)T ,

where

yi =
[
(pi − p) · n

]((pi − p) · t1

(pi − p) · t2

)
,

The eigenvectors of the2 × 2 matrix CII can be considered as estimates of the principal
directions atp.
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There are alternate ways of computing principal directions. They can for instance be
estimated by calculating the covariance matrix of a certain normal map [Liang and Tod-
hunter 1990]. Also, since they lie on the tangent plane anyway, they can be found as the
eigenvectors of a2×2 covariance matrixC′II built on the projections of the normal vectors,
within a neighborhood ofp, onto the tangent plane [Berkmann and Caelli 1994].C′II is
defined as follows:

C′II =
1
m

m∑
i=1

(yi − ȳ) (yi − ȳ)T ,

with

yi =
(
ni · t1

ni · t2

)
andni the vertex normal estimated atpi with Eq. (9).

In the context of surface reconstruction from point clouds, related definitions were given
in [Hoppe et al. 1992]. The tangent planeP associated with the data pointp is represented
as a pointp̄, called the center, together with a unit normaln. Let N ′(p) be the set of
vertices within a certain distance ofp̄. The center and unit normal are computed so that
the planeP is the least-squares best fitting plane toN ′(p). In other words,̄p is taken to
be the centroid ofN ′(p) andn is determined using principal component analysis of the
covariance matrix ofN ′(p):

C′I =
∑

pi∈N ′(p)

(pi − p̄) (pi − p̄)T .

Thenn is chosen to be (up to sign) the eigenvector corresponding to the smallest eigen-
value ofC′I . Another definition for the same mathematical object, though with a different
formulation, is proposed in [Gopi et al. 2000].

Note that once vertex normals and principal curvatures are known, the normal curvatures
κi

n in the directions of the 1-ring neighborspi can be estimated with the formula of Taubin
(§ 3.3.3) and the principal curvatures are found by solving the overdetermined system of
linear equations

κi
n = κ1 cos2 θi + κ2 sin2 θi

obtained using the Euler formula, whereθi is the angle betweene1 andpi − p.
Somewhat related to the covariance approach is the method proposed by Yoshimi and

Tomita [1994]. Assume that the surface normals have been estimated at all vertices of the
triangulation. Define a local region about a pointp (normaln) as being those neighboring
pointspi (normalni) at which the angle betweenn andni is less than a given constant.
This region is generally a single closed region with an elliptic boundary, except when
the Gaussian curvature at the point considered is zero. Consider the projection of this
region onto the “tangent plane” atp. The major and minor axes of the ellipse forming the
boundary are the principal directions and the radii are related to the principal curvatures.

3.5 A word of conclusion

Despite the extensive use of piecewise-linear surfaces in computer graphics and the re-
peated need to estimate differential quantities, there is currently no consensus on the most
appropriate way to approximate such simple geometric attributes as normals and principal
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curvatures on discrete surfaces. No systematic comparison has been made between the
most popular methods for computing local Darboux frames at vertices of triangle meshes.

However, some interesting experiments can help us draw partial conclusions. McIvor
and Valkenburg [1997] compare several methods for approximating the Darboux frames
at points of a range image: finite differences (surface derivatives are estimated in terms
of differences in depth between neighboring pixels), facet-based estimation (independent
fitting of low-order functions to the 3 components of position in a small neighborhood of
each data point, from which the differential properties of the surface can be computed –
see [Lee et al. 1993; McIvor 1998]) and quadric surface fitting. The first two methods are of
little interest to us: they rely heavily on the natural parameterization of range images given
by the grid on which the points are aligned and are not applicable to general piecewise-
linear surfaces. But surface fitting is a different story. According to the authors, the non-
linear quadric fitting method (see§ 3.2) has the best performance of all tested methods and
also the greatest computational cost. As for the linear fitting methods, the number of terms
used in the quadric makes little difference to the curvature estimate performance, although
having first- and zero-order terms improves the surface normal estimates.

Other researchers have made empirical analyses of the performance of curvature estima-
tion techniques [Flynn and Jain 1989; Trucco and Fisher 1995; Tang and Medioni 1999].
The overall common conclusion of their experiments is that qualitative properties (e.g. sign
of Gaussian curvature) can be more reliably estimated than quantitative ones (e.g. curva-
ture magnitude). Since qualitative information about the curvature field is more important
anyway than quantitative ones for segmentation purposes, people have looked at methods
for directly computing the curvature signs without computing their magnitude. For exam-
ple, Angelopoulou and Ẅolff [1998] compute the sign of the Gaussian curvature, without
surface fitting, local derivative computation, nor normal recovery, by checking the relative
orientation of two simple closed curves.

Despite these very partial views, it seems that the best local geometry estimation tech-
niques are those that are direct analogues in the discrete setting of formulas in the continu-
ous case. The methods advocated in [Taubin 1995b; Desbrun et al. 2000] stand out in this
respect. Further experiments are needed to back up this intuitive claim.

4. DIFFERENTIAL PARAMETERS ESTIMATES IMPROVEMENT

Polyhedral surfaces extracted from volumetric data by isosurface construction algorithms
or those resulting from laser range scanners may contain a good deal of noise and small-
scale oscillations. These undesirable features can severely affect the estimation of differen-
tial properties and thus lead to poor segmentation and shape recovery. It is thus important
to smooth out the high frequency details of noisy meshes while retaining the low frequency
components. Ridding a mesh of its unnecessary details is known asdiscrete fairing.

But even if a mesh is “fair” enough, the accurate estimation of the principal directions
and curvatures of the subjacent surface is still a difficult task. Differential parameters
estimation is analogous to feature detection in conventional 2D images and suffers from the
same problems, namely the sensitivity of local operations to noise and quantization [Hilton
et al. 1995]. Better results can be obtained, for instance, by approximating the surface at
p over a larger window or by extending the spatial averages to the 2-ring neighborhood.
But this tends to smooth the results, and one of its effects is that the estimated curvatures
will be of smaller magnitude than the actual curvatures. The situation is even worse for
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directional properties (principal directions) which are difficult to robustly estimate without
considering more global approaches to feature recovery. Thecurvature consistencymethod
is one such global approach.

This section successively delves into discrete fairing (§ 4.1) and curvature consistency
(§ 4.2).

4.1 Surface fairing and mesh denoising

Smoothness refers to the mathematical notion of continuous differentiability and smooth-
ing enforces a continuity of curvature. By contrast, fairness is a measure of aesthetism,
of “well-shapedness” and fairing imposes a low variation of curvature. Classical fairing
techniques use constrained energy minimization. For a surfaceS, the following fairness
functional is frequently used:

E(S) =
∫∫
S

(κ2
1 + κ2

2) dA.

In practice, even though this energy can be estimated on discrete meshes [Welch and Witkin
1994], the non-linear dependence of the principal curvatures onS leads people to work
with the membraneEm and thin-planeEt functionals:

Em(S) =
∫∫
S

(X2
u + X2

v) du dv, Et(S) =
∫∫
S

(X2
uu + 2X2

uv + X2
vv) du dv.

Their variational derivatives correspond to the LaplacianL(X) = Xuu + Xvv and second
LaplacianL2(X) = L ◦ L(X). FairingS is then achieved by integrating over time the
diffusion equation:

∂X
∂t

= λL(X), (10)

whereλ is a small positive constant. The diffusion flow allows to smooth the high frequen-
cies in noisy meshes.

Now back to discrete meshes. At each vertexp of T , the Laplacian can be linearly
approximated by theumbrella operator:

U(p) =
∑

i wipi∑
i wi

− p,

where the summation is over the 1-ring neighborhood vertices ofp and thewi are positive
weights. Integrating the diffusion equation (10) amounts in this discrete setting to construct
a sequence of meshesT (j) with the local update rule:

p(j+1) ←− p(j) + λU(p(j)),

for a discrete time step∆t = 1. This process is calledLaplacian smoothing. It recursively
moves each vertex of the mesh by a displacement equal to a positive scale factor times the
average of the neighboring vertices. Possible choices for the weightswi arewi = 1 (the
corresponding umbrella operator is denotedU0) or a function of the length of the edgeppi,
wi = ‖pi − p‖α (U1). α = −1 produces good results. Laplacian smoothing is linear in
both time and space for each filtering pass. But ifλ is not small enough, ripples appear on
the surface. This restriction means that for very large meshes, hundreds of iterations are
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needed to produce a noticeable smoothing. In addition, the Laplacian flow may introduce
unnatural deformations if the initial mesh is not regularly sampled.

People have advocated using a weighted average of the derivativesL andL2 to improve
this basic scheme. By generalizing classical discrete Fourier analysis to two-dimensional
discrete surface signals, Taubin [1995a; 1995c] shows that the combination(a+b)L−abL2

can provide a Gaussian filtering that minimizes shrinkage and unnatural deformations. In
particular, he proposes a weighted Laplacian smoothing flow of this form with two scale
factors of opposite signs, the negative factor having the larger magnitude, which in the
discrete setting translates to the following update rule:

p(j+1) ←− p(j) − (µ− λ)U(p(j))− µλU2(p(j)),

whereµ > λ > 0 andU2 is the squared umbrella operator

U2(p) =
∑

i wiU(pi)∑
i wi

− U(p).

The best smoothing results are obtained with theU0 operator.
If this scheme, which is related to that of [Kobbelt 1997], improves on the result of the

basic Laplacian smoothing flow, it still has a number of undesirable features, notably its
lack of local shape control and the fact that it smoothes all small-scale features [Ohtake
et al. 2000]. People have argued that the umbrella operator is not an adequate approx-
imation of the Laplacian: in the case of meshes with irregular sampling, it may lead to
geometric distortion during smoothing and numerical instability. Desbrun et al. [1999] ad-
vocate instead the use of themean curvature flow. In the continuous case, it smoothes the
surface by moving along the surface normal with a speed equal to the mean curvature:

∂p
∂t

= −H(p)n(p).

Going discrete, this gives the following local update rule:

p(j+1) ←− p(j) −H(p(j))n(p(j)).

The initial meshT may represent a surface with sharp edges. If isotropic denoising
is used, then the underlying geometry will be lost. A good smoothing scheme is one
that preserves clear features like object boundaries and smoothes homogeneous regions.
To keep important features intact, noise should only be directionally diffused. Since the
presence of edges can be detected using estimates of the principal curvatures. Desbrun et
al. [2000] propose to use a modified update rule of the mean curvature flow:

p(j+1) ←− p(j) − wH(p(j))n(p(j)),

wherew is a smoothing weight defined as follows:

w =


1 if |κ1| ≤ τ and|κ2| ≤ τ,
0 if |κ1| > τ and|κ2| > τ andK > 0,
κ1/H if |κ1| = min (|κ1|, |κ2|, |H|),
κ2/H if |κ2| = min (|κ1|, |κ2|, |H|),
1 if |H| = min (|κ1|, |κ2|, |H|),

whereτ is a user-defined parameter. Applying this procedure to a noisy cube gives the
result shown on Figure 9. For more complicated objects, a pass of curve smoothing is
added to better straighten the edges.
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Fig. 9. Feature-preserving denoising using anisotropic smoothing [Desbrun et al. 2000].

Even though the mean curvature flow produces better results than Laplacian smoothing
and is relatively independent of the mesh sampling rate, it increases the mesh irregularity
and has no mechanism for slowing down the smoothing as time increases. In other words,
it may lead to oversmoothing. Recently, Ohtake et al. [2000] have proposed new simple
and effective mesh smoothing methods which combine the best properties of the Laplacian
and mean curvature flows while reducing possible oversmoothing. The key idea underlying
these new schemes is to use a normal speed component for smoothing and a tangent speed
component to improve the mesh sampling rate. One possible local update rule is:

p(j+1) ←− p(j) + λ
(
H(p(j))n(p(j)) + C

[
U0(p(j))− (U0(p(j) · n(p(j)))U0(p(j))

])
,

whereC is either a positive constant or a function of surface curvatures to achieve a higher
mesh sampling in curved surface regions. Note that the tangential component is a function
of the projectionU0 − (U0 · n)U0 of the umbrella vector on the tangent plane atp defined
by n.

This scheme produces better results than the mean curvature flow and the method of
Taubin. But even better results are obtained as follows. Definem = U0/‖U0‖ and letδ
be the angle between the mean curvature vectorHn andm. The idea is then to move the
vertices in the direction ofm in such a way that the normal speed component is equal to
the mean curvature. In other words, the local update rule is

p(j+1) ←− p(j) + λF(p(j)),

where

F =


|H|
cos δm if cos δ > ε,

2Hn− |H|
cos δm if cos δ < −ε,

0 if | cos δ| ≤ ε.
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ε = 0.1 gives good results independently of the mesh sampling rate. A further refinement
allows for the smoothing to slow down automatically, thus avoiding oversmoothing and the
destruction of small-scale surface features.

Two examples showing the advantages of the new smoothing schemes over past methods
are displayed in Figs. 10 and 11.

Fig. 10. From left to right: a pretzel-like shape consisting of parts with different sampling rates, and best smooth-
ing with the Taubin algorithm (which substantially deforms the shape), the mean curvature flow (which produces
an irregular mesh) the combined method of [Ohtake et al. 2000].

Fig. 11. From left to right: a two-holed polyhedral torus, and best smoothing with the Taubin scheme, the mean
curvature flow and the new method of [Ohtake et al. 2001].

Ohtake et al. [2000] also introduce modifications of these schemes to better retain sharp
edges. This idea is to smooth the face normals and then to move vertices based on the
smoothed normals. Smoothing of normals is achieved by a weighted averaging of neigh-
boring normals, with large weights if the normals are close and small weights if they are
different. An example is shown on Figure 12.

Fig. 12. From left to right: a mesh, a common smoothing and a feature-preserving smoothing [Ohtake et al.
2001].
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4.2 Curvature consistency

Curvature consistency refers to a class of algorithms for improving differential parameters
estimates originally developed in [Sander and Zucker 1990] for surface reconstruction in
3D voxel-based images and later applied to range images [Ferrie et al. 1993; Lagarde
1997]. It can be viewed as a second, more global, stage of processing applied to a set
of augmented Darboux frames∆p estimated by local methods. The general idea is to
smooth the surface while preserving the local structure described by the Darboux frames.
This problem has a variational formulation: the objective is to minimize a functional form
related to a minimum variation of curvature.

4.2.1 Variational formulation. In what follows, letp be a vertex ofT andpi the ver-
tices of its 1-ring neighborhood. There are three main ingredients to the curvature consis-
tency problem formulation [Ferrie et al. 1993; Ferrie et al. 1993]:

• A local surface estimation∆p at each vertex ofT .
• A transport modelwhich describes how∆pi

changes as it is transported top and vice-
versa.
• Update functionalswhich describe how the Darboux frame atp is updated so as to be

consistent with the Darboux frames of its neighbors once they have been transported
from pi to p by the transport mechanism.

The transport model incorporates the constraint of minimum curvature variation, the update
functionals enforce it.

p

p p

p

1

1

~

2

~
p

2

~∆p
1

∆p
1

~

Fig. 13. Transporting∆pi from pi to p. The transport model used is a parabolic quadric.

Transporting the frame∆pi
from pi to p involves extrapolation along a surface model

Spi
that implements the desired constraint of locally constant curvature (Figure 13). The

resulting frame atp is denoted∆p̃i
and is an estimate of what the surface atp should

look like according to the description atpi under the transport constraint. There are many
possibilities for a transport model, the only requirement being that the surfaceSpi embeds
the constant curvature constraint along an arc joiningp andpi. For relatively dense sam-
plings, approximation by a parabolic quadric or even a plane is sufficient (see, e.g., [Krsek
et al. 1997]).

The computational procedure required to transport each∆pi
to p is as follows. Let̃pi

be the projection ofp onto the transport surfaceSpi associated topi. (Projection may be
either perpendicular or along the normal top [Sander and Zucker 1990].) Then an initial
estimate of∆p, ∆p̃i

, is obtained from∆pi
by extrapolating alongSpi

, i.e. by moving
alongSpi

in the direction ofp.
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Let ∆p = (p, e1, e2,n, κ1, κ2) and∆p̃i
= (p̃i, ẽ1i

, ẽ2i
, ñi, κ̃1i

, κ̃2i
). Given the set of

Darboux frames∆p̃i
determined by the transport model, the task is to compute a maximum

likelihood estimate of∆p that minimizes variation subject to the constraint that(e1, e2,n)
is an orthonormal frame. As shown in [Sander and Zucker 1990], the minimization consists
of two terms corresponding to

1. the surface normaln and the principal curvaturesκ1 andκ2,
2. the principal directione1.

The remaining constraints are satisfied by computinge2 asn× e1.
The first term of the minimization is:

E1 = min
[ m∑

i=1

(
‖n− ñi‖2 + (κ1 − κ̃1i

)2 + (κ2 − κ̃2i
)2 + λ(n · n− 1)

) ]
,

whereλ is a Lagrange multiplier needed to enforce the required condition onn. This leads
to the following updating functionals for the principal curvatures and the normal, where
ñ(j)

i = (x(j)
i , y

(j)
i , z

(j)
i ):

n(j+1) =

(∑
i x

(j)
i ,
∑

i y
(j)
i ,
∑

i z
(j)
i

)T

√(∑
i x

(j)
i

)2

+
(∑

i y
(j)
i

)2

+
(∑

i z
(j)
i

)2
,

κ
(j+1)
1 =

1
m

∑
i

κ̃
(j)
1i
, κ

(j+1)
2 =

1
m

∑
i

κ̃
(j)
2i
,

(11)

where the superscriptj refers to the current iteration step.
The second term minimizes the difference of principal directions in the tangent plane at

p [Ferrie et al. 1993]:

E2 = min
η

[ n∑
i=1

(1− e1(η) · ẽ1i
)
]
,

wheree1 is expressed in tangent plane coordinates:

e1(η) = a1 cos η + a2 sin η, (a1,a2) orthonormal frame of tangent planeΓp. (12)

As before, this leads to the following updating functional forη:

η(j+1) = tan−1

A
(j)
22 −A

(j)
11 +

√(
A

(j)
11 −A

(j)
22

)2

+ 4A(j)2

12

2A(j)
12

,
A(j)

pq =
m∑

i=1

(ẽ(j)
1i
· ap)(ẽ

(j)
1i
· aq).

(13)

ẽ(j+1)
1i

is then found by substituting the value ofη(j+1) of Eq. (13) back into Eq. (12).
The resulting curvature consistency algorithm works as follows. Compute initial esti-

mates∆(0)
pj = ∆pj for every vertexp of the triangulation. With the updating function-

als (11) and (13), compute∆p(1) for everyp. Projectp onto the new transport surfaces of

its neighborsqj , giving a new set of Darboux frames∆(1)
pj and then repeat the operation.
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The problem now is to determine at which point to terminate the iteration. Indeed, going
too far will result in a surface with uniform curvature properties. LetE

(i)
1p

(resp.E(i)
2p

) be
the value of the functionalE1 (resp. E2) for point p at iteration stepi. Control over
iteration is achieved by tracking the convergence over the following measure (see [Sander
and Zucker 1990] for a discussion of convergence properties):

R
(i)
S =

∑
p vertex ofT

(
E

(i)
1p

+ E
(i)
2p

)
.

The algorithm is allowed to iterate until the difference|R(i)
S − R

(i−1)
S | falls below a spec-

ified threshold. As reported in [Ferrie et al. 1993], stable results are generally realized
within 5 iterations.

With this curvature consistency scheme, feature recovery is significantly enhanced for a
minimal amount of smoothing. The characteristics of theH-K map after refinement are
consistent with the smooth nature of the surface. In addition, whereas the principal direc-
tion fields can be almost random before application of the curvature consistency algorithm,
their structure are now correctly recovered.

4.2.2 Correct localization of discontinuities.The curvature consistency algorithm pre-
sented above corrects many of the deficiencies of the local methods for differential param-
eters estimation, but does not preserve the structure of surface discontinuities. Indeed, it
tends to smooth the parameters in the vicinity of edge points. This is a major shortcoming
with respect to feature localization and segmentation (Section 5).

Smoothing over discontinuities happens because there is no mechanism in the transport
model for inhibiting propagation acrossp andpi in the event of a discontinuity. What
is needed is a modification of the updating functionals to weight contributions from the
surrounding neighborhood according to how well these frames support a model of local
continuity [Ferrie et al. 1993; Mathur and Ferrie 1997]. The idea is to embed a mecha-
nism in the updating procedure that can characterize whether a point is part of a structural
discontinuity or a noise point.

In the above algorithm, measurements from all neighbors ofp are averaged so as to give
an estimate of the Darboux frame atp at each iterationj:

∆(j)
p =

m∑
i=1

λ
(j)
i ∆(j)

p̃i
, λ

(j)
i =

1
m
. (14)

How can measurements from thepi be combined in an optimal fashion in the sense of
information fusion? In other words, what values ofλi provide an optimal estimate of∆p?

The idea, at each iterationj, is to predict what the estimation errorε(j)i for each neighbor
of p would be if the basic averaging formula (14) was used and then compute the new
estimate of∆p with weighting functions giving higher weights to neighbors with low
error variances. In addition, these functions should provide similar weightings to neighbors
which are correlated in their measurement and be bounded as the error variance approaches
zero to prevent a single neighbor from taking over the process.

Weighting functions which encapsulate these desired properties are given by:

λ
(j)
i =

W
(j)
i∑m

i=1W
(j)
i

, W
(j)
i = e

−
σ̂
(j)2
i

γ(j) ,
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whereσ̂(i)2

j is an estimate of the error variance at iterationj

σ̂
(j)2

i =
j∑

k=1

(ε(k)
i )2

andγ(j) is a smoothing control parameter which can be set by taking the mean of the error
variance values of all neighbors:

γ(j) =
2
m

m∑
i=1

σ̂
(j)2

i .

The estimation errorε(j)i , which is a measure of the difference between∆(j)
p as given by

Eq. (14) and∆(j)
p̃i

, can be computed in the spirit of the minimization termsE1 andE2:

ε
(j)
i = ‖n(j) − ñ(j)

i ‖
2 + ‖e(j)

1 − ẽ(j)
1i
‖2 + (κ(j)

1 − κ̃
(j)
1i

)2 + (κ(j)
2 − κ̃

(j)
2i

)2.

At the beginning of the curvature consistency iterations, the prediction error variance
values are not available. Since there is no prior reason to believe that one neighbor would
provide more accurate measurements of∆p than the others, each neighbor should be as-

signed equal weighting in the measurement update equation, i.e.λ
(0)
i = 1/m. At first, full

variational relaxation takes place, smoothing out the random noise and starting to distort
the discontinuities. But as the iterations progress, the real nature of the local surface is
learned. After a few iterations the discontinuity localization process starts playing a major
role. In subsequent iterations, the continuity constraint is applied only between neighbors
believed to be on the same continuous surface and is inhibited between neighbors believed
to be across discontinuities.

Edges formed by ramps and jump discontinuities are now correctly preserved.

5. SEGMENTATION

Segmentation is a vast and complex domain, both in terms of problem formulation and res-
olution techniques. For a human operator, it is fairly easy to identify regions of a surface
that look like some simple geometric shape like a sphere, a cylinder or a cone. The task is
much harder for a computer. Segmenting a range image or a triangulated mesh consists in
formally translating the delicate visual notions of homogeneity and similarity, and defin-
ing criteria which allow their efficient implementation. Segmentation is a combinatorial
problem which, in this sense, is closely related to parts decomposition. An example is
displayed in Figure 14.

Originally, segmentation was applied to grey-level 2D images. The goal was to distin-
guish between the different parts of a digital image corresponding to different entities, in
the physical and semantical sense of the application envisioned. Homogeneity was then
typically defined as a function of the difference of intensity between neighboring pixels.
With the introduction of new sensors, like the laser range finder, it became clear that seg-
mentation extended way beyond ordinary 2D images. Similar principles apply to other
kinds of data, with different interpretations of the notion of global homogeneity of a re-
gion [Besl and Jain 1988]. For range images, homogeneity is defined in geometrical and
topological terms, often as a function of curvature measures.
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a. b.

Fig. 14. Example of segmentation. a. An unstructured 3D point set. b. A segmentation of the point set [Chaine
et al. 1999].

With few exceptions, almost all known algorithms for segmenting 3D data apply to
partial range images. Some of them can however be extended to general triangular meshes
or full range descriptions, with only minor adjustments.

This section reviews the segmentation literature applicable to the recovery of quadric
surfaces in triangulated data. After an introduction on the different possible segmentation
strategies (§ 5.1), we examine the several kinds of distinguished points and lines on a trian-
gle mesh that can help guide its segmentation in primitive patches (§ 5.2). These features
are defined in terms of the local curvature estimates obtained in Section 3 and refined in
Section 4. We then describe some of the known methods for extracting specific types of
quadrics (§ 5.3), focusing on the so-callednatural quadrics(planes, spheres, cylinders and
cones). Finally, we examine more general segmentation strategies (§ 5.4).

5.1 Basic segmentation strategies

Dividing a range image or a triangular mesh into regions according to shape-change de-
tection has been a long-standing research problem. Past approaches fall into two main
categories.

Edge-basedapproaches work by first identifying features corresponding to part bound-
aries and then interpolating to form smooth boundaries. Extracted boundaries are then used
to guide the segmentation process. A homogeneity measure is needed to assert whether the
regions cut out by the boundary lines are globally homogeneous or not and to split the non-
homogeneous ones in smaller pieces.

Region-basedapproaches take the dual path and try to group vertices into regions corre-
sponding to the same subjacent primitive surfaces, the boundaries being derived by com-
putations on these surfaces. There are three popular approaches to region-based segmenta-
tion:

• Split-and-merge[Faugeras et al. 1983; Oshima and Shirai 1983; Medioni and Parvin
1986; Hoffman and Jain 1987] is a top-down method which recursively subdivides a
range image until only globally homogeneous pieces remain. Since subdivision intro-
duces artificial boundaries, adjacent regions are merged in a second stage of processing
if their union satisfies the homogeneity criterion.
• Region growing[Besl and Jain 1988; Abdelmalek 1990; Sapidis and Besl 1995] is a

bottom-up approach which involves starting with seed points (chosen either randomly
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or using geometric criteria) and aggregating adjacent points to seed regions with similar
local properties. When no more region can be grown, adjacent regions are merged if
their union satisfies some homogeneity criterion.

• Algorithms based onclustering[Jain and Hoffman 1988; Lee et al. 1998; Köster and
Spann 2000] estimate surface parameters on small patches and accumulate the param-
eters in a histogram, the large peaks of which correspond to instances of the surface in
the data. Decision for region merging is typically based on the application of a statistical
test to obtain a similarity measure.

Both classes of approaches have their strengths and weaknesses and usually need exten-
sive post-processing phases. Edge-based methods tend to produce gaps in the boundaries
of the regions. Indeed, the interpolation problem becomes very difficult when features are
sparse. On the other hand, region-based methods can be easily perturbed in the presence
of noise and generate boundaries which are connected but generally distorted. In addition,
finding suitable initial seeds may be non-trivial.

In practical situations, each strategy taken separately is often insufficient for lack of
robustness, non-uniqueness or complexity. Thus, a cooperation between edge-based and
region-based techniques (hybrid approach) is often needed to ensure a reliable and robust
segmentation [Yokoya and Levine 1989; Lejeune and Ferrie 1996].

5.2 Feature lines and initial segmentation

Several authors have noted that region-growing is an appropriate paradigm for segment-
ing general triangulated surfaces [Fisher et al. 1997; Sacchi et al. 1999; Robertson et al.
1999]. But even when region-based segmentation is used, some knowledge about patch
boundaries is needed, to obtain a rough initial segmentation from which seed regions are
grown. Ponce and Brady [1987] compute for instance asurface primal sketchfrom lines
of discontinuity on height surfaces defined by range maps.

For triangulated surfaces, the first group of features to identify are folds, i.e. regions
of high principal curvature, which are characteristic of part boundaries3. Among folds are
discontinuities in the surface normal, i.e. sharp edges, which manifest themselves as high
curvature regions due to the sampling process. Many methods are known for extracting
folds. Yang and Lee [1999] propose for instance a two-step edge identification process. In
the first step, the computation area is restricted by keeping as candidate edge points only
those for whichmax (|κ1|, |κ2|) is large. In the second step, edge points are extracted from
the candidate points as follows. Letp be the vertex considered. Then:

—If κ1(p) is larger thanκ1(p + e1) andκ1(p− e1), p is marked as an edge point.

—If κ2(p) is smaller thanκ2(p + e2) andκ2(p− e2), p is marked as an edge point.

The points thus identified have to be linked with neighboring edge points to create sur-
face boundary curves. Another powerful method for extracting folds, using morphological
operators adapted to triangle meshes, is described in [Rössl et al. 2000].

In what follows, we consider three other types of distinguished features (zero-crossings
of the mean and Gaussian curvatures, ridges and umbilics) and discuss how these elements
can be characterized and efficiently extracted from triangle meshes.

3For range images, there is another basic type of features, the occlusion boundaries (also called jump edges and
depth discontinuities), where one surface hides another form the sensor’s viewpoint.
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5.2.1 Zero-crossings of the mean and Gaussian curvatures.Since segmentation is
about dividing the data into regions that are homogeneous according to some criterion,
it is natural to look for changes in concavity. Such changes occur at places where the mean
curvatureH vanishes. Krsek et al. [1997] note that the curves of inflection points may
be the best distinguished features of a triangulation when the data has no sharp edges. In
addition, it is important to detect where the surface is locally flat or at least flat in some
direction. This information is given by the zero-crossings ofK. This explains why many
people have advocated segmenting according to theH-K map as a preliminary step to-
wards shape classification and reconstruction (see Figure 15 for the basic surface types
according to the signs ofH andK).

κ1

κ2

concave elliptic

K>0, H>0

concave
cylindrical

K=0, H>0
K=H=0

convex
elliptic

K>0, H<0

cylindrical

K=0, H<0

convex hyperbolic

K<0

planar

Fig. 15. The six basic surface types according to the signs ofK andH.

Typical is the three-step approach of Besl and Jain [1988], which has generated much
later research on region-based segmentation:

• Rough segmentation: The range image is divided into connected regions according to
theH-K map.

• Seed placement: Seeds are determined in regions having a sufficient number of points
with a morphological operator.

• Region growing: Bivariate polynomials are used to produce an estimated surface fit
to the largest seed region, starting with degree 1 up to degree 4. Then all pixels in
all regions currently outside the seed region are tested for possible inclusion (based on
difference in depth and comparison of normals). The largest connected region composed
of pixels in the seed region and pixels that pass the compatibility tests is chosen as the
new seed region. Expansion continues until there is almost zero change in region size.
Finally, fit error is calculated. If it does not fall below a threshold, the region is rejected.

To recover quadrics in triangle meshes, theH-K map is even more interesting. Indeed,
none of them has concavity changes (i.e.H either vanishes or has constant sign every-
where) and each of them is made of a unique type of points, be them elliptic, hyperbolic,
parabolic or planar (i.e.K either vanishes or has constant sign everywhere). It is thus
of the utmost interest to segment the triangulationT along the regions of zero Gaussian
curvature and zero mean curvature. Note however that theH-K map is not sufficient to
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classify all quadrics. For instance, both elliptic cylinders and elliptic cones are such that
K = 0 andH < 0. Planar and spherical points cannot be distinguished either with this
map alone.

Extraction of regions of parabolic and inflection points can be made by thresholding the
values ofK andH. As Cai [1989] showed, thresholding must be made in a consistent
manner, with the thresholdεK onK depending on the value ofH (or conversely):

εK ≥ ε2H + 2|H|εH .

After an extensive experimental assessment of range image segmentation algorithms based
on estimates of the sign of the mean and Gaussian curvatures, Trucco and Fisher [1995]
concluded that, because of quantization errors, noise smoothing is necessary before reliable
extraction can take place. Unfortunately, denoising has an averaging effect. This has three
consequences:

—The magnitudes of the curvatures are lower than the real ones. Thus,εH should be a
function of the number of smoothing cycles applied.

—Smoothing makes it difficult to distinguish accurately between planar patches and curved
surfaces with low curvatures. It is thus advisable to first single out the planar patches
(for instance using a specialized plane fitting technique).

—Sharp boundaries between regions may be distorted. Smoothing should thus be endowed
with a mechanism to restrict the diffusion process to non-discontinuity points.

In view of the discrete nature of the data, consistent thresholding may miss zero-crossing
lines. Consider two verticesp1 andp2 sharing a common edge ofT andH1,H2 the value
of the mean curvature estimated at these points. IfH1 > εH andH2 < −εH , there is a
pointp12 betweenp1 andp2 with zero mean curvature that thresholding won’t detect. Its
location can be found as (see Figure 16):

p12 = p1 +
H1

H2
(p2 − p1).

p12 must be linked with neighboring zero-crossings to detect where the features lines tra-
verse the faces of the triangulations. Chain coding algorithms can then be used to form
continuous boundary curves.

p
H  < 0H  > 01

1

22

H = 0

p p12

Fig. 16. Looking for points at which the mean curvature vanishes [Krsek et al. 1997].
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Note that an alternative to the classification of surface points according to the signs ofH
andK is to use thecurvednessR, which measures the size, and theshape indexS, which
measures the shape, of a local patch [Koenderink 1990]:

R =
2
π

ln

√
κ2

1 + κ2
2

2
, S = − 2

π
arctan

(
κ1 + κ2

κ1 − κ2

)
.

The Cartesian plane with the parameters(R,S) is then a conformal image of theκ1 ≥ κ2

part of the(κ1, κ2) plane (Figure 15).

5.2.2 Ridges and valleys.To segment a surface in meaningful parts and identify its
most salient features, people have sought to generalize the notion of “edges” to smooth
objects. In particular, a lot of focus has been but on geometric features known as ridges
and valleys in the field of hydrology.Valleysare defined as the arrangement of ramified
dry channels developed by the flow of water over the Earth’s surface andridgesare valleys
of the inverted relief. Surface creases (ridges and valleys) have been studied in connection
with research on structural geology, medical image analysis, face recognition and human
perception.

There is considerable debate as to what constitutes a good mathematical characteriza-
tion of ridges and valleys (see, e.g., [Lang et al. 1997; López et al. 1999]). One possible
definition, which has proved to be meaningful in studies on the anatomy of the human
brain [Pennec et al. 2000], is that ofcrest lines. Crest lines are the loci of the maxima
of the maximal principal curvature (in absolute value) in the direction of the associated
principal direction. In other words, if∇vf denotes the directional derivative of the scalar
functionf in the directionv, i.e.

(∇vf)(p) = lim
τ→0

f(p + τv)− f(p)
τ

= v · ∇f(p),

then crest points are to be found as zero-crossings ofζ = ∇e1κ1. More precisely, crest
points are of two types:∇e1ζ < 0 andκ1 > 0 (positive largest curvature maxima, ridge-
like) and∇e1ζ > 0 andκ1 < 0 (negative largest curvature minima, valley-like).

Crest line extraction has been carried out especially on medical 3D data. For the case of
iso-intensity surfaces, Thirion and Gourdon [1995] propose to compute these features by
marching on the intersection of two implicit surfacesf = I andζ = 0. An example of
computation is shown on Figure 17. This marching algorithm can be adapted to piecewise-
linear surfaces [Lengagne et al. 1996]. For this, apply the following procedure to each face
F of the mesh:

• For each vertexp of F , estimateζ = ∇e1κ1 as follows. Choose the 1-ring neighborhood
vertexp1 of p that maximizes(p1 − p) · e1, wheree1 is the estimated first principal
direction atp. Then take as estimate of the directional derivative ofκ1 atp:

ζ(p) = κ1(p1)− κ1(p).

• If, for two 1-ring neighborsp andq, ζ(p)ζ(q) < 0, there is a crest point on the edge
pq. Interpolate linearlyζ along the edge to find the location of the zero-crossing of
∇e1κ1.

• Another zero-crossing must appear on one of the other edges ofF . Locate it and draw a
segment between the two crest points found across the face.
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Fig. 17. A 3D magnetic resonance image (left) and a 3D view of the crest lines extracted superimposed on the
surface of the brain (right). Red curves correspond to ridge-like crests, blue curves to valley-like crests [Pennec
et al. 2000].

A simple thresholding on the interpolated value ofκ1 at each crest point, compared to the
maximum value of this curvature on the whole surface, allows the elimination of most of
the spurious points.

Other authors have advocated defining ridges as the locus of points at which the maxi-
mal principal curvatureκ1 attains a positive maximum along its line of curvature4 and the
valleys as the locus of points at which the minimal principal curvatureκ2 attains a neg-
ative minimum along its line of curvature. As noted in [Belyaev and Ohtake 2000], this
definition has a lot in common with a widely used definition of edges in classical image
processing: edges are made of pixels at which the magnitude of the gradient of the image
intensity has a local maximum in the direction of the gradient.

Algorithms have been proposed to detect the crease points so defined on surfaces ap-
proximated by triangle meshes. Define the principal centers of curvature of a pointp on a
piecewise-smooth surfaceS as the points situated at distances1/κ1 and1/κ2 of p on the
line defined byp and the surface normaln atp:

p +
1
κ1

n, p +
1
κ2

n.

Call focal surfacesthe loci of the principal centers. Then it turns out that the singulari-
ties of the focal surfaces are space curves corresponding either to crease curves ofS (as
defined above) or to points ofS where the principal curvatures are equal (umbilics). The
method proposed in [Luḱacs and Andor 1998] for extracting ridges and valleys is based on
the following observation. Letpqr be a small triangle onS and consider the associated
triangleabc on a focal surface,

a = p +
1

κ(p)
n, b = q +

1
κ(q)

n, c = r +
1

κ(r)
n,

4The lines of curvature are the curves whose tangents are in the direction of the principal curvatures. They form
a natural parameterization of a smooth surface [Brady et al. 1985] and come in two colors (flavors): one for the
maximal principal curvature and one for the minimal principal curvature.
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whereκ = κ1 or κ2. Assume thato is a surface point. Theno is a crease point if and only
if

area(abc)
area(pqr)

−→ 0 when p −→ o,q −→ o, r −→ o.

According to [Belyaev and Ohtake 2000], detection based on this observation has several
drawbacks: it does not locate crease points well and is unable to separate the curvature
extrema into maxima and minima.
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Fig. 18. Evaluating ifp is a ridge point [Belyaev and Ohtake 2000].

A different procedure was recently proposed [Belyaev and Ohtake 2000]. Suppose that
we want to recover ridge points (this is no restriction: according to the definition, ridges
and valleys are dual and changing the surface orientation turns ridges into valleys and vice
versa). Consider the setup of Figure 18. To decide whetherκ1 attains a maximum along
its line of curvature, do the following:

• Find the intersection between the normal section plane generated bye1 andn and the
1-ring neighborhood ofp. Let the intersection consist of two pointsa andb. Suppose
thata belongs topipi+1. Compute the maximal principal curvature ata andb by inter-
polation. For instance,κ1(a) can be estimated by linear interpolation betweenκ1(pi)
andκ1(pi+1).

• Find the intersection between the normal section plane generated bye2 andn and the
1-ring neighborhood ofp. Let the intersection consist of two pointsc andd. Estimate
κ1(c) andκ1(d). Estimate∇e2κ1 atp as a function ofκ1, κ1(c) andκ1(d).
• Compute

αa = κ1(a) +
(∇e2κ1)2

2(κ1 − κ2)
‖pa‖2, αb = κ1(b) +

(∇e2κ1)2

2(κ1 − κ2)
‖pb‖2.

Mark p as a ridge point ifκ1 is positive and larger thanαa andαb simultaneously.

The above procedure produces many insignificant ridge vertices because of defects in the
triangulated surface. One way to reduce the number of undesirable vertices is to apply one
of the smoothing algorithms seen in§ 4.1 to the triangulation beforehand. Thresholding the
results can also help. Belyaev and Ohtake [2000] advocate taking two thresholdsκlow and
κhigh, chosen so that 30 % (resp. 60 %) of all surface vertices are such thatκ1 < κlow (resp.
κ1 < κhigh), and retaining a chain of connected ridge vertices with curvatureκ1 > κlow if
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the chain contains at least one ridge vertex withκ1 > κhigh. Even after this filtering, the
crease patterns may be highly fragmented and simple morphological operators are used to
reduce that fragmentation.

Figure 19 shows the ridges computed with this procedure on two different models. Ridge
vertices are indicated by red strokes along the directione2 and valley vertices by blue
strokes alonge1.

Fig. 19. From left to right: the teeth casting model and the ridges detected, the Venus model and the ridges
detected [Belyaev and Ohtake 2000].

Related to ridges are other features whose significance is increasing, the sub-parabolic
lines [Bruce et al. 1996]. They appear as the locus of geodesic inflections of the lines of
curvature. As ridges and parabolic lines (which separate elliptic and hyperbolic regions),
but contrary to lines of curvature, they are robust features, i.e. they deform if the surface
is slightly deformed. An alternate characterization of sub-parabolic lines is as “counter-
ridges”: they are the loci of points at which the principal curvature of one color has an
extremal value when moving along a line of curvature of the other color.

5.2.3 Umbilics. Umbilics, i.e. points at which the principal curvatures are equal, are
other important geometric features which may help guide the segmentation. Obviously,
every point of a planar or spherical patch is an umbilic. But regions may also contain
isolated umbilics. The ellipsoid, for instance, has four umbilics of a stable type, i.e. they
do not vanish if the function representing the surface undergoes a small perturbation. If
they can be identified, isolated umbilics may serve as seed points of a region-growing
algorithm or help in the classification of local shapes.

Localizing umbilic points in sampled surfaces can be done by thresholding the “normal-
ized” absolute value of the difference between the principal curvatures, i.e.

|κ1 − κ2|
max (|κ1|, |κ2|)

< ε.

This is the approach taken in [Brady et al. 1985] to identify regions of umbilics in range
images. However, as shown by Sander and Zucker [1992], the straightforward mathemati-
cal definition of umbilics as points with equal principal curvatures does not translate well
into a computational procedure, especially for isolated umbilics.

Sander and Zucker advocate the use of the following alternate characterization to iden-
tify umbilics in a more robust fashion. Given a direction field at pointp, the indexof p
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is

1
2π

∫ 2π

0

ψ(r) dr,

whereψ(r) is the angle between the direction of the field and some fixed direction, and
the integral is taken over a small counterclockwise circuit aboutp. At all points except at
umbilics, the index is zero. Implementation of this definition thus provides a conclusive
test for umbilics: if the index over a local neighborhood is zero, no umbilic is present.

Letp be a vertex of a triangulationT . Take the first principal direction as direction field.
Locally pull back this field onto the “tangent plane” atp and compute the circuit there (this
does not change the qualitative nature of the field). Consider the smallest circle centered at
p enclosing the 1-ring neighborhood ofp, as in Figure 20. At each pointxi of this circle,
we can estimate the first principal directione1 by interpolation from the values computed
at the vertices ofT . Assume the counterclockwise circuit is divided inw incremental steps
of equal lengths and let∆ξi be the change in angle thate1 makes betweenxi andxi+1.
Then the index ofp is estimated as:

1
2π

w∑
i=0

∆ξi.

Work remains to be done to assert how accurately this method can identify isolated
umbilics in realistic noisy data and how such features can be best used for segmentation
purposes.
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Fig. 20. Computing the index atp. Herep is an umbilic, with index1
2

.

5.3 Recovering specific types of quadrics

Once Darboux frames have been estimated at each vertex of the triangulation, once surface
folds have been detected, once an initial segmentation has been made using for instance
parabolic and ridge lines, we are left with a division of the data into sets which correspond
to smooth surface patches. Focus is then on the identification of sub-patches of these that
correspond to patches from quadric surfaces.

In the past, many researchers have sought to extract quadrics (mostly natural quadrics)
from range imagery: [Oshima and Shirai 1983; Taylor et al. 1989; Bock and Guerra 1999]
detect planes, [Bolles and Fischler 1981; Grimson et al. 1993] look for cylinders, [Hebert
and Ponce 1982; Jones and Illingworth 1994] identify planes, cylinders and cones, [Han
et al. 1987; Yokoya and Levine 1989; Flynn and Jain 1991] extract planes, cylinders and
spheres, [Boulanger and Rioux 1987] consider planes, spheres, ellipsoids and other simple
quadrics, [Flynn and Jain 1988; Newman et al. 1993] deal with planes, spheres, cylinders
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and cones and [Faugeras et al. 1983; Faugeras and Hebert 1986; Fan et al. 1987; 1989]
consider general quadrics.

Among these works, many have used differential parameter estimates for quadric sur-
face classification and parameter estimation. Fan et al. [1987; 1989] start by segmenting
the surface at “discontinuities” (jump boundaries, folds and parabolic lines) which are de-
tected by examining zero-crossings and extremal values of surface curvature measures.
The sub-patches of the resulting initial segmentation are approximated by quadrics, whose
coefficients are computed by a least-squares method. Yokoya and Levine [1989] use a
hybrid approach to extract quadrics of revolution from range data. Principal curvatures
are used to produce three initial segmentations, based on detection of homogeneous re-
gions, occluding contours and sharp edges. A combination of these initial maps is used to
compute the final segmentation.

For quadric parameter estimation, some researchers have used accumulation techniques
based on the Hough transform5 instead. Hebert and Ponce [1982] use Hough techniques to
classify surfaces as planar, cylindrical and conical by clustering projected points along
surface normals onto the Gaussian sphere (the unit sphere of directions). Muller and
Mohr [1984] present a general framework for surface parameter computation using a divide-
and-conquer Hough approach. Yokoya and Levine [1989] use the Hough transform to find
the parameters of surface of revolution. Newman et al. [1993] use accumulation techniques
for spherical and cylindrical parameter estimation.

5.4 Segmentation for quadric surface recovery

Many authors have noted that the region-growing paradigm to segmentation is the most
appropriate for general triangulated surfaces. This section presents three region-growing
segmentation algorithms that have been specifically designed for extracting quadric surface
patches.

Note that there are many, more general, segmentation methods which could certainly be
applied to the recovery of quadric surfaces. Among them, let us mention the anisotropic
diffusion scheme of [Chaine et al. 1999], the region-growing algorithm driven by differ-
ential features of [Bricault and Monga 1997], the recover-and-select segmentation strat-
egy of [Leonardis et al. 1995] (used in [Lukács et al. 1998]), the watershed segmentation
of [Mangan and Whitaker 1999], the tensor voting approach of [Tang and Medioni 1998;
1999], the hybrid approach of [Lejeune and Ferrie 1996] and the construction of polyno-
mial surfaces through region growing of [Sapidis and Besl 1995].

5.4.1 Update statistics for region growing.McIvor and Waltenberg [1998] describe
techniques for the robust identification of patches from planes, spheres and cylinders in
range images. The authors propose two segmentation algorithms, one based on region
growing and the other on unsupervised classification. The first stage of both algorithms

5The Hough transform is a technique used to isolate features of a particular kind within the data. It requires that
the desired features be specified in some parametric form, so is most commonly used for the detection of regular
features such as lines, circles, ellipses, etc.

The standard formulation of the Hough transform for line detection is as follows. Suppose given a set of image
points and the goal is to determine subsets of them lying on straight lines. The Hough transform associates an
image point with a line in the parameter space. Since collinear points are transformed into lines intersecting at
the same point, the problem is solved as an intersection problem in parameter space.

The main advantage of the Hough transform technique is that it is tolerant of gaps in feature boundary descrip-
tions. It is also relatively insensitive to image noise.
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is the division of the data into smooth surface patches separated by occlusion boundaries
and surface folds. Then the emphasis of this work is on a boundary representation of 3D
data that makes explicit the underlying class of surface of the component patches that each
smooth patch is divided into, i.e. the identification of sub-patches that correspond to pieces
of planar, spherical and cylindrical surfaces. The common framework of both algorithms
is as follows:

1. Find all planar points in the data and extract connected planar regions within them.

2. Find all umbilics within the data which are not assigned to a planar region and extract
connected spherical regions from them.

3. Find all parabolic points within the data not yet assigned to a planar or spherical region
and extract connected cylindrical regions from them.

Let us start with the region-growing approach. Given a set of points from a smooth
region, the curvature properties of a particular class of surface are used to identify and
reject points that could not be from such a surface. The structured surface patches are
then identified within these regions by further classification on the basis of position and
principal quadric. In other words, no costly least-squares fitting takes place.

Planar surface patches are simple to characterize in terms of point properties of the
principal curvatures. Namely, both principal curvatures must be zero or, equivalently, the
Gaussian and mean curvatures must vanish. Thus planar patches can be extracted in two
simple steps. First, threshold the principal curvatures about 0 to detect planar points. Then,
group detected points into patches by a region labeling algorithm.

Points on a spherical patch are umbilic, i.e. the directional curvatures are equal in all
directions. Thus spherical surface patches can be segmented by first identifying points
which satisfy|κ1 − κ2| < ε (or |H2 − K| < ε2/4) and then computing the regions of
spatially constant principal curvature. The authors propose two methods to achieve this.

The first is based on region growing. Point aggregation is started from a digital center
of the mask generated by identifying umbilic points. What is needed is:

• A similarity measure, which says when a data point on the boundary of the already
extracted spherical regionR is “similar” enough to the current estimate of the parameters
of the sphere underlyingR that it should be considered part ofR.

• A method forupdatingthe estimate of the sphere’s parameters given the new point added
toR.

First, a pointp on the boundary ofR is mapped to the sphere on which it lies:

rp =
1
|Hp|

, cp = p +
1
Hp

np,

whereHp andnp are estimates respectively of the mean curvature and the normal atp,
andrp, cp the radius and center of the sphere on whichp lies. Assume that there arej
points in the already extracted spherical regionR. The pointp is accepted as part ofR if:

(rp − r̄j)2 ≤ α2(řj + ŕp) and ‖cp − c̄j‖2 ≤ α2(čj + ćp),

where r̄j is the mean anďrj the variance of the extracted surface’s radius estimate,ŕp
the radius measurement error variance (a function of the error in measuringp), c̄j , čj , ć
have similar meanings for the sphere’s center, andα is a chosen significance level. These
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validation gates assume that current estimates and measurement errors are independent and
Gaussian and that the distribution of the sphere’s center is symmetric in space. When a new
point is added toR, the statistics, which are simple, uniformly weighted, estimators, are
updated as follows:

r̄j+1 =
j

j + 1
r̄j +

1
j + 1

rj+1, řj+1 =
j

j + 1
řj+1 +

1
j
(rj+1 − r̄j+1)2,

c̄j+1 =
j

j + 1
c̄j +

1
j + 1

cj+1, čj+1 =
j

j + 1
čj +

1
j + 1

‖cj+1 − c̄j‖2.

An alternative to region growing to aggregate points is clustering, i.e. unsupervised
learning. The number of clustersc, which is needed by the clustering algorithm, is not
knowna priori. It is computed by repeating the clustering procedure forc = 1, 2, 3, . . .,
and looking at how the sum-of-squared errorJe(c), used by the algorithm to determine the
optimal partitioning, varies withc. A suitable value is the smallestc such that

Je(c+ 1)
Je(c)

> 1− ε,

where a good value forε is 0.01.
Similar procedures are given for growing cylindrical regions. Given a pointp, with

estimated normalnp, mean curvatureHp and principal directionep in which the principal
curvature is 0, the parameters of the cylinder on whichp must lie are its radiusrp, the
direction of its axisdp and a unique point on axisxp, with:

rp =
1

2|Hp|
, dp = ±ep, xp = x0 +

(
I − d̄jd̄T

j

)(
p +

1
2Hp

np

)
,

wherex0 is an arbitrary fixed point and̄dj is the current estimate of the axis direction.
The new pointp is added to the already extracted cylindrical region if:

(rp − r̄j)2 ≤ α2(řj + ŕp), ‖xp − x̄j‖2 ≤ α2(x̌j + x́p),

with meanings as before, and if the angle between the axis directiondp and the current axis
direction estimate mean is outside a validation gate. As in the sphere case, statistics are up-
dated with recursive implementations of standard uniformly weighted estimators [McIvor
and Waltenberg 1998].

Cylinders can also be recovered using a clustering algorithm. In this case, the authors
advocate splitting clustering into three sequential stages: clustering by radius, clustering
by axis direction and clustering by axis intersection point.

5.4.2 Reverse engineering regular objects.In CAGD, a question that naturally arises
is how a manufactured part compares with the way it was originally designed. To make
this comparison, a solid model of the existing part has to be built. Generating a solid model
from CMM (coordinate-measuring machine) point data is the goal of reverse engineering.
The created model should be made of continuous surface elements forming the boundaries
of the existing object and possibly reflect its design structure as accurately and concisely
as possible [V́arady et al. 1997].

Since low-degree surfaces encompass most of the conventional parts in industrial en-
vironments, many works in reverse engineering have dealt with the recovery of quadric
surfaces (see, e.g., [Chivate and Jablokow 1993; Várady et al. 1998; Yang and Lee 1999;
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Thompson et al. 1999]). We here give a detailed presentation of the algorithm of [Várady
et al. 1998] which is well adapted to the reverse engineering ofregular objects, i.e. objects
bounded by relatively large primary surfaces (planes, cylinders, cones and spheres – we
leave out tori that the authors also consider) smoothly connected by relatively small transi-
tion surfaces (blending surfaces or healing strips). An example of such a regular object is
given in Figure 21.

Fig. 21. A simple example of regular object [Várady et al. 1998].

Arguing that simpler surfaces occur more frequently in mechanical engineering and can
be detected in a more reliable and efficient manner, the authors advocate a direct, non-
iterative segmentation method which gradually recovers surfaces of increasing complexity.
The algorithm consists of the following elementary steps6:

1. Compute an initial segmentationby identifying highly curved point regions, i.e. points
in the vicinity of sharp edges or lying on blended edges. Call any region thus outlined
simple if it is well approximated by a single quadric surface, and multiple otherwise.

2. Identify simple regionsby testing a sequence of simple hypotheses, in increasing order
of complexity: test whether the surface is a plane, a cylinder, a cone or a sphere. If none
of these tests is successful, the region is classified as multiple.

3. Segment multiple regionsby dimensionality filtering on the Gaussian sphere.

4. Build a B-repwith the detected primary surfaces and compute transition surfaces.

The initial segmentation is made by filtering highly curved regions. At each vertexp of
the triangle meshT , compute the following value:

h =
1
m

∑
i

n · (pi − p),

6Várady et al. [1998] start with a point cloud and estimate normals without reconstructing a piecewise-linear
interpolating surface. We assume we have a triangle mesh for which vertex normals have been estimated.
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wheren is the unit normal atp and thepi are them 1-ring neighbors ofp. If h is larger
than some predefined threshold,p is likely to be in the vicinity of a sharp edge or to belong
to a transition surface or to be a very noisy data point, and is temporarily removed.

After the initial segmentation step, simple surfaces are identified by increasing order
of complexity, starting with planes, then cylinders, cones and spheres. Planes are found
by least-squares fitting (see Section 6). If the error-of-fit is too large, look for cylinders.
Cylinders can also be detected by a least-squares technique but a different approach based
on the Gaussian sphere is used. The idea is that on an ideal cylinder the normal vectors
are orthogonal to its axis. On the Gaussian sphere, they determine a great circle. Thus,
to test whether the region under consideration is well described by a cylinder, the vertex
normals are projected onto the Gaussian sphere and a plane is fitted to the projected points.
If the fit is good, the normal to the plane gives the axis of the cylinder. Projecting the
data points onto a plane orthogonal to this axis and fitting a circle gives the radius of the
cylinder (again if the region is indeed cylindrical).

A similar procedure is used to detect cones. The normal vectors to an ideal cone de-
termine a small circle on the Gaussian sphere. Again fit a plane to the projected points,
which gives the direction of the cone axis. The radius of this small circle is equal tosinα,
whereα is the semi-vertical angle. One can find rulers of the cone – and thus the apex –
by projecting data points onto a plane orthogonal to the axis direction. Finally, spheres are
detected by least-squares fitting.

To segment multiple regions, Várady et al. [1998] use a tool called dimensionality fil-
tering. The idea is to label each point according to the density of points in the vicinity of
its projection on the Gaussian sphere. Take two concentric balls around the projection of a
pointp on the Gaussian sphere (radiir1 andr2) and count the number of points within the
balls (n1 andn2). The dimensionality of the surface underlyingp is estimated as:

D =
log n2

n1

log r2
r1

.

The ratio of the radii is set to 1:2. Ifp belongs to a planar region, then all the normals
around it project (ideally) to a single point on the Gaussian sphere. ThusD ≈ 0. If it
stands in a cylindrical or conical area, thenD ≈ 1. OtherwiseD ≈ 2 andp is on a
spherical patch.

The idea then is to first keep only those points withD ≈ 0 and identify the corresponding
planar subregions (each cluster of points corresponds to such a subregion). Those points
are then removed. Then points withD ≈ 1 are considered. Translational axes (great cir-
cles) can be identified with a Hough transform. The parameters of the associated cylinders
are computed as before. A similar approach allows to identify cones. After removal of pla-
nar, cylindrical and conical points, the remaining subregions should be of rotational type
and spherical patches can be extracted. A final trick allows to identify if a subregion is a
smoothly connected composition of several rotational surfaces.

After primary surfaces have been recovered, an initial B-rep model is constructed. If two
adjacent surfaces intersect enough transversally (the angle between the two normals at the
points of intersection is larger than a specified value), the actual sharp edge is computed
by surface-surface intersection and then replaced by a blending surface. Otherwise, the
edge is considered quasi-smooth. In that case, a rough, approximate polygonal edge is
computed and substituted by a healing strip [Kós et al. 2000].
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5.4.3 The UE segmenter.The first global effort at setting up a framework for compar-
ing experimentally and assessing the performance of range image segmenters was recently
reported [Hoover et al. 1996]. Four planar segmentation algorithms have been tested on
80 real images with ground truth and objective performance measures7. One conclusion is
that the planar segmenter developed over the years at the University of Edinburgh has the
best performance among current algorithms. In fact, even though this study was restricted
to planar segmenters, the UE algorithm actually extracts quadric surface patches. Since
it appears to perform nicely on both plane and quadric surface patches, we think it worth
describing at length the underlying segmentation strategy.

The UE algorithm for segmenting complete range images has three main ingredients.
Initially, the data undergoes arough segmentationfrom which seed patches are determined.
Starting from these patches, aregion growingis performed, during which a special con-
straint allows for patch edge adjustment. Finally, topological information is extracted from
the result of the segmentation and aconversionto a B-rep representation is performed.

In early version of their segmentation algorithm, researchers at UE used an initial seg-
mentation based on theH-K map, labeling vertices as belonging to particular surface
types based on the combined signs of the mean curvatureH and the Gaussian curvature
K [Trucco and Fisher 1992; 1995]. Each curvature value is classified as Negative, Zero,
Positive or Unknown based on two thresholds, called “inner” and “outer”. The “inner”
threshold determines the range of values called Zero. The “outer” threshold determines the
limit of the ranges of the Negative and Positive values. Between these values, vertices of
T are labeled as Unknown. Once this basic classification is made, vertices of similar la-
beling are grouped to form initial regions. This first segmentation map is morphologically
dilated and eroded in a specific manner to fill small Unknown areas, remove small regions,
separate thinly connected components and provide seed patches for the region growing
stage.

Experimenting with this rough segmentation based on theH-K map, the authors no-
ticed that later stages of the algorithm had a more significant impact on performance than
the initial curvature classification. Accordingly, they chose in recent versions of their seg-
menter to implement a simpler strategy for initially segmenting the data [Fisher et al. 1997;
Robertson et al. 1999]. This shape classification process estimates the local curvedness by
finding the maximum angleθmax that adjacent surface polygons turn away from the cur-
rent polygonP . This angle is found by examining the angle between polygon normals in
a neighborhood aboutP . It gives an indication of how curved the surface is locally and
forms the basis for the initial labeling of polygons into different surface shape classes:

• If θmax < τplane (= 5 deg),P is labeled “planar”.

• If θmax > τedge (= 10 deg),P is labeled “edge”.

• Otherwise,P is labeled “quadric”.

(Note that only the surface orientation discontinuities are detected by this classification
scheme, since the authors consider complete range descriptions and not single view im-
ages.) Surface patches are then formed by grouping polygons with a similar label to form
the initial seed patches, which are cleaned up using a morphological operator.

7Comparison of curve-surface segmenters is only at an early stage – see [Powell et al. 1998].
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Starting from this rough segmentation, an initial quadric surface is fitted to each re-
gion above a minimal size. Region growing is then performed through an iterative ex-
pand/fit/contract cycle:

• First, the boundary of the current region isexpandedby adding to it adjacent points
whose position and normal are within a minimal agreement with the position and normal
of the closest surface point. The region is extended in this manner as far as possible.

• Then, a quadric surface isfitted to each new region formed using Taubin’s generalized
eigenvalue fit (see [Taubin 1991] and Section 6). Note that the surface model used
is the general quadric patch form, not Monge’s form as in [Besl and Jain 1988]. In
early versions of the algorithm [Fitzgibbon et al. 1997], the decision about which type
of surface to fit was made by examining the covariance matrix of the region points
(Section 3.3). If the ratio of its two smallest eigenvalues exceeded some threshold, a
plane was fitted. Otherwise, a general quadric was fitted. In newer versions [Robertson
et al. 1999], the selection between the different shape classes is based on minimizing the
surface fit error. If this error is comparable for several classes, the selection is biased in
favor of simpler models. For instance, if a plane, a cylinder and a more general quadric
are in competition, the following quantities are computed:

eplane=
1
σ2

∑
ε2i + 3α, ecylinder =

1
σ2

∑
ε2i + 5α, equadric=

1
σ2

∑
ε2i + 9α,

with εi the error distance between the model and the polygon (estimated using Taubin’s
fitting algorithm),σ is the estimated standard deviation of the polygon patch center from
the true surface andα is a heuristically chosen weight factor. The class with the smallest
ei is chosen.

• Finally, acontractionof the boundary of each region is performed. Each of the points
added in the expansion step is tested against the new surface estimate. Those that are
not best accounted for by the new surface are returned to the pool of unfitted polygons.

This expand/fit/contract cycle goes until the region boundary stabilizes. In later itera-
tions, an additional constraint is added to adjust patch boundaries, which may otherwise
be very ragged due to the effects of noise in the data. This constraint incorporates the idea
that ambiguous points (those that are within the distance threshold of more than one region)
should be on the “right” side of the boundary between adjacent regions. A point is thus
likely to switch sides if it turns out that it is on the wrong side of a theoretical boundary
given by some decision surface. This method gives very good results in terms of regularity
of boundaries. An example of segmentation is shown on Figure 22.

Finally, once the segmentation is over, a post-processing stage converts the segmentation
result to a B-rep model and recovers the topological information. The output is in the form
of shape parameters (surface equation in a canonical position), surface extent (collection
of space curves lying on the surface and a point defining the interior) and position.

6. QUADRIC SURFACE FITTING

We now assume that we are given a set of 3D points. We want to find the quadric surface
best fitting this point set and have a measure of the goodness of fit, i.e. of the “minimum
distance” between the point set and a quadric, so as to decide if the surface fitted does
indeed adequately represent the entire point set or if it needs to be broken into smaller
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a. b.

Fig. 22. Segmentation of a machined part [Robertson et al. 1999]. a. Full range description of a part with
cylindrical and planar surfaces. b. Segmented description of the part. Patch boundaries are indicated by white
lines.

pieces. Unfortunately, while plane fitting is well understood, the least-squares fitting of
(even low-degree) curved surfaces has received much less attention.

This section reviews the literature applicable to the fitting of second-order surfaces. We
start by giving general considerations on linear and non-linear algebraic surface fitting
(§ 6.1) and then look at methods for the specific reconstruction of quadrics (§ 6.2).

6.1 General considerations

Let Ω be a set ofn 3D pointspi = (xi, yi, zi), i = 1, . . . , n. The goal is to find the surface
S, in a family of surfacesχ parameterized byG ⊆ Rs, which best describes the point set
Ω. Assume that elements ofχ are defined in implicit polynomial form:

f(p, s) = 0, p ∈ R3, s ∈ G,

wheref has degreep, s =
(
p+1
3

)
− 1. A surfaceZ(f) (zero-set off ) which goes through

all the points ofΩ is the member ofχ which corresponds to the solution of the following
system of linear equations:

f(pi, s) = 0, i = 1, . . . , n. (15)

Sometimes, there are additional constraints (which for instance restrict the surface to be of
a specific type)

H1(s) = 0, . . . ,Hk(s) = 0 (16)

forming a subspace of dimensiont of G, for some integert < s. In that case, the con-
straints (16) are used to eliminatet unknowns from (15) and reduce the problem to an
unconstrained optimization problem in a lower dimensional space.

Usually,n is much larger than the number of degrees of freedoms and the system of
equations (15) is overdetermined. Thus, in general, it cannot be solved, except in the least-
squares sense: find the surfaceZ(f) which best fits the point set “on the average”, i.e.
which minimizes

E(s) =
1
n

n∑
i=1

f(pi, s)2.

f(pi, s) is called thealgebraic distancefrom pi toZ(f).
Assume first that the constraints (16) are linear, so the problem turns into a linear least-

squares minimization withs′ ≤ s unknown parameters. For the sake of illustration, we
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assume below thats′ = s. Eq. (15) can be written in matrix form:

As = b,

whereA is an× s matrix

A =


xp

1 xp−1
1 y1 · · · yp

1 yp−1
1 z1 · · · zp

1 · · · z1x
p−1
1 xp−1

1 · · · x1 y1 z1
xp

2 xp−1
2 y2 · · · yp

2 yp−1
2 z2 · · · zp

2 · · · z2x
p−1
2 xp−1

2 · · · x2 y2 z2
...

...
...

...
...

...
...

...
...

...
xp

n xp−1
n yn · · · yp

n yp−1
n zn · · · zp

n · · · znx
p−1
n xp−1

n · · · xn yn zn


andb = (1, . . . , 1)T is a vector of lengthn. Solving this system in the least-squares sense
means finding the solutions which minimizes the norm of the residual error

r = As− b.

Assume that the surfaceZ(f) does not go through the origin. IfA is not singular, then
s is unique and given by the normal equation:

s = (ATA)−1AT b.

If A is singular, which may happen if several of thepi’s are concentrated at a single point
or on a straight line, a singular value decomposition can be used. This consists in finding a
decomposition ofA into

A = UWVT ,

whereW is a diagonal matrix with elementsw1 ≥ · · · ≥ wr > wr+1 = · · · = 0 andU ,V
are orthogonal matrices. If we letδj = 1/wj if wj 6= 0 andδj = 0 otherwise, then the
pseudoinverse ofA is

A−1 = V[diag(δj)]UT

and the solutions is given by

s = A−1b.

If the surface goes through the origin, i.e.c = f((0, 0, 0), s) 6= 0, both of the above two
methods will result in the trivial solutions = 0. A way of solving this problem is to treatc
as a variable [Cao and Shrikhande 1991]. LetA1 be the matrixA augmented by the vector
b = (c, . . . , c)T . Then the following linear system of equations can be established:

A1s = 0.

Multiplying both sides byAT
1 yields

AT
1A1s = 0.

Denote byλj the eigenvalues ofAT
1A1. If one of theλj ’s vanishes, then the solutions is

the corresponding eigenvector. If none of theλj ’s vanishes, the eigenvector associated to
the minimum eigenvalue of the matrix is taken as solutions of the least-squares fit.

Minimizing the sum of squared residual errors (we drop the reference tos)

E(s) =
1
n

n∑
i=1

f(xi, yi, zi)2
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as above works well if the data points satisfy the condition that the independent vari-
ables (sayx, y) are measured without error and the dependent variable (z) has Gaussian
noise [Cao and Shrikhande 1991]. Unfortunately, this condition may not be satisfied for
real-world data. And the residual error measure may be very large even when a data point
pi is very close to the surfacef . The reverse can also happen: the error measure can be
small even when several of the data points are far from the surface [Bookstein 1979].

An alternative is to minimize the sum of squared orthogonal distances to the zero-set of
f :

E(s) =
1
n

n∑
i=1

d(pi, Z(f))2. (17)

Even thoughf andd have the same roots in space, they behave a lot differently for points
which do not lie onZ(f). By contrast to the linear least-squares method above, fitting
based on distanced is not biased. If the distances are normally distributed with mean zero,
the solution is a maximum likelihood estimate of the parameters. This approach allows for
noise in all three variables.

Unfortunately, minimizing (17) is computationally impractical – except when bothf
and the constraints (16) are of simple form, e.g. linear with respect to the parameters of
s – because there is no closed form expression for the true distanced from a point to an
algebraic surface. In practice, fitting methods generally rely on approximations to this
distance. Taubin [1991] proposed to use a first-order approximation

d(p, Z(f))2 ≈ f(p)2

‖∇f(p)‖2
.

For surfaces having the value of‖∇f(p)‖ constant onZ(f), it turns out that

E(s) =
1
n

n∑
i=1

f(pi)2

‖∇f(p1)‖2
≈

1
n

∑n
i=1 f(pi)2

1
n

∑n
i=1 ‖∇f(pi)‖2

=
sMsT

sN sT
, (18)

whereM andN are symmetric matrices:

M =
1
n

n∑
i=1

hihT
i , N =

1
n

n∑
i=1

dhidhT
i , hi = (xp

i , x
p−1
i yi, . . . , xi, yi, zi)T ,

anddhi is the Jacobian matrix ofhi with respect to(xi, yi, zi). Minimizing (18) then
amounts to finding the eigenvector corresponding to the minimum eigenvalue of the pencil
M− λN .

While it is popular, this generalized eigenvalue fit is still biased. Indeed, if a data point
pi is close to a critical point of the polynomialf , i.e.∇f(pi) ≈ 0, but such thatf(pi) 6= 0,
then the ratiof(pi)2/‖∇f(pi)‖2 becomes large. In addition, much better fitting results
are obtained with the exact Euclidean distance (at the cost of larger computation times).
This led Taubin [1993] to introduce higher-order approximationsδi to the true distance
function which have the nice property of being upper bounded by the true distance in the
vicinity of a regular point ofZ(f), i.e.

0 ≤ δi(p, Z(f)) ≤ d(p, Z(f)).

Non-linear least-squares problems can also be solved using iterative optimization tech-
niques such as the Gauss-Newton or Levenberg-Marquardt methods [Press et al. 1988;
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Björk 1996]. Suppose that the goal is to minimize

E(s) =
1
n

n∑
i=1

f(pi, s)2,

with s = (s1, . . . , sv) the unknown parameter vector. Iterative techniques try to find a
sequences(j) of parameter vectors such that

E(s(j+1)) < E(s(j)) for all iteration indexj.

The general form of the sequence is:

s(j+1) = s(j) + λjdj , (19)

whereλj is a step size in a direction called thedisplacement directiondj .
The Gauss-Newton’s method uses the Hessian matrixH of E multiplied by the negative

gradient−∇E as the displacement direction, i.e.dj = −H(j)∇E(j) and sizeλj = 1. The
first-order derivatives ofE are:

∂E

∂sk
(s) =

2
n

n∑
i=1

f(pi, s)
∂f

∂sk
(pi, s), k = 1, . . . , v. (20)

Define the matrixF as follows:

F =


∂f
∂s1

(p1, s) · · · ∂f
∂sv

(p1, s)
...

...
...

∂f
∂s1

(pn, s) · · · ∂f
∂sv

(pn, s)

 .

Usually,n is much larger thanv andF is not a square matrix. Eq. (20) can be rewritten as:

∇E =
2
n
FT f ,

where∇E is the gradient ofE and f = (f(p1, s), . . . , f(pn, s))T . The second-order
derivatives ofE are:

∂2E

∂sk∂sl
(s) =

2
n

n∑
i=1

( ∂f
∂sk

(pi, s)
∂f

∂sl
(pi, s) + f(pi, s)

∂2f

∂sk∂sl
(pi, s)

)
,

k = 1, . . . , v
l = 1, . . . , v .

(21)
In this equation,f(pi, s) is a residual term which can be assumed to be small whens is
not too far from the optimum value. Ignoring the rightmost term, Eq. (21) becomes

∂2E

∂sk∂sl
(s) ≈ 2

n∑
i=1

∂f

∂sk
(pi, s)

∂f

∂sl
(pi, s),

which can be rewritten as:

H ≈ 2
n
FTF ,

whereH is the Hessian matrix ofE. Thus, Eq. (19) for Gauss-Newton becomes

s(j+1) − s(j) =
(
F (j)T

F (j)
)−1

F (j)f (j),

whereF (j) means thatF is evaluated ats(j).
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There are two problems with this basic optimization scheme. First, the search sequence
may not converge, i.e.E(s(j+1)) > E(s(j)) for somej. Second, the matrixF (j)TF (j)

may be nearly singular. One way of avoiding these difficulties is to consider the following
modified scheme:

s(j+1) − s(j) =
(
F (j)T

F (j) + ljI
)−1

F (j)f (j),

wherelj is some positive scalar andI the unit matrix of sizev. The idea then is to start
with a low value forlj , saylj = 0.001, and to adjust it at each iteration step depending
on the outcome, i.e. increase it ifE(s(j+1)) > E(s(j)) and decrease it otherwise. This
modified Gauss-Newton algorithm is known as the Levenberg-Marquardt algorithm.

6.2 Quadric surface fitting

Surface fitting has been used for the recovery of quadric surfaces for a number of years.
Most past research has focused on standard (linear or non-linear) least-squares techniques.

6.2.1 General quadric fitting.Bolles and Fischler [1981] describe the RANSAC (Ran-
dom Sample Consensus) technique for fitting surfaces to noisy data. To deal with the noise
inherent in light-stripe range data, an initial filtering eliminates gross errors, after which
a fit is computed by way of a standard least-squares technique. RANSAC is applied to
finding cylinders. Hall et al. [1982] discuss the application of least-squares fitting for the
extraction of quadric surface parameters from depth maps. Faugeras and Hebert [1986] use
the algebraic distance for fitting planes and quadrics. Bolle and Cooper [1986] and Flynn
and Jain [1988] apply iterative non-linear optimization with the true Euclidean distance on
specific representations of quadrics. Local curvature estimates are used to form initial es-
timates of the geometric parameters of the surface. Boggs et al. [1987] describe a strategy
for non-linear orthogonal regression based on the Levenberg-Marquardt technique. The
algorithm uses a specific implicit quadric equation for each surface type. Dai and New-
man [1998; 1999] present two methods for the fitting of hyperboloids and paraboloids,
which frequently appear in industrial parts at the junction of two surface elements. The
first method is based on the least-squares technique. The second, called parameter opti-
mization, is type-specific and more geometric. It is an iterative technique which directly
tries to estimate the parameters of the quadric (i.e., the lengths of the two real axes and of
the imaginary axis if the quadric is an hyperboloid) starting from an initial estimate given
by the user.

Various constraints can be used to restrict the search space. For example, on can require
that the vector of parameters of the surface have unit norm. But this construction is not
invariant under rigid transformation. An alternative is to impose the constraint that the
sum of the squares of the degree 2 coefficients be equal to 1, which is invariant. This is
discussed in [Faugeras and Hebert 1986].

Few of the above techniques perform correctly if the level of noise is high or if the data
points are sampled from a small area. Cao et al. [1994] advocate using an approximate
orthogonal distance regression. To avoid directly minimizing a non-linear function, the
distance is approximated by testing along several discrete directions in 3D space. Then the
minimum of these distances is used as an approximation of the true distance. The sum of
squares of approximate distances can be thought of as a function of the surface parameters.
It is minimized using an iterative method by adjusting the parameter estimates. With this
algorithm, the authors report improvements over conventional least-squares techniques on
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the goodness of fit, on the effects of noise and the distribution of the data and in terms of
efficiency.

There is currently little consensus on what is the best way of fitting general quadrics.
Clearly, much work remains to be done. We have however interesting insights from people
who have worked on conic fitting (conics are in 2D what quadrics are in 3D). As a result of
comprehensive tests on several 2D conic fitting algorithms, Fitzgibbon and Fisher [1995]
found the generalized eigenvalue fit to provide the best tradeoff between speed and accu-
racy. A similar evaluation has not been performed for 3D fitting algorithms, but because of
the simple analogy between conics and quadrics, there are good chances that this observed
result will extend to higher dimensions.

6.2.2 Type-specific fitting.Clearly, there are situations where the type of the curved
surface underlying a point set is not at all obvious. For instance, Karras [1992] reports
that the surface best fitting the abdominal area during pregnancy consistently turns out to
be a two-sheeted hyperboloid, something which could not be foreseen. In such cases, no
constraint can be imposed on the quadric and a general fitting method must be used.

In other situations, it may be important to do type-specific fitting, i.e. to look directly for
surfaces of a certain kind. Indeed, if a scene is known to contain cylinder or cone patches
for instance, then it is probably not a good idea to use a general linear least-squares method
to recover them. The reason is that the subspaces ofR9 corresponding to the different
quadric types do not all have the same dimension: hyperboloids of one and two sheets
and ellipsoids make up subspaces of dimension 9, cones and paraboloids (elliptic and hy-
perbolic) make up subspaces of dimension 8, hyperbolic and elliptic cylinders make up
subspaces of dimension 7 and parabolic cylinders make up a subspace of dimension 6. For
even more specific primitives (of the type people want to recover in reverse engineering),
the dimension drops further: right circular cones (dimension 6), right circular cylinders
(dimension 5) and spheres (dimension 4). Thus, if a general least-squares method is used,
the “chance” that it will correctly recover, say, cylinders are low and the solution may be
very different from the optimal surface. Also, according to [Fitzgibbon et al. 1999], type-
specific fitting has many advantages in terms of occlusion and noise sensitivity: it avoids
undue oscillations of the fitted surface owing to the presence of data noise. In addition, the
increased stability of the algorithm widens its scope of application to cases where the data
is not strictly, say, elliptical but needs to be minimally represented by an elliptical “blob”
(see, e.g., [Banegas et al. 1999]).

To detect spheres, the simplest solution is to definef as

f(p) = (x− x0)2 + (y − y0)2 + (z − z0)2 − r2,

wherep = (x, y, z), (x0, y0, z0) is the center of the sphere andr is its radius. Setting
η = x2

0 + y2
0 + z2

0 − r2 turns the minimization of∑
i

f(pi)2

into a linear least-squares problem. Pratt [1987] proposes a different representation which
is better behaved when the data points are unevenly distributed and in small number. He
minimizes the expression∑

i

(A(x2
i + y2

i + z2
i ) +Dxi + Eyi + Fzi +G)2
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subject to the conditionD2 +E2 + F 2 − 4AG = 1. This leads to an eigenvalue problem.
For more on the influence of data point distribution and representation for sphere fitting,
see [Bourdet et al. 1993].

For circular cylinders and cones, no linear least-squares method is known, the reason
being that the equations expressing the conditions for a quadric to be a circular cylinder
or cone are quadratic [Bolle and Cooper 1986]. To recover circular cylinders, a possible
representation is:

f(p) = (x− x0)2 + (y − y0)2 + (z − z0)2

− (ax(x− x0) + ay(y − y0) + az(z − z0))2 − r2,

where(x0, y0, z0) is an arbitrary point on the axis of the cylinder,(ax, ay, az) is a unit
vector along the axis andr is the radius. For circular cones, take

f(p) = [(x− x0)2 + (y − y0)2 + (z − z0)2] cos2 α

− (ax(x− x0) + ay(y − y0) + az(z − z0))2,

where(x0, y0, z0) is the apex of the cone,(ax, ay, az) is a unit vector defining the orien-
tation of the cone axis andα is the semi-vertical angle. Other representation functions are
possible (see [Werghi et al. 1998]).

Several authors have reported that the choice of representation function may severely
influence the behavior of a non-linear fitting algorithm. For instance, Rosin [1996], in the
context of ellipse fitting, shows that choosingf carelessly can lead to biased estimates
for s. More generally, the choice of distance function has a deep impact on the outcome
of least-squares methods. This led Lukács et al. [1998] to consider approximations of
the Euclidean distanced which are specific to each quadric type and have none of the
singularities ofd (i.e., points at which it is not differentiable). Call an approximationd̃ of
d faithful if d̃ is zero whereverd is zero and the derivatives of̃d are equal to those ofd at
these points. Ifd has the form

d =
√
g − h,

then the following approximation is faithful:

d̃ =
g − h2

2h
.

Lukács et al. [1998] introduce faithful distances for spheres, circular cylinders and cones
and tori and parameterizations of these surfaces which allow faithful distances to be used.

Consider the case of the right circular cylinder. Letρb be the closest point of the cylinder
to the origin, with‖b‖ = 1. Assume thata is a unit vector along the axis of the cylinder
and1/k the radius of the cylinder. The vector of parameters iss = (a,b, k, ρ). Note that
it is only 5-dimensional, sincea ·b = 0. The Euclidean distance from an arbitrary pointp
in space to the cylinder is:

d(p, s) =
∥∥∥(p− (ρ+

1
k

)
b
)
× a
∥∥∥− 1

k
. (22)

This expression is of the form
√
g − h. This leads to the following faithful approximation

of d:

d̃(p, s) =
k

2
‖(p− ρb)× a‖2 − (p− ρb) · b.
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This expression is better behaved than the true distance whenk is small: (22) involves
the subtraction of two large quantities, which may be numerically unstable. In the limit
casek → 0, d̃ becomesρ − p · b and the problem reduces to a linear least-squares fitting
of planes. The non-linear fitting problem is then solved with some iterative technique
like the Levenberg-Marquardt algorithm. A good initial estimate is required. Lukács et
al. [1998] also show how to compute the derivatives ofd̃ with respect toρ, k and the angles
parameterizinga andb, which are needed by the optimization algorithm.

A common characteristic of all the above works is that they treat each surface to be
fitted separately. When the points to be interpolated cover a small area and the data is
corrupted by measurement noise, the fitting technique fails to perform reasonably, resulting
in a highly biased estimate and a quadric which does not reflect the actual type of the
underlying surface. Werghi et al. [1998; 1999; 2000] advocate compensating the poorness
of information embodied in the data by extra knowledge about the surfaces such as their
type and relationships with neighboring quadrics. The overall idea is to incorporate specific
constraints into the reconstruction process and then use least-squares techniques to solve
the semi-global fitting. The additional information, which may take the form of geometric
or topological constraints (surfaces are parallel, they intersect in a right angle, . . . ), can be
generated by a computer program based on statistical tests and either accepted or rejected
by the user. Looking for such constraints makes a lot of sense in reverse engineering
and manufactured object modeling where the majority of parts are designed with intended
feature relationships.

Consider a set ofl surface patches assumed to be quadratic. The minimization criterion
for surfacej, considering the algebraic distance, has the form:

Ej =
nj∑
i=1

fj(p
j
i , sj)2.

Globally, one wants to minimize

E = E1 + · · ·+ El = sTHs,

wheres = (s1, . . . , sl), subject to a set of constraints incorporating the shape charac-
teristics of the surfaces and their relationships:Hj(s) = 0, j = 1, . . . , k. The problem
can be seen as a constrained optimization problem which is well behaved if the constraint
functions are continuous, differentiable and convex [Fletcher 1987]. The estimation of the
parameter vectors is achieved with a sequential unconstrained technique. Consider the
following optimization function:

J(s) = sTHs +
k∑

j=1

λjHj(s), (23)

where the second term is a penalty function. The algorithm increments sequentially the set
of weightsλj and at each step (23) is minimized with the Levenberg-Marquardt technique,
giving an updateds. The initial value ofs is determined by estimating eachsj individually
with a generalized eigenvalue fit and then concatenating all the vectors into one. The algo-
rithm stops when the constraints are satisfied to the desired degree or when the parameter
vector remains stable for a number of iterations.
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7. CONCLUSION

This paper has surveyed the methods for recovering quadrics in triangle meshes. We have
successively delved into local geometry estimation, mesh denoising, segmentation and re-
construction, which constitute the four major steps in shape recovery algorithms.

One of the major observations of this guided tour is that there is still a lot of room for
improvement in quadric surface recovery methods. Some subtasks seem more mature than
others, but more work needs to be done in all of them before a reliable and automatic
quadric extraction can be achieved:

—Estimationanddenoising: Many different methods have been proposed for estimating
the local surface geometry at points of a triangle mesh. Several of them, especially
those which are natural equivalents in the discrete setting of formulas in the continuous
case, seem to give meaningful results. What is needed now is a global comparison of
those methods, to understand how they behave under varying noise levels, to assert the
influence of mesh sampling regularity, mesh connectivity, scaling. . .
For images acquired with laser range devices or coordinate-measuring machines, fairing
is necessary before estimating local surface differential parameters. Future work should
be devoted to deciding what is the best and most efficient way of denoising meshes while
preserving salient features (e.g., sharp edges).

—Segmentationandclassification: Segmentation is probably the subtask of shape recovery
methods with the smallest level of consensus and the largest number of open research
directions. Future work should single out a number of segmentation strategies applica-
ble to general piecewise-linear surfaces (and not just to range images), continue curve-
surface segmenters comparison as initiated by [Powell et al. 1998], identify the most
interesting features (and those that can be most reliably extracted) for the computation
of the initial segmentation of region-growing methods and incorporate more domain
knowledge in the segmentation process (for instance, since natural quadrics are the most
present in mechanical pieces, a sequential type-specific fitting of cones, cylinders and
spheres is a better idea for the reverse engineering of such pieces than an unguided,
unconstrained segmentation).

—Reconstruction: Most known methods for fitting quadrics to segmented 3D data are
based on the least-squares technique. However, least-squares estimation is not robust to
noise or outliers since the larger the residual the more important is its influence on the
estimate. Robust fitting should thus be a major concern of the future [Miller and Stewart
1996]. Already, people have drawn conclusions on the use of least-median-of-squares
fitting, which performs better if outliers are present in the data [Chivate et al. 1994].
Experiments should also be made with M-estimators. Letri be the residual of thei-th
datum. Instead of minimizing

∑
i r

2
i , the M-estimators try to reduce the effect of outliers

by replacing the squared residualsr2i by another function, yielding

min
∑

i

ρ(ri),

whereρ is a continuous, symmetric function with minimum value at zero. The above is
equivalent to solving ∑

i

ρ′(ri)
∂ri
∂sk

, k = 1, . . . , v.
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In other words, the derivative ofρmay be seen as a weighting or influence function. For
traditional least-squares fitting,ρ′ is a linear function, so the influence of a datum on the
estimate increases linearly with the size of its error, confirming the non-robustness of the
technique. A better estimation is obtained for instance with the Cauchy M-estimator:

ρ(x) =
c2

2
log
(
1 +

(x
c

)2)
.

With this function, the more the points deviate from the model, the less importance they
have in the calculation (i.e.,ρ′ decreases asx increases).
The development of computationally efficient algorithms for the type-specific fitting of
quadrics other than the natural quadrics is also an important research direction.
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KARBACHER, S. AND HÄUSLER, G. 1998. A new approach for modeling and smoothing of scattered 3D data.
In Three-Dimensional Image Capture and Applications, R. Ellson and J. Nurre, Eds. SPIE Proceedings, vol.
3313. The International Society for Optical Engineering, 168–177.

KARRAS, G. 1992. On the orientation of digital elevation models in biostereometrics. InSurface Topography
and Spinal Deformity, A. Alberti, B. Drerup, and E. Hierholzer, Eds. G. Fischer Verlag, Stuttgart, 162–165.

KOBBELT, L. 1997. Discrete fairing. InThe Mathematics of Surfaces VII, T. Goodman, Ed. Oxford University
Press, 101–131.

KOENDERINK, J. 1990.Solid Shape. MIT Press, Cambridge, MA.
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