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Chapter 1IntroductionThis document is slightly different from a conventional book in that it is a living webdocument rather than a �xed entity. Publishing a conventional book is not so bene�cialin a �eld which is changing as fast as computer vision. With the spread of the Internetit is possible to produce a book that evolves with the �eld (time permitting). Withinthis web-book a Matlab system for SAM is described. The purpose of this documentis two fold, one to act as a manual to the Matlab SAM system, and two to act as atutorial/reference on the practical aspects of designing a SAM system. As such onlymethods that have been found to work well are implemented and other methods as wellas theoretical trivia are not included. As time passes I might �esh out some more of thesections, feedback on anything that is not clear will be always appreciated, althoughmight not be enacted on straight away so please be patient. A lot of the text is takenfrom my thesis.How to use this manual The SAM recovery system follows a natural progression,comprising the following phases:1. Feature detection, Chapter 2. In version 1 only Harris corners are included. Infuture versions it is planned to include canny edge features, and other invariantfeatures more suited to wide baseline matching.2. Feature matching, Chapter 3. In version 1 only cross correlation, and Birch�eld and Tomasi are implemented. In future versions edge matching will appearand wide baseline invariant matching.3. Fundamental Matrix Estimation, Chapter 4 for non robust and Chapter 5 forrobust methods . Several methods are included for this including in the non-robust camp: linear, BOOSAM, non-linear and robust: RANSAC, MLESAC,MAPSAC.4. Rematching, Chapter 6, not implemented in version 1.5. Self Calibration, and Recovery of 3D structure, Chapter 7,to determine a Eu-clidean frame, structure and camera matrices.4



CHAPTER 1. INTRODUCTION 5The reader is also referred to Table 5.4. The structure of this document is to assigneach phase of the reconstruction, e.g. corner detection, matching, self calibration etc.a separate chapter. Each chapter will begin with some background on the the technicaldetails of that phase, followingwhich will be a set of subsections, one per function. Thesubsection will explain the both the Matlab call to the function in some detail togetherwith a mathematical description of what it does. This is a very hands-on approach todescribing the SAM problem, but it is hoped that this document will serve as a usefulteaching aid to those trying to understand an end to end system. The design is highlymodular so that parts can be unplugged and new ideas plugged in, to aid researchcomparisons and testing. For additional information amongst the most useful books onthe subject are [13, 25, 33].1.1 A Quick StartFor those, like myself, who want to learn by example, a series of scripts to illustratethe usage of the functions have been devised. The interested user is encourage to study,modify and combine these scripts, experimenting with parameters and such like. Theexamples are:1. Features Image loading, feature detection and display given in Section 2.4.2. Matching Section 3.3 gives a script to load two images, generate corners, matchesand display them.3. Estimation of the fundamental matrix given in Section 4.1.2.1.2 GUI or no GUIThe meat of the SAM functions can be run via the torr tool which provides aneasy interface to the bulk of the functions described herein. There are also a lot ofstand alone programs provided to allow testing and understanding of the individualcomponents. The GUI is described in Chapter 91.3 Mex �lesSome of the computation in SAM can be highly intensive, to speed things up it has beennecessary to implement some things as Mex �les. These are provided precompiled forwindows, but the source is provided for compilation onto other systems, however to dothis you are on your own, and I advice you to read the Matlab manuals carefully if youare not familiar with how to compile Mex �les.1.4 Testing MethodologyFor debugging and tutorial purposes a synthetic data generator is provided to generatesynthetic sets of matches, motions and calibrations and is described in Chapter 8. I



CHAPTER 1. INTRODUCTION 6have a very clear idea on how to test algorithms such as the estimation of the funda-mental matrix; this involves generation of realistic synthetic test sequences and thenseeing how close the estimate is to the known ground truth. Thus I have designedmany scripts that test each phase on synthetic data (with the exception of the cornermatching/detection part which requires real images). There scripts also serve as usefuldebugging tools when the data is noise free, the estimate should be exactly the same asthe ground truth.1.5 A warningPerhaps the weakest element of the whole toolkit is the matching process. Cross cor-relation of Harris corners initializes the whole process. For version two more robustversions of the correlation process will be tried, such as those of Lowe. In the meantimethe GUI allows interactive addition of matches.



Chapter 2Feature DetectionThe corner detector used is that of Harris and Stephens [18] which calculates an in-terest operator de�ned according to an auto-correlation of Gaussian smoothed images.Corners only yield sparse information across the image but allow the system to bebootstrapped by allowing for the estimation of epipolar geometry. The size of the con-volution mask gives a trade off between the localization of corners and the amount ofnoise excluded. A mask width of width = 9 has been found to be suitable over awide range of scenes. Auto-correlation may be de�ned as the sum of squares of thedifference of image intensitiesÆI(Æx; Æy) = Xij2patch (I1(i+ Æx; j + Æy)� I1(i; j))2 (2.1)whose analytic Taylor expansion isÆI(Æx; Æy) = (Æx; Æy)N� ÆxÆy � (2.2)where N(x; y) = � I2x IxIyIxIy I2y � : (2.3)The two eigenvalues ofN are proportional to the principal curvatures of N and func-tions of them have the property of rotational invariance. It is shown [18] that when thetrace of the matrix is large there is an edge and when the determinant is large there isan edge or a corner 1. A corner strength signal is�(x; y) = jN(x; y)j � �Trace2N(x; y) (2.4)where � = 0:04 is routinely used 2. Corners are de�ned at the local maxima of twodimensional quadratic patches �tted to �(x; y), resulting in sub-pixel accuracy, in ver-sion 1 subpixel accuracy is not implemented.1The term corner is used, even though this is truly an interesting point operator partly, for historicalreasons2Harris originally used the determinant divided by the trace, but he discarded this measure to avoidpotential division by zero. The value � = 0:04 was empirically arrived at as it gave the best result.7



CHAPTER 2. FEATURE DETECTION 82.1 Sub Pixel AccuracyGiven that the corner has been detected at (x; y), subpixel accuracy may be gained by�tting a quadratic approximation to �(x; y)ax2 + by2 + cxy + dx+ ey + f = �(x; y) (2.5)using the nine pixels around (x; y) this leads to 9 equations in 6 unknowns that can besolved by least squares.2.2 Detecting Corners, torr charrisfunction [c_coord] =torr_charris(im, ncorners, width, sigma, subpixel)Input:� im, is the image which is passed as an array of doubles (at present only greylevel images are used, one day maybe I'll implement colour corners)[i1,map1] = imread([pathname1 filename1]);iii = size(size(i1));if iii(2) == 3g1 = rgb2gray(i1);disp('converting to rgb');elseg1 = i1;endim = double(g1);� ncorners, is the number of corners requested, note that due to non-maximalsuppression, sometimes fewer corners than ncornersmay be returned.� width, is the width of the Gaussian used to smooth the image.� sigma, is the standard deviation of the Gaussian used to smooth the image.� subpixel, is a boolean variable which is set to one if subpixel detection isrequested, at the moment this is not implemented.Output: c coord a n� 2 array of (x; y) positions.2.3 Display: display corners in figure(handles)A simple function to display corners on an image in torr tool, the meat of it is:plot(ccr1(:,1), ccr1(:,2), 'g+','Parent', ax_handle2);



CHAPTER 2. FEATURE DETECTION 92.4 Feature Generation Example, torr cor scriptTo get an easy example of the corner detector in action run script torr cor script,this will read in the image j1.bmp (the default image) and display a little �gure togetherwith crosses showing Harris corners. The example is as simple as:figurei1 = imread('j1.bmp','bmp');g1 = rgb2gray(i1);d1 = double(g1);ncorners = 500width = 4sigma = 1subpixel = 0[ccr1] = torr_charris(d1, ncorners, width, sigma, subpixel);imshow(g1);%display cornershold onplot(ccr1(:,1), ccr1(:,2), 'g+');hold off2.5 To do List1. Subpixel accuracy.2. Colour corners3. Canny Edges.4. Other features



Chapter 3Feature MatchingFeature matching is perhaps one of the weakest parts of the SAM edi�ce. The geom-etry and algorithms in the later chapters are well understood, but the whole algorithmis built on shaky foundations. Correlation matching can work very well for the smallbaseline case, when there is only a small change in illumination. However for signif-icant changes in perspective and lighting the intensities of corresponding features intwo images can undergo large changes, resulting in the failure of correlation matching,and hence the SAM algorithm. It is hoped in future version of the code to address thisfundamental problem. An important thing to note is that image coordinates are repre-sented as homogeneous vectors (x; y; m3), where m3 is the variable used in the SAMfor the third homogeneous coordinate of image points.All corners within a certain disparity limit are compared over the two images. Inthe absence of a priori information, this limit is set to max disparity pixels. Inthe course of the matching process there are often several candidate matches for eachfeature. Initially the one that is most correlated in image intensities at the corner posi-tions is selected, in a similar manner to the Droid system [18]. As auto-correlation isused to de�ne a feature, the strength of match is obtained by cross-correlation of imageintensity over two half size � half size pixel patches centred on each feature,C = Xij2patch (I2(i; j)� I1(i; j))2 (3.1)where In(i; j) is the image intensity at coordinate (i; j) in the nth image. The matchwith the maximum strength is stored for each corner from the �rst to the second image.The same process is then applied in reverse from the second to the �rst image. Matchesare accepted into the initial set if they are exhibit a maximum in both comparisons.This has the effect of removing corners which are ambiguous in that they have multiplecandidate matches.
10



CHAPTER 3. FEATURE MATCHING 113.1 Correlation Matching: torr corn matcherAt the heart of this code is the function patch match, this takes as input two cornerpositions and outputs the correlation between them, because this is very computation-ally intensive and involves loops it is implemented as a MEX �le.function [matches12,minc,mat12] =torr_corn_matcher(im1, im2, clist1, clist2, max_disparity,half_size)Input:� im1, im2 the two input images, arrays of doubles as described in Section 2.2.� clist1, clist2 two nc� 2 arrays of corner positions as described in Sec-tion 2.2, nc is the number of corners.� max disparity the size of the search window (square) in the next image.� half size the half size of the correlation window.Output:� matches12matches in an n� 4 array of matches (x; y; x0y0), in this case n isthe number of matches.� minc is the minimum value of C for each corner.� mat12 is de�ned such that mat(i) = j means corner i matches to corner j.3.1.1 Correlation of two patches, patch matchCorrelation = patch_match(im1,im2,x,y,x',y',half_size,minC));Input:� im1, im2 the two input images, arrays of doubles as described in Section 2.2.These are needed to access the intensity values for correlation.� x; y; x0; y0 the coordinates of two prospective matches.� half size the half size of the correlation window.� minC is the minimum value of C so far for that corner (this allows an earlyjump out if the computed correlation goes greater than C as we sum over all thepixels).Output: Correlation The correlation between the two corners.



CHAPTER 3. FEATURE MATCHING 123.2 Birch�eld and Tomasi CorrelationWithin this section an error measure is described based on a modi�cation to that ofBirch�eld and Tomasi [5]. Comparative tests [42] have shown that this method givesbetter results than standard correlation. Referring to the notation of their paper, ratherthan compute Imin and Imax over the left and right pixel, which would only be correctif the epipolar lines lay exactly along the scanlines, we compute these two quantitiesover the 8-connected neighbourhood of each corresponding pixel in both images. De-�ne the following quantities:e12(I1(x; y); I2(x0; y0)) = min� 12�Æx;Æy� 12fjÎ2(x0 + Æx; y0 + Æy)� I1(x; y)j2ge21(I1(x; y); I2(x0; y0)) = min� 12�Æx;Æy� 12fjI2(x0; y0)� Î1(x+ Æx; y + Æy)j2gwhere Ii(x; y) is the intensity value at x; y in image i, and Îi(x; y) is the linearlyinterpolated function between sample points around x; y. Then the dissimilarity ormatch cost between two pixels is de�ned symmetrically ase(x; y; x0; y0) = minfe12(I1(x; y); I2(x0; y0)); e21(I1(x; y); I2(x0; y0))g: (3.2)As pointed out in [5] the computation of this is simple, as the extreme points of apiecewise linear function must be its breakpoints; �rst computeImax2 (x; y) = maxÆx;Æy=�1;0;1 12f(I2(x; y) + I2(x+ Æx; y + Æy))gImin2 (x; y) = minÆx;Æy=�1;0;1 12f(I2(x; y) + I2(x+ Æx; y + Æy))gWith these quantities de�ned:e12(I1(x; y); I2(x0; y0)) = maxf0; I1(x; y)� Imax2 (x; y); Imin2 (x; y)� I1(x; y)g(3.3)similarly for e21, thus allowing for computation of e(x; y; x0; y0) This developmentis not the thrust of the paper; for want of space it is not discussed in detail, but thismodi�cation provides a very robust error, which is more tolerant to image samplingthan either correlation or the shuf�e metric recently advocated for space carving. Themain drawback of the Birch�eld and Tomasi approach is that it provides somewhat lessdiscriminative power, thus I prefer SSD as presented above.3.2.1 birch matchThe Birch�eld and Tomasi algorithm is implemented by theMEX functionbirch match,which takes the same form as the patch match function.3.3 FeatureMatching Example: torr matcher scriptThis script loads two images j1.bmp, j2.bmp, detects corners and displays the result ina �gure using torr display matches. The core code is again very simple (detect



CHAPTER 3. FEATURE MATCHING 13corners as in Section 2.4)max_disparity = 20;half_size = 2;disp('detecting matches')[matches12,minc12,mat12] =torr_corn_matcher(d1, d2, ccr1, ccr2,max_disparity,half_size);max_corn_d = 0; %maximum corner motionn_matches = length(matches12);med_minc = median(minc12);disp('the maximum corner disparity is used for edge matching')max_corn_ddisplay_numbers = 0;torr_display_matches(matches12,f1,display_numbers);3.4 Match Display: torr display matchesThis function displays the matches in a �gure it may take 1,2 or 3 arguments.function torr_display_matches(matches,display_numbers,f1)Input:1. matches: n� 4 array of matches2. display numbers: if set to 1 then displays the index of each match.3. f1: �gure handle of the �gure for the matches to be displayed in.3.5 To do List1. Invariant feature matching2. Edge Matching3. Guided matching using epipolar geometry.



Chapter 4Determination of theFundamental MatrixThis chapter is taken largely from my thesis, but provides some useful background. Itwas published in [52, 51, 53]. Other excellent sources for estimation ofF are the reviewarticle by Zhang [64], and the book of Hartley and Zisserman [25] or [63]. The mainfunction that you need to estimate the fundamental matrix, F is torr estimateF, awrapper for all theF estimation methods, which is described in the next section. Thereis a confusing plethora of ways to compute F, I suggest using a robust estimator likeMAPSAC to get a �rst pass at F and then perform a constrained non-linear estimationafterwards to optimize, as described in the next section.4.1 Fundamental Matrix Estimation Function: torr estimateFThis is a wrapper for several methods to estimate the fundamental matrix, dependingon what value of method is passed to the algorithm.[f, f_sq_errors, n_inliers,inlier_index,F] =torr_estimateF( matches, m3, f_optim_parameters, method,set_rank2, f_init)Input:� matches� matches in an nm� 4 array of matches (x; y; x0y0), as de�ned in Section 3.1.� m3 is the third homogeneous coordinate.� f optim parameters is a vector of parameters passed to the estimation al-gorithm.� method can be 14



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 151. `MAPSAC' (note that at present this is the same as 'MLESAC', assuminguniform priors). Calls torr mapsac F.2. `linear', described in Section 4.5.2, calls torr estf.3. `Bookstein', an invariant total least squares �t described in Section 4.5.7,calls torr estf bookstein.4. `BooSam', �tting using the method of Section 4.5.7, followed by iterativeleast squares, using Sampson's weighting described in Section 4.7, callstorr estf bookstein sampson.5. `non linear' a constrained estimate of F enforcing jFj = 0 as described inSection 4.9, call torr nonlinf mincon2x2.6. `lin+non lin': `linear' followed by `non linear'.� set rank2: boolean variable, if it is 1 then the SVD is used to enforce jFj = 0as described in Section 4.5.6.� f init this is an initial estimate of F and is only required for iterative (non-linear)methods, f init is a vector as follows: (f1 : : : f9), as given by (4.14).Output:� f the solution vector f = (f1 : : : f9), as given by (4.14).� f sq errors, the squared error for each match (given as Sampson's error de-�ned in Theorem 3).� n inliers, if a robust method is used like MAPSAC then this is the numberof inliers detected.� inlier index, an array returned with robust methods, the ith element is 1 ifthe ith match is an inlier, 0 otherwise.� F: F as a 3� 3 matrix as given by (4.14).4.1.1 Speci�c functions for estimating FAs explained torr estimateF calls one of several speci�c functions to estimate F.Most of the functions for estimating F have the same base parametersfunction f = torr_estf(x1,y1,x2,y2, no_matches,m3,...)Input:� x1,y1,x2,y2 are arrays of the n corresponding (x; y; x0; y0) coordinates. Icould have passed them in one n� 4 matrix but in the subsequent calculations itoften makes things clearer to identity explicitly the coordinates.� no matches is the number of matches.� m3 is the third homogeneous coordinate.



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 16Output: f the solution vector f = (f1 : : : f9), as given by (4.14).4.1.2 Example of Estimating F: torr test FA simple script to show how to estimateF, the code �rst calls torr gen 2view matcheswhich is described in Chapter 8. The user can then set the method by hand.%a script to display the results of the F matrix...%third homogeneous coordinatem3 = 256;%decide display methodcompare = 1;%choose your method heremethod = 2set_rank2 = 0;compare = 1;%generate synthetic data[true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_t, true_E]= torr_gen_2view_matches;no_matches = length(nx1);matches = [nx1,ny1,nx2,ny2];%first estimate F[f, e1, n_inliers,inlier_index,estimateF]= torr_estimateF( matches, m3, [], method, set_rank2);%check errorse = torr_errf2(f, nx1,ny1,nx2,ny2, no_matches, m3);%display the resultif comparetorr_compare_epipoles(estimateF,true_F,matches, m3)elsetorr_display_epipoles(nF,matches, m3)endThere are two display functions for matches and epipolar geometry, described inthe next section, torr display epipoles or torr compare epipoles.4.1.3 Display Functions for epipolar geometryThis functions take a fundamental matrix, and a set of matches, throws up two �gures,with the matches displayed. The used can interactively click on one image, and an
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(a) (b)Figure 4.1: Output of torr display epipoles: (a) A set of syn-thetic matches generated by torr gen 2view matches, displayed bytorr display matches. The squares show using input points, with corre-sponding epipolar lines shown in (b)epipolar line will appear in the second image consistent with F and correspondingto the point clicked on. The function uses ginput and so input is terminated by acarriage return. An example of the output is shown in �gure 4.1.function torr_display_epipoles(F,matches, m3)Input:� F, the 3 � 3 fundamental matrix F, for which epipolar lines are to be displayed(if you are only interested in displaying the matches, this can be arbitrary).� matches, the n� 4 match array.� m3 the third homogeneous coordinate.function torr_compare_epipoles(Fmat1,Fmat2,matches, m3)Input:� Fmat1, Fmat2, two 3� 3 fundamental matrices to be compared.� matches, the n� 4 match array.� m3 the third homogeneous coordinate.When this function is called, two �gures appear showing the disparity vectors ofthe matches. Click in �gure 1 and two epipolar lines appear in the second �gure, onein green (for Fmat1) and one in red (Fmat2). This function is particularly useful forcomparing the estimated F to the ground truth (as in torr test F) or in comparingthe result of two different algorithms for estimating F.



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 184.2 An Overview of methods to estimate FThis chapter introduces the elementary concepts necessary for accurate estimation ofthe fundamental matrix F which encapsulates all the information on camera motionand camera parameters available from a given set of point correspondences [19, 12]. Insubsequent chapters it is shown that the fundamental matrix can be used to guide thefeature matching process and to initialize motion segmentation. The fundamental ma-trix has also been used to initialize structure. This now near ubiquitous employment ofthe fundamental matrix in vision algorithms prompted the content of this chapter. Spe-ci�c issues that have not been seriously analysed previously are highlighted�issuessuch as robustness to gross outliers and the detection of degeneracy in the data�and insubsequent chapters they are addressed. It will be seen that without address to theseissues, the estimate of F can be very poor.In Section 4.3 the basic terminology that is used throughout this report is given.Section 4.4 describes the fundamental matrix and the distinction between the intrinsicand extrinsic parameters of a pair of cameras. Methods for estimating the fundamentalmatrix are then analysed. There are several key points to consider: �rst the choice oferror function to be minimized, secondly the choice of parameterization for the funda-mental matrix to enforce the constraint that the determinant is zero, and thirdly whichestimator should be used. The latter is determined to a large extent by the �rst two.Three classes of estimators are described. An unnormalized least squares approach isdescribed in Section 4.5, an iterative reweighted least squares method adapted fromSampson [41] and used by Weng et al. [60] is described in Section 4.7, and gradientdescent estimators are set out in Section 4.8. Testing methodology and functions aredescribed in Section 4.104.3 Homogeneous and Projective coordinatesIn this section basic concepts and terminology which will be used in the rest of thework are de�ned. The language of projective geometry is adopted, about which theinterested reader may consult Semple and Kneebone [43] for a text book on projectivegeometry,Mundy and Zisserman [35] for an elegant joining of projective geometry andcomputer vision, and Kanatani [27] for a discussion of some of the basic computationaltheory associated with the application of projective geometry.Vectors will be denoted by boldface type: a, and matrices by boldface and capitals:A. The determinant of a matrix as jAj, the Fröbenius norm of a matrix as jjAjj.The image plane is regarded as a 2-D projective space: P2, a point of P2 is desig-nated as a triplet x = (x1; x2; x3) of real numbers, not all of them equal to zero. Thistriplet is termed a homogeneous coordinate. It is bene�cial to work with homogeneouscoordinates as this often simpli�es the mathematical derivations. Two points of P2 areequal if there exists a non-zero scalar � such that xi = �xi for i = 1; : : : 3, thus(x1; x2; x3) = �(x1; x2; x3) (4.1)We introduce the notation a � b to indicate equality up to a scale factor when itis not obvious that we are dealing with homogeneous coordinates. The embedding



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 19R2 � P2 is (x; y) 7! (x; y; �) where x = (x; y) is the inhomogeneous image point.The constant � is chosen to elicit the best numerical conditioning of our algorithms,as explained below. In the SAM algorithm its variable is m3 (the third homogeneouscoordinate.A line in the 2-D projective space is also de�ned by a triplet of numbers n =(n1; n2; n3), not all of them equal to zero. The line appears on the image plane asn1x + n2y + n3 = 0. If n1 = n2 = 0 the line is interpreted to be the ideal line atin�nity, l1, de�ned by the set P2nR2. The points x = (x; y; 0) that lie on this line arethe points at in�nity. It is important to draw a distinction between noise free or perfectquantities and their noisy counterparts. Underlined quantities x indicate the perfect ornoise free quantities, to distinguish them from x = x + Æx, the value corrupted bynoise. In the case of parameters, underlined quantities, f , indicate the true value, todistinguish them from their estimates, f .An image-image homography, projectivity or collineation is a linear one-to-onemapping that takes all the points/lines in P2 to the set of all the points/lines in P2 suchthat:1. collinear points are mapped to collinear points,2. concurrent lines are mapped to concurrent lines,3. incidence is preserved.It may be represented by a 3� 3 nonsingular matrixH such thatx0 =Hx (4.2)for all image features in the �rst image denoted x and second image denoted x0 .Since the 3-D motion of a rigid object relative to a �xed camera is equivalent to theopposite 3-D motion of the camera relative to the object, it is henceforth assumed thata �xed scene is viewed relative to a moving camera. An XY Z-Cartesian camera co-ordinate system centred on the �rst camera is established, where the three dimensionalcoordinates of a world point are (x; y; z) in R3. Again R3 is regarded as a subset ofprojective three space P3. The embedding R3 � P3 is (x; y; z) 7! (x; y; z; 1). Theset P3nR3 is the plane at in�nity �1, the equation of which is the set of all pointsXsuch thatX = (X;Y; Z; 0).Features in space are termed scene features in contradistinction to those projectedinto a given view termed image features. The projection from P3 to P2 is a lineartransformation represented by a 3� 4 camera matrix P.The 3-D motion of the camera between the capture of two images is speci�ed bythe motion parameters fR; tg. That is, we regard the newX 0Y 0Z 0-camera coordinatesystem, after the camera has moved, as obtained from the XY Z-camera coordinatesystem by �rst rotating the XY Z-coordinate system around its origin 0 by rotationmatrix R and then translating it by vector t, where the components of R and t arede�ned with respect to the XY Z-coordinate system. (The camera moves from 0 tot in the XY Z-coordinate system.) Let x represent the homogeneous coordinates ofa point before the camera motion, and x0 represent the homogeneous coordinates of a
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Figure 4.2: Once the epipolar geometry is established it can be seen that each point inimage one de�nes a line in image two upon which its correspondence must lie.point after the camera motion. A simple pin hole model for the camera is assumed,de�ning an epipolar geometry as shown in Figure 4.2.The camera model will now be expressed using a general projective transform from3D real projective space,P3, known as world space, to 2D real projective space knownas image space. This transformation may be expressed in terms of homogeneous coor-dinates by a 3 � 4 matrix P known as the camera matrix. The camera matrix can bewritten as the product ofC, the 3�3 camera intrinsic parameter matrix giving the inter-nal geometry of the camera, and an extrinsic matrix specifying the external orientationand position of the camera coordinate frame. If it is assumed that there is no shear inthe axes, and non-linear effects such as radial distortion have been catered for [1],C isupper triangular with four degrees of freedom namely principal point, focal length andaspect ratio i.e. C = 24 a 0 �px0 1 �py0 0 1=f 35 (4.3)where a is the aspect ratio, (px; py) is the principal point, and f is the focal length. It isassumed (for simplicity of analysis) that C remains unchanged as the camera moves.If x 2 P2 is the image ofX 2 P3 thenx = C24 1 0 0 00 1 0 00 0 1 0 352664 r11 r12 r13 txr21 r22 r23 tyr31 r32 r33 tz0 0 0 1 3775X (4.4)or x = PX (4.5)where P = C[R j t] = [CR j Ct], the extrinsic parameters (e.g. motion parametersfrom the origin) are fR; tg, such thatR = 24 r11 r12 r13r21 r22 r23r31 r32 r33 35 : (4.6)



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 21Given a vector t it is convenient to introduce the skew-symmetric matrix:[t]� = 24 0 �t3 t2t3 0 �t1�t2 t1 0 35 (4.7)which allows vector products to be written as:[t]�v = t� v (4.8)v>[t]� = v � t: (4.9)For any non-zero vector, [t]� has rank 2. Furthermore the null space of [t]� is gener-ated by the vector t i.e. t>[t]� = [t]�t = 0. If a is any vector annihilated by [t]�then it is a scalar multiple of t.4.3.1 Function torr skew symA useful, but self explanatory routine to generate skew symmetric matrices:function T = torr_skew_sym(t)T = [0 -t(3) t(2); t(3) 0 -t(1); -t(2) t(1) 0];4.4 The Fundamental MatrixWithin this section the fundamental matrix is de�ned. It is a key concept when us-ing point correspondences as it encapsulates all the geometric information about thecamera positions contained within a set of point correspondences, and is equivalentto the epipolar geometry. The fundamental matrix is an extension of the the essentialmatrix formulated by Longuet-Higgins [31] to the case where calibration is unknown.The case for algorithms that do not require calibration has been strongly made in [12].Camera calibration is at best dif�cult, possibly introducing correlated errors into thesystem, and at worst it is impossible. The fundamental matrix is now de�ned.Theorem 1 [12, 19] Given an uncalibrated camera let the set of homogeneous imagepoints fxig; i = 1; : : : n; be transformed to the set fx0ig on the image plane by themotion parameters fR; tg such that t 6= 0. Then there exists a 3 � 3 matrix F suchthat x0>i Fxi = 0 (4.10)for all i.Proof. Appendix A.The fundamental matrix may be written in terms of the intrinsic matrix and theessential matrix F = C�>EC�1 (4.11)proved in Appendix A. Because E is rank two [31], the fundamental matrix at most ofrank two. This leads to the following lemma.



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 22Lemma 1 If F is a fundamental matrix corresponding to a pair of image and x is apoint in the �rst image, thenFx is the epipolar line in the second image correspondingto x.The epipoles correspond to projections of the directions of translations in the twoimages, and can be recovered by the left and right nullspace of F. The functiontorr get right epipole is provided to calculate the epipole:% returns epipole such that Fmat1 * epipole = 0function epipole = torr_get_right_epipole(Fmat1,m3)[v,d] = eig(Fmat1);dd = [d(1,1)�2, d(2,2)�2, d(3,3)�2];[Y Index] = min(dd);epipole = v(:,Index);epipole = epipole * (m3/epipole(3));%Fmat1 * epipoleFrom F and the image correspondences it is straightforward to recover projectivestructure as has been pointed out in [12, 19]:Theorem 2 ([12, 19]) Given a set of image correspondences suf�cient to determinethe fundamental matrix, the corresponding world space coordinates are determined upto a collineation of projective 3-space P3.In the rest of the chapter non-robust estimators for recovering the fundamental matrixfrom corrupted data are reviewed.4.5 Linear Methods: O1,O2Implicit in Equation (4.10) is the assumption that image coordinates are noise freequantities. However, in real situations recovery of the fundamental matrix becomesnon-trivial as the image coordinates are perturbed by noise, leading to inconsistency inthe the set of constraints provided by (4.10).In the ensuing sections previous work on estimation of the fundamental matrix issummarised, describing a linear method, an iterative method and a descent method forestimating F. The choice of the algorithm is critical, as some perform substantiallybetter than others. There are two key points in the estimation of the fundamental ma-trix. First is the choice of error function to be minimized: this involves considerationof the assumptions to be made about the noise distributions of the data (and, as will



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 23be seen later outlier distributions). Within this section linear methods are used to esti-mateF, which although computational ef�cient, do not provide a maximum likelihoodsolution. In Sections 4.7 and 4.8 two different estimators that purport to give maxi-mum likelihood solutions are explained. Second is the choice of parameterization forthe fundamental matrix to enforce the constraint that its determinant is zero. It will beseen, in Section 4.8, that there is no ideal parameterization, but that an adequate onecan be de�ned.Well known results in linear regression are summarised next. Regression is used tostudy the relationship between parameters, and linear regression deals with the class ofrelationships that are linear in the parameters. Although bilinear in the image coordi-nates estimation of F is linear in the parameters. This can be seen by expandingx0>i Fxi = 0 (4.12)to givef1x0ixi+f2x0iyi+f3x0i�+f4y0ixi+f5y0iyi+f6y0i�+f7xi�+f8yi�+f9�2 = 0; (4.13)where the terms of the fundamental matrix areF = 24 f1 f2 f3f4 f5 f6f7 f8 f9 35 : (4.14)There are twomain approaches to regression: ordinary (or classical) least squares [37](common in statistics) in which the error is subsumed into one of the variables, and or-thogonal regression [17] when there is error in all the variables. For ease of referenceclassical least squares is referred to as O1 and orthogonal regression as O2. The twomethods are now outlined and then it is explained how they might be used to recoverF from image correspondences.4.5.1 Ordinary Least Squares Regression: O1Consider the set of n measurement equationsai = d>i b+ � i = 1 : : : n; (4.15)where ai is a measured scalar with error, �, which is assumed to be Gaussian withstandard deviation �; di is a known p dimensional vector and b is an unknown pdimensional vector of parameters which is to be recovered. If n is greater then p the setof equations is overdetermined. Noise corruption renders them inconsistent howeverand the least squares technique is used to �nd a solution. Let D be the matrix whoserows are d>i . From equation (4.15) a = Db+ �; (4.16)A common way of recovering an estimate b of b is to use the Moore-Penrose [39]pseudo-inverse b = (D>D)�1D>a: (4.17)



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 244.5.2 Orthogonal Least Squares Regression: O2In ordinary least squares the error is assumed to be in only one coordinate, whereasin orthogonal least squares it is assumed that all coordinates are measured with error.Consider �tting a hyperplane f = (f1; f2; : : : ; fp) through a set of n points in Rpwith coordinates zi = (zi1 ; zi2 ; : : : ; zip), with the centroid of the data taken as origin1(following [37]).Assuming that the noise is Gaussian and that the elements of z have equal variance(if the points have unequal variance each element may be weighted by its standarddeviation) the hyperplane with maximum likelihood, f , is estimated by minimizingthe perpendicular sum of Euclidean distances from the points to the plane [37, 30],as seen in Figure 4.3. This is accomplished by minimizingPni=1(f>zi)2 subject to
Y

X

Y

X(a) (b)Figure 4.3: (a) the orthogonal distance and (b) ordinary least squares distance. It canbe seen that the latter distance becomes less stable as the angle between the line andy-axis decreases, leading to unstable solutions for the line.the constraint f>f = 1 [37, 30, 17]. This constraint ensures that the estimate will beinvariant to equiform transformation of the inhomogeneous coordinates (an equiformtransformation is a Euclidean transformation combined with a scaling). For examplethe best �tting line to a 2 dimensional scatter (xi; yi), i = 1 : : : n is estimated byminimizingPni=1(axi + byi + c)2 subject to the constraint a2 + b2 = 1 [37]. This isaccomplished by total least squares [17], minimizingnXi=1(f>zi)2 subject to f>f = 1 : (4.18)Let Z be the n� p measurement matrix with rows zi, and letM = Z>Z be the p� pmoment matrix, with eigenvalues, in increasing order, �1 : : : �p and with u1 : : :up the1The best �tting hyperplane passes through the centroid of the data [37].



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 25corresponding eigenvectors forming an orthonormal system. The best �tting hyper-plane is given by the eigenvector u1 corresponding to the minimum eigenvalue �1 ofthe moment matrix. It can be shown that�1 = nXi=1(u>1 zi)2 = nXi=1 r2i (4.19)which is the sum of squares of residuals ri (in this case the perpendicular distances tothe hyperplane).In the instance of the fundamental matrix,z = � x0ixi x0iyi x0i� y0ixi y0iyi y0i� xi� yi� �2 � (4.20)and the measurement matrix isZ =W2666666664 x01x1 x01y1 x01� y01x1 y01y1 y01� x1� y1� �2x02x2 x02y2 x02� y02x2 y02y2 y02� x2� y2� �2... ... ... ... ... ... ... ...x0ixi x0iyi x0i� y0ixi y0iyi y0i� xi� yi� �2... ... ... ... ... ... ... ...x0nxn x0nyn x0n� y0nxn y0nyn y0n� xn� yn� �2
3777777775 (4.21)where W is a diagonal matrix of the weights given to each feature correspondence,corresponding to the inverse standard deviation of each error. (This is assumed tobe homogeneous at present, in the next section its estimation by iteratively reweightedleast squares is explained.) If the variances of the image coordinates are different alongthe two axes e.g. x-axis is �2x and y-axis is �2y , the image coordinates are weighted bydividing them by their respective variances.IfM = Z>Z is the moment matrix then the estimate f minimizes f>Mf subjectto f>Jf = constant, where J = diag(1; 1; 1; : : : ; 1; 0) ; (4.22)is a normalization chosen to realise a solution from the equivalence class of solutionwith different scalings. This estimate is given by the eigenvector corresponding tothe minimum eigenvalue of the centred moment matrix. Centring (sic) is a standardstatistical technique that involves shifting the coordinate system of the data points sothat the centroid lies at the origin. This can be effected by subtracting ~1 zj from eachcolumn of Z, where ~1 is an n dimensional vector such that ~1 = (1; 1; 1; : : : ; 1)> andzj is the mean of that column. The proof is given in Appendix C.The third homogeneous coordinate � is set to be equal to the estimate of the focallength measured in pixels, in order to improve the conditioning of the solution, and tomaintain consistency of units. If no estimate is available then � = 256, to ensure thatit is of the same order of magnitude as the image coordinates. Because F is bilinear inthe image coordinates the orthogonal regression result is not invariant to the choice of�. This is a phenomenon well known in conic �tting [6, 41] and stems from the poor



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 26normalization given in (4.22). This normalization is inappropriate for the fundamentalmatrix as it is not invariant to Euclidean transformations of the coordinate system. Ta-ble 4.1 gives the variance of the distance of noise free points to their estimated epipolarlines varying the value of � for 10 sets of n synthetic correspondences. It can be seenn 25 50 100 200� = 1 8.94 7.60 7.45 4.33� = 256 5.16 3.19 1.37 0.48� = 600 6.02 3.36 1.55 0.89Table 4.1: Showing the variance of the distance of noise free points to epipolar linesvarying � for 10 sets of n synthetic correspondences.that minimization of the algebraic distance is not invariant to � with respect to the dis-tances of features on the image from their epipolar lines. Setting � to the same orderof magnitude as the image coordinates produces the best result: in this case the imageswere 512� 512 thus we set � = 256. These problems do not arise when minimizingthe geometric distances on the image plane, which will be described in the next section.4.5.3 Linear Estimation: torr lsIn Matlab linear estimation by SVD is easy as pie, and is provided by:function [vec, error] = torr_ls(Z)Input: Z is the n� p Z matrix.Output:� vec is the solution vector.� error is �1 =P r2i .4.5.4 Linear Estimation of F, torr estfMost of the functions for estimating F have the same parametersfunction f = torr_estf(x1,y1,x2,y2, no_matches,m3)with parameters de�ned as in Section 4.1.1.4.5.5 The Shortcomings of the Linear MethodsUnfortunately both produce inaccurate results. Classical least squares to estimate F,as suggested by Tsai et al. [58] and Olsen [36], where a chosen variable (the `obser-vation') is regressed against, is unsuitable as there is a tacit assumption that there areonly errors in this variable. The problem is shown in Figure 4.3 where it can be seen



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 27that the ordinary least squares distance, measured in the direction of one of the axes,becomes less stable as the line to be estimated tends to parallelism with this axis. Thatis, the variable chosen to regress against may have zero coef�cient, in which case theestimate, f , would be rendered meaningless.Orthogonal least squares also produces poor results. This is due to three factors.First the residuals ri that we minimize:ri = f1x0ixi+f2x0iyi+f3x0i�+f4y0ixi+f5y0iyi+f6y0i�+f7xi�+f8yi�+f9�2 (4.23)are not Gaussian; secondly the constraint that the determinant ofF should be zero is notenforced; thirdly the choice of normalization in orthogonal regression is inappropriateto F. In the next section iteratively reweighted least squares is described in whichsome compensation is made for the �rst and third shortcoming [6, 41]. In Section 4.8we summarise parameterisations that may be used to overcome the second.4.5.6 Imposing the cubic constraint det(F) = 0The second constraint which F should satisfy is a cubic polynomial in the matrix el-ements imposing det(F) = 0. If it is not imposed then the epipolar lines do not allintersect in a single epipole. Assume that we have an estimate of the fundamental ma-trix, F̂. Typically, when performing only linear estimation to obtain F̂ this constraintis imposed by projecting the linear solution onto the space of Fundamental matricessuch that det(F) = 0, such that the Frobenius norm jjF̂ � Fjj is a minimum. Let thesingular value decomposition [17] of the recoveredF beF = V�U> : (4.24)Due to noiseFwill have full rankwith non zero singular values: � = diag(� 12 1; � 12 2; � 12 3).To approximate F by a rank two matrix, let �+ = diag(� 12 1; � 12 2; 0) then the reducedrank approximation of the fundamental matrix isF = V�+U> : (4.25)This is easily coded in MATLAB via SVD as[U,S,V] = svd(F);S(3,3) = 0;F = U*S*V';f = reshape(F,9,1);A problem is that smaller elements will have a relatively greater perturbation inrelation to their size. Thus the method of [22] is adopted. This is not entirely satis-factory as ideally we would like to choose the f̂ which minimizes some Mahalanobisdistance (f̂ � f)>M�1f (f̂ � f), taking into account the covariance of F. Work on thisis in progress.



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 284.5.7 Invariant linear �ttingNext an invariant linear method based on Bookstein is described noting that the funda-mental matrix is like a 4D conic. We seek an estimation rule which is general, simpleto compute and invariant. Simplicity suggests we seek a quadratic norm, f>Jf =constant, on the parameters of F to enforce the scaling constraint as this will lead toa eigenvector solution. Invariance is to be with respect to Euclidean transformationsof both image planes (possibly different transformations to different planes) i.e. if thecoordinate system is changed in one or both of the images, then the best �tting ~F to thetransformed points must be exactly the result of the same transformation(s) applied tothe best �tting F of the original points.Bookstein[6] suggested an invariant norm for conics under Euclidean transforma-tions. It has been observed that the fundamentalmatrix is like a conic in the four dimen-sions of the joint image space <4 [49]. Following Bookstein we seek a parametrizationof F invariant to Euclidean transformations in the image planes (which is a subgroupof the Euclidean transformations in the joint image space <4). Fortunately the con-struction of these invariants is a well studied problem [35].Consider the transformations of the image coordinates G in image one such thatG~x = x, and image two,G0~x0 = x0, which leads to a transformation on F such that,~F = G0>FG withG = � R t0> 1 � ; G0 = � R0 t00> 1 � ; F = � A bc> d � ; ~F = � ~A ~b~c> ~d � :(4.26)Thus it can be seen that~F = G0>FG = � ~A ~b~c> ~d � = � R0>AR R0>At+R0>bt0>AR+ c>R t0>At+ t0>b+ c>t+ d � :(4.27)From this it can be seen that the norm cannot be any combination of f3; f6; f7; f8; f9 asthese can be transformed to arbitrary values by translations of the image coordinates.Unless of course t; t0 = 0, in which case the normPi=9i=1 f2i = 1 (amongst others) isinvariant to rotations of the image plane. Discounting the non generic case, this leavesthe elements of the upper left 2 � 2 submatrix of F to de�ne the norm. Due to thespecial nature of rotation matrices it can be immediately seen thatdet( ~A) = det(R0>AR) = det(A); jj( ~A)jj = jj(R0>AR)jj = jj(A)jjwhere jj()jj corresponds to the Frobenius norm of the matrix. Thus we have the choiceof the following norms, the determinant norm det(A) = (f1f5 � f2f4), the Frobeniusnorm jj(A)jj = (f21 + f22 + f24 + f25 ) 12 . How many invariants can there be? Referringto [35] the counting argument states: �suppose there is a con�guration space S, onwhich a group G acts, then the number of functionally independent primitive scalarinvariants is greater than or equal to dimS � dimG 2. In this case dimA = 4 anddim(R;R0) = 2, thus we would expect at least two invariants 3.2In general equality holds except in the special case of isotopies3If only one rotation was applied to both images i.e. we knew the common orientation of the two images,then we could expect another invariant, which would correspond to traceA



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 29Which of these norms is most appropriate? In order to deduce this another desider-atum is introduced; that the norm is positive de�nite. This is desirable because epipo-lar geometries for whose F the norm is zero can never be �tted at all, even if thedata lie exactly upon them. Therefore we must say goodbye to the determinant normdet(A), which excludes all F for which det(A) = 0. The square of the Frobeniusnorm jj(A)jj2 = (f21 +f22 +f24 +f25 ) does not exclude generalF, rather it will �t all Fexcept for data for which a linear or af�ne fundamental matrix FA [35] is more suited;x0>i FAxi = 0 where FA = 24 0 0 g10 0 g2g3 g4 g5 35 : (4.28)Whether or notFA is themore appropriatemodel can be determined bymodel selectionmethods [57]. If it is then an exact eigenvector solution [44] exists for FA that mini-mizes reprojection error which should always be used rather than a more general algo-rithm for �tting F. Thus we propose to minimize f>Mf subject to f>Jf = constant,where J = diag(1; 1; 0; 1; 1; 0; 0; 0; 0), is the square of Frobenius normalization.The square of the Frobenius norm jj(A)jj2 = (f21 + f22 + f24 + f25 ) is also in-variant to choice of scale. Without loss of generality consider only the change ofscaling in one of the images. If the coordinates in one image are rescaled by k,(x; y) ! (~x; ~y) = k(x; y), let fk be the vector of coef�cients of the best �ttingF by this norm. The rescaling replaces the moment matrix M by DkMDk whereDk = diag(k; k; k; k; k; k; 1; 1; 1). Thus in the new coordinate system the minimiza-tion is of f>Mkf subject to f>Jf = constant, where J = diag(1; 1; 0; 1; 1; 0; 0; 0; 0)(becauseDkJDk = k2J). Since Dk is not singular the extremum is given by D�1k f ,where f is the extremum before rescaling. ButD�1k f is simply the transformed versionof f . Hence the method presented is invariant under equiform transformations (Eu-clidean and scaling transformation in the images), and consequently choice of the thirdprojective coordinate �.4.5.8 Imposition of the quadratic constraint f 21 + f 22 + f 24 + f 25 = KWe wish to minimize f>Mkf subject to f>Jf = constant, whereJ = diag(1; 1; 0; 1; 1; 0; 0; 0; 0): (4.29)There are two eigenvectormethods for conducting this minimization. The �rst is some-what easier to implement (especially in MATLAB) and involves solving the general-ized eigenvector problem: Jf � �Mf = 0: (4.30)The second is proposed by Bookstein, and is faster and more stable: First partitionf into two components, f1 = (f1; f2; f4; f5) comprising the four elements of A, thesecond f2, comprising the other �ve elements. LetM be partitioned correspondingly:M = � M11 M12M>12 M22 � ; then f>Mf = f>1M11f1 + 2f>1M12f 2 + f>2 M22f 2;



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 30asM and its partitions are all symmetric. We must minimize this subject to f>1 J11f1 =constant, where J11 = diag(1; 1; 1; 1) = I. For any �xed f 1, f>Mf is minimal when@f>Mf@f2 = 2M>12f1 + 2M22f2 = 0 (4.31)which implies f 2 = �M�122M>12f1 (4.32)Then f>Mf = f>1 (M11 �M12M�122M>12)f1 = f>1 Qf1: (4.33)To minimize this for f>1 J11f1 = constant, let � be a Lagrangian multiplier for theconstraint. Then we must set the derivative with respect to f1 of f>1 Qf1��f>1 f1. Thisyields Qf1 = �f 1; (4.34)thus f1 may be recovered from as the eigenvector solution of (4.34). Note that unlessthe data lie on lines in the imageM22 always has an inverse. As a general note, fol-lowing in the style of the ellipse speci�c �tter [15], the other quadratic constraints canbe imposed on the elements of F to restrict them to a certain subspace of fundamentalmatrices. Indeed it is a simple matter to also add an arbitrary linear constraint to F intothe optimization as explained in [6].4.5.9 Imposing Linear Constraints on FThe computation remains tractable when we place arbitrary linear constraints on theparameters. If these linear constraints satisfy Lf = 0, then f is the eigenvector corre-sponding to the largest eigenvalue of the system(I� L(L>M�1L)�L>)Jf � �Mf = 0: (4.35)whereA� denotes the generalized inverse of an arbitrary square matrixA. A more ef-�cient solution to this generalized eigensystem is given by Golub and Underwood [16],which reduces the problem to a smaller, symmetric system.Setting linear constraints erodes the available degrees of freedom in various ways,some possibly useful e.g. (1) f1 = 0, f5 = 0: the two cameras are mounted on a lateralstereo rig, with the cameras free only to vary their angle of di or ei)x [7]. (2) skewsymmetry f2 = �f4, f3 = �f7 and f6 = �f8, this occurs under a pure translation,generally it would be preferable to �t a two parameter model directly. If the camerahas both epipoles in the centre of the image (forward translation and cylcorotation)then f3; f6; f7; f8 = 0.4.6 Bookstein function: torr estf booksteinfunction f = torr_estf_bookstein(x1,y1,x2,y2, no_matches,m3)with parameters de�ned as in Section 4.1.1.
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X(a) (b)Figure 4.4: Both (a) (b) show the perpendicular distances to the �t. Under Gaus-sian assumptions minimizing this gives the maximum likelihood estimate. (a) takingas solution the eigenvector of the moment matrix, M, corresponding to the minimumeigenvalue minimizes the sum of squares of distances of the points to the line. Thealgebraic distance equals the 'geometric distance' to the line. (b) the eigenvector ofthe moment matrix does not minimize the sum of squares of points to a conic. Thealgebraic distance does not equal the 'geometric distance' to the line.4.7 Iteratively reweighted Least Squares: S1, S2Within this section various error terms that might be minimized are discussed, andthen it is shown how iterated least squares might be used to minimize the postulatederror terms. The expression given in (4.23) is known as the algebraic distance as itdoes not possess any physical signi�cance (i.e. it does not measure the distance of afeature to the quadric surface in 4D image coordinate space that is F). The varianceof ri is heteroscedastic, meaning that it varies depending on the location of the featurecorrespondences.Sampson [41] discovered a similar heteroscedascity in the algebraic residuals when�tting conics. If each point is perturbed by Gaussian noise then minimization of thealgebraic distance is suboptimal. It can be shown [30] that the best �tting (maximumlikelihood) quadratic curve is such that the sum of squares of perpendicular distancesof points from it is a minimum. Furthermore this solution is invariant to Euclideantransformations of the coordinate system. This is clearer in two dimensions, in Fig-ure 4.4 are two examples of minimization. The joins of the different points to thecurve are not parallel and may not even be unique. A closed form solution is unob-tainable. Sampson proposed using a �rst order approximation to this distance whichcan be readily calculated. Weng et al [61] extended this to the fundamental matrix asfollows.Theorem 3 ([61]) Consider the problem of �tting a fundamental matrix to the datapoints zi; i = 1 : : : n, de�ned in (4.20). Let f be the exact fundamental matrix, writ-



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 32ten in vector form, and let f be the estimate. If f is computed by the least squaresoptimization: f = minf nXi=1 (f>zi)2wSi (4.36)where wSi is the optimal weight (being the variance of the residual). Then , droppingsubscripts for compactness, the optimal weighting iswS = 1rr (4.37)where the gradient,rr, is easily computed:rr = (r2x + r2y + r2x0 + r2y0) 12rx = f1x0 + f4y0 + f7�ry = f2x0 + f5y0 + f8�rx0 = f1x+ f2y + f3�ry0 = f4x+ f5y + f6�;where rx denotes the partial derivative of r (given in Equation (4.23)) with respect tox.Proof: Refer to Appendix D.The optimal weights outlined above require the fundamental matrix to be com-puted. To minimize (4.36) a method proposed for conics by Sampson [41] is adapted,noting that the fundamentalmatrix de�nes a quadratic in the image coordinates. Hence-forth this method will be denoted S1. Sampson proposed an iterative approach, com-puting an algebraic �t to f by an eigenvaluemethod, then reweighting the algebraic dis-tance from each sample point, in this case the image points fx;x0g by 1=rr�(x;x0),where rr� is the gradient computed at the previous iteration, using unit weights onthe �rst iteration.Fit f by an eigenvalue method, then a new �t is computed as the solution of theweighted moment matrixM0 =Pi ziz>i =wi, so that one computesminf i=nXi=1 r2iw2i = minf f>M0f ; subject to f>Jf = 1:Note that (a) the computation of one or more Sampson re�nements is at the same costas the initial eigenvector solution, and thus does not increase the order of magnitudeof the complexity. (b) Any solution computed by a Sampson re�nement of F is stillinvariant to equiform transformations. Finally for constrained minimization ofF it hasbeen proposed to hold the determinant of the top 2�2 constant [32], within the light ofthe current analysis it would seem more sensible to impose the constraint that the normof the top 2�2 is constant, however once exact (as opposed to approximate) geometricdistance is minimized then this should not make much difference. Recently Chojnackiet al [9] have reported excellent results on a variation of the Sampson distance for �ttingF, they do not consider invariant �tting however.



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 33The optimal weights convert the algebraic distance of each point into the statisti-cal distance in noise space, which is equivalent to the �rst order approximation of thegeometric distance as shown in [41, 38]. The weighting breaks down at the epipole,the numerator and the denominator both approaching zero, indicating that there is lessinformation about correspondences the closer they are to the epipole. In practice toremove unstable constraints all points within a pixel of our estimated epipole are ex-cluded from that iteration of the calculation.Contention: In the book of Hartley and Zisserman [25] there is a claim that theSampson distance breaks down after 1 pixel of noise and that a highly non-linear trian-gulation method is necessary. I would dispute this and invite the discerning reader totry a comparison.4.7.1 Error function: torr errf2To calculate the �rst order error of a set of matches for a given fundamental matrix f .function e = torr_errf2(f, nx1,ny1,nx2,ny2, no_matches, m3)Input: input parameters de�ned as in Section 4.1.1.Output: e is a n� 1 vector of squared errors with ith element r2iw2i :4.7.2 Weight function: torr grad ftorr grad f Calculates Sampson's weight for a set of matches and a given f .function g = torr_grad_f(f, nx1,ny1,nx2,ny2, no_matches, m3)Input: input parameters de�ned as in Section 4.1.1.Output: g is a n� 1 vector of squared errors with ith element w2i .4.7.3 Sampson function: torr estf bookstein sampsonfunction f = torr_estf_bookstein_sampson(x1,y1,x2,y2, no_matches,m3)with parameters de�ned as in Section 4.1.1.4.8 Parameterised Descent Methods: N1-N3This section describes minimization whilst imposing the non-linear constraint that thedeterminant is zero. The iterative method given above has the de�ciency that it doesnot directly enforce the constraint that the determinant of the fundamental matrix mustbe zero. Rather a procrustean device is used to convert the solution from one that is



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 34invalid to one that is valid. Another way of overcoming this de�ciency is to performa constrained non-linear minimization. As a general rule constrained non-linear min-imizations are tricky and it is usually better to use a parameterisation that implicitlyincludes the constraint. For instance, F might parameterized asF = 24 !1 !2 !3!4 !5 !6!7!1 + !8!4 !7!2 + !8!5 !7!3 + !8!6 35 ; (4.38)providing that the third row is not zero (if it is then it is a trivial matter to alter theparameterization). Luong et al [32] suggested a parameterization of F in terms of thenon-homogeneous coordinates of the epipoles e = (e1; e2), e0 = (e01; e02) and three ofthe four coef�cients of the homography between the epipolar lines:F = 24 b a �ae2 � be1�d �c ce2 + de1de02 � be01 ce02 � ae01 ae2e01 + be1e01 � ce2e02 � de02e1 35 (4.39)where � a bc d � is the homography between the epipolar lines. As the homographyhas only three degrees of freedom, its matrix's determinant is constrained to be 1,giving ad � bc = 1, from which it can be seen that the fundamental matrix de�nedin Equation (4.39) has determinant zero. Given an estimate of F it is converted to theepipolar parameterization as follows:a = F12b = F11c = �F22d = 1 + bcag = F22F11 � F12F21e1 = F23F12 � F22F13ge2 = F13F21 � F11F23ge01 = F32F21 � F22F31ge02 = F31F12 � F11F32g :The non-linear minimization is performed (using Powell's technique [59]) on the sevenindependent parameters: a; b; c; e1; e2; e01; e02 and once a minimum is attained the Fmatrix may be recovered from:F11 = bF12 = a



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 35F13 = �ae2 � be1F21 = �dF22 = ce2 + de1F23 = ce2 + de1F31 = de02 � be01F32 = ce02 � ae01F33 = �ce02e2 � de02e1 + ae2e01 + be1e01:Luong's parameterization breaks down when the epipoles are at in�nity, because atin�nity ad � bc = 0. To overcome this the coordinate system is changed. Prior toreparameterization of F the epipoles in image one and two are calculated from thenullspace of F and F> by observing: Fe = 0F>e0 = 0:If the epipole is on or near the line at in�nity all the coordinates in each image aretransformed by an projective transformation that takes the epipoles well away from theline at in�nity. Given the epipole is at e = (e1; e2; 0)> a rotation A about the axis(e2;�e1; 0) by �2 degrees is used,A = 12 24 1 + e22 � e21 �2e1e2 �2e1�2e1e2 1� e22 + e21 �2e22e1 2e2 1� e22 � e21 35 ; (4.40)which takes e> 7! (0; 0; 1)>. If the image coordinates are transformed in image 1 byA and in image 2 byA0 then (A0x0)>F0(Ax) = 0 (4.41)where F0 = A0>FA�1. The minimization on F0 is conducted in the transformedcoordinate system.The non-linear minimization using the parameterization in (4.39) is referred to asN1, and using the parameterization in (4.38) is referred to as N2. Method N3 is agradient descent minimization on the epipolar distance, without enforcing jFj = 0. Itis provided as a benchmark with which to compareN1 andN2.Gradient descent methods are vulnerable to local minima if the starting point is notnear the actual solution. The starting point we use is the output of the linear algorithmO2 described above, followed by the procrustean conversion of the estimate to a ranktwo matrix using SVD.4.9 Constrained Estimation of FMatlab provides a generic constrained estimator for F fmincon. This allows for theminimization of functions subject to constraints on the parameters, thus minimizationofF can be undertaken subject to jFj = 0 and the Frobenius norm of the top 2� 2 = 1.



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 364.9.1 Constrained Estimator function: torr nonlinf mincon2x2function f = torr_nonlinf_mincon2x2(f_init, nx1,ny1,nx2,ny2, no_matches, m3)with most parameters de�ned as in Section 4.1.1, except f init which is an initialestimate of f furnished by some other estimator. The initial estimate should satisfyjFj = 0 otherwise instability may result. Note torr nonlcon f2x2 is the call backfunction for torr nonlinf mincon2x2 that expresses the two constraints:function [c,ceq] = torr_nonlcon_f2x2(f, nx1,ny1,nx2,ny2, m3)%c = ... % Compute nonlinear inequalities at f.%ceq = ... % Compute nonlinear equalities at f.%g(1) = norm(f) -1.0;%g(2) = f(1) * (f(5) * f(9) - f(6) * f(8)) - f(2) * (f(4) * f(9) -f(6) * f(7)) + f(3) * (f(4) * f(8) - f(5) * f(7));c = [];%what norm should we use!ceq(1) = sqrt(f(1)�2 + f(2)�2 + f(4)�2 + f(5)�2)- 1;%ceq(1)= norm(f) -1.0;ceq(2) = f(1) * (f(5) * f(9) - f(6) * f(8)) - f(2) * (f(4) * f(9) -f(6) * f(7)) + f(3) * (f(4) * f(8) - f(5) * f(7));4.10 Thoughts on Testing EstimatorsWithin this section tests a testing methodology is described for evaluating how good amethod for �tting F is. For synthetic data, where the ground truth is known, an empir-ical measure of the goodness of �t is achieved by calculating the reprojection error ofthe actual noise free projections of the synthetic world points to F provided by eachestimator. Traditionally the goodness of �t has been assessed by seeing how well theparameters �t the observed data. But we point out that this is the wrong criterion as theaim is to �nd the set of parameters that best �t the (unknown) true data. The parame-ters of the fundamental matrix themselves are not of primary importance, rather it is thestructure of the corresponding epipolar geometry. Consequently it makes little sense tocompare two solutions by directly comparing corresponding parameters in their funda-mental matrices; one must rather compare the the difference in the associated epipolargeometry weighted by the density of the given matching points. This error metric isthe �rst order approximation of the reprojection error of the noise free points to F:E1 = Pni=1(wif>zi)2. The second statistic E2 is the average distance in pixels fromthe true epipole in each image to that yielded by the estimate of F.4.10.1 Test script: torr evalFscThis script allows the user to estimate F with a method determined by the variablemethod and display E1 and E2. The code is simple:



CHAPTER 4. DETERMINATION OF THE FUNDAMENTAL MATRIX 37%profile onm3 = 256;%user chooses the appropriate methodmethod = 3;total_sse = 0;epipole_distance = 0;%% randn('state',0)% rand('state',0)no_tests = 1;for(i = 1:no_tests)% [true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2] = ...% torr_gen_2view_matches(foc, no_matches, noise_sigma, trans-lation_mult, translation_adder, ...% rotation_multplier, min_Z,Z_RAN,m3);[true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_t, true_E] =torr_gen_2view_matches;true_epipole = torr_get_right_epipole(true_F,m3);no_matches = length(nx1);matches = [nx1,ny1,nx2,ny2];perfect_matches = [x1,y1,x2,y2];set_rank2 = 0;%first estimate F[f, e1, n_inliers,inlier_index,nF] =torr_estimateF( matches, m3, [], method, set_rank2);%check errors vs the true (noise free) pointsgroundtrutherrors = torr_errf2(f, x1,y1,x2,y2, no_matches, m3);total_sse = total_sse + sum(groundtrutherrors);%calc noisy epipolenoisy_epipole = torr_get_right_epipole(nF,m3);epipole_distance = epipole_distance + sqrt(norm(true_epipole -noisy_epipole));enddisp(' the average sse vs the noise free points is')total_sse/no_tests%profile offdisp('RMS distance between true and estimated right epipole is')epipole_distance



Chapter 5Robust Estimation of FRobust parameter estimation is essential to the realization of many computer visionalgorithms. This chapter examines robust parameter estimators with speci�c emphasison their relation to the fundamental matrix. A fully automatic approach requires notonly an understanding of geometry, on which a wide range of work has been carried outin the past, but also the ability to deal with incorrect data (such as mismatched features)which will inevitably arise in a real system. It is often assumed that a standard leastsquares framework is suf�cient to deal with outliers (data that does not agree with apostulated model). However, outliers can so distort a �tting process that the �nal resultis arbitrary. We eschew the non-robust approach as unworkable except for carefullycontrolled scenes and examine in depth the robust approach.5.1 IntroductionGeometric theory is the bedrock of computer vision as it provides models of the ob-served world. Computer vision algorithms generate interpretations (being instantia-tions of these geometric models) of the observed data. These algorithms are typicallycast in terms of the minimization of an appropriate cost function, and in many casesthis cost function is cast as the sum of squares of a set of residuals (the least squaressolution). This is usually for one of two reasons. First, least squares is the maximumlikelihood estimator when the errors are Gaussian. Secondly, the least squares principleis usually adopted as the fundamental postulate on computational grounds as speedyand stable algorithms exist to compute the solution in many cases.When the data are contaminated by outliers, however, the �rst justi�cation nolonger holds, and the second justi�cation becomes irrelevant as the solution providedmay be far from the true one. Outliers which are inevitably included in the initial �tcan so distort the �tting process that the resulting �t can be arbitrary. This is illustratedin Figure 5.1, taken from Fischler and Bolles [14], which shows the results using twoestimators on a data set. The least squares estimator provides an erroneous solution, �t1, whereas the best robust estimator, which will be described, gives a solution, �t 2, thatwell �ts the six inliers. The coordinates of the data set are given in Table 5.1. This data38
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Figure 5.1: Six of the seven points are valid data and can be �tted by the solid lineunder the assumption that no valid datum deviates from this line by more than 0:8units. Using least squares and a �throwing out the worst residual heuristic� the points6, 5 and 1, in table 5.1 are signi�ed as being outliers. The dashed lines indicate thesuccessive �ts of the outlier algorithm.point x y x� x y � y1 0.00 0.00 -3.28 -2.002 1.00 1.00 -2.28 -1.003 2.00 2.00 -1.28 0.004 3.00 2.00 -0.28 0.005 3.00 3.00 -0.28 1.006 4.00 4.00 0.71 2.007 10.00 2.00 6.71 0.00Table 5.1: The data set presented by Fischler and Bolles [14].set demonstrates the failings of na�̈ve least squares and heuristic attempts to removeoutliers. The data set possesses only one gross outlier (point 7) but this utterly distortsthe estimated parameters; furthermore an attempt to remove this outlier by discardingthe point with largest residual fails, even if the process is repeated four times, at eachtime re-evaluating the result after each removal (discarding over half of the valid data).Much work has been done already on detecting outliers in the context of non-orthogonal regression (reviewed in [8]), method O1 in Section 4.5. Unfortunately,there is in this method a tacit assumption that all the error is concentrated in the de-pendent variable. In many engineering situations this does not occur. In some caseslinear orthogonal regression, method O2, may be used, where the sum of squares ofthe algebraic distances are minimized. Little work has been done on outlier detectionfor orthogonal regression�the work of Shapiro and Brady [45] on hyperplanes is anexception�and no work for non-linear regression has been carried out. The estimationof the fundamental matrix falls into the last category. Within the rest of this chapter anumber of robust methods are evaluated, with speci�c emphasis on their relative ef�-ciency and breakdown points. The relative ef�ciency of a regression method is de�nedas the ratio between the lowest achievable variance for the estimated parameters (the



CHAPTER 5. ROBUST ESTIMATION OF F 40Cramér-Rao bound [30]) and the actual variance provided by the given method. Anempirical measure of this is achieved by calculating the distance of the actual noisefree projections of the synthetic world points to their epipolar lines for each estimator.The breakdown point of an estimator is the smallest proportion of outliers thatmay force the value of the estimate outside an arbitrary range. For a normal leastsquares estimator one outlier is suf�cient to alter arbitrarily the result, therefore it hasa breakdown point of 1=n where n is the number of points in the set. An indicationof the breakdown point is gained by conducting the tests with varying proportions ofoutliers.5.2 Random Sampling AlgorithmsAn early example of a robust algorithm is the random sample consensus paradigm(RANSAC) [14]. Given that a large proportion the data may be useless the approach isthe opposite to conventional smoothing techniques. Rather than using as much data asis possible to obtain an initial solution and then attempting to identify outliers, as smalla subset of the data as is feasible to estimate the parameters is used (e.g. two pointsubsets for a line, seven correspondences for a fundamental matrix), and this processis repeated enough times on different subsets to ensure that there is a 95% chance thatone of the subsets will contain only good data points. The best solution is that whichmaximizes the number of points whose residual is below a threshold. Once outliers areremoved the set of points identi�ed as non-outliers may be combined to give a �nalsolution.Use of the RANSAC method to estimate the epipolar geometry was �rst reportedin Torr and Murray [52]. To estimate the fundamental matrix seven points are selectedto form the data matrix Z:Z =W26666664 x01x1 x01y1 x01� y01x1 y01y1 y01� x1� y1� �2... ... ... ... ... ... ... ...x0ixi x0iyi x0i� y0ixi y0iyi y0i� xi� yi� �2... ... ... ... ... ... ... ...x07x7 x07y7 x07� y07x7 y07y7 y07� x7� y7� �2
37777775 : (5.1)The null space of the moment matrixM = Z>Z is dimension two, barring degeneracy(Z is 7 � 9). It de�nes a one parameter family of exact �ts to the 7 correspondences:�F1 + (1� �)F2. Introducing the constraint det jFj = 0 leads to a cubic in �:det j�F1 + (1� �)F2j = 0 (5.2)Solving for � gives 1 or 3 solutions are obtained. The total number of consistentfeatures for each solution is recorded, as outlined in Table 5.2.Intuitively, it might be thought that the selection of 7 points and the solution of acubic would lead to a very ill-conditioned result, and that the utilization of more than 7points might improvematters, which was the approach followed in [11], where 8 pointswere used in each sample and F solved for by linear methods. This is not the case: in



CHAPTER 5. ROBUST ESTIMATION OF F 41Features Fraction of Contaminated Data, �p 5% 10 % 20 % 25 % 30 % 40 % 50 %2 2 2 3 4 5 7 113 2 3 5 6 8 13 234 2 3 6 8 11 22 475 3 4 8 12 17 38 956 3 4 10 16 24 63 1917 3 5 13 21 35 106 3828 3 6 17 29 51 177 766Table 5.2: The numberm of subsamples required to ensure � � 0:95 for given p and�, where � is the probability that all the data points selected in one subsample arenon-outliers.Luong et al. [32] it is shown that linear methods produce a biased solution, and, fur-thermore selecting more points exponentially increases the chance that the set containsan outlier. To illustrate this the performance of the two approaches was monitored for100 trials each of 200 synthetically generated matches with added noise, using 7 and 8point samplings. The average variance of the distance of point to the estimated epipolarlines was 1.4 pixels for 7 point sampling and 12.7 pixels for 8 point sampling!In order to determine whether or not a feature pair is consistent with a given funda-mental matrix, the epipolar distance of each correspondence in the image is comparedto a threshold, which will be described later in Section 5.5.The number of subsamples required is now calculated. Fischler and Bolles [14] andRousseeuw [40] proposed slightly different means of calculation, but both give broadlysimilar numbers. Here, the method of calculation given in [40] is used. Ideally everypossible subsample would be considered, but this is usually computationally infeasible,and so m the number of samples, is chosen suf�ciently high to give a probability� inexcess of 95% that a good subsample is selected. The expression for this probability�is � = 1� (1� (1� �)p)m; (5.3)where � is the fraction of contaminated data, and p the number of features in each sam-ple. Table 5.2 gives some sample values of the number m of subsamples required toensure� � 0:95 for given p and �. It can be seen from this that, far from being compu-tationally prohibitive, the robust algorithm may require less repetitions than there areoutliers, as it is not directly linked to the number but only the proportion of outliers.It can also been seen that the smaller the data set needed to instantiate a model, theless samples are required for a given level of con�dence. If the fraction of data that iscontaminated is unknown, as is usual, an educated worst case estimate of the level ofcontamination must be made in order to determine the number of samples to be taken,this can be updated as larger consistent sets are found e.g. if the worst guess is 50%and a set with 80% inliers is discovered, then � could be reduced from 50% to 20%.In general if the seven correspondence sample has an insuf�cient spread of dispar-ities then the estimate of F obtained from that sample might not be unique. This isan example of degeneracy. Consider the seven correspondences shown in Figure 5.2.



CHAPTER 5. ROBUST ESTIMATION OF F 421. Repeat form samplings as determined in Table 5.2:(a) Select a random sample of the minimum number of data points to make a pa-rameter estimate F.(b) Calculate the distance di of each feature to the epipolar lines of F.(c) In the case of the RANSAC estimator calculate the number of inliers consis-tent with F, using the method prescribed in Section 5.5. (In the case of LMScalculate the median error).2. Select the best solution i.e. the biggest consistent data set. In the case of ties selectthe solution which has the lowest standard deviation of inlying residuals.3. Re-estimate the parameters using all the data that has been identi�ed as consistent,a different more computationally expensive estimator may be used at this point e.g.Powell's method.Table 5.3: A brief summary of random sampling algorithm
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0 100 200 300 400 500 600Figure 5.2: A typical set of seven points selected during RANSAC.Two epipolar geometries that �t this data are shown, for one view, in Figure 5.3. Fig-ure 5.3 (a) is the veridical epipolar geometry indigenous to the camera motion, (b) theestimated solution consistent with the cubic given in Equation (5.2). Clearly theresult estimated from this sample will not have many other consistent correspondencesthat conform to the underlying motion. It is desirable to devise a scheme to determinewhether any subsample is degenerate. How might the detection of degeneracy be in-corporated into RANSAC? This question will be dealt with in some other work of mine[50].5.2.1 Seven Point Function: torr F constrained fitThe Matlab implementation of the seven point algorithm is given byfunction [no_F, big_result] = torr_F_constrained_fit(x1,y1,x2,y2,m3)
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0 100 200 300 400 500 600(a) (b)Figure 5.3: Two epipolar geometries that exactly �t the data in Figure 5.2. (a) is thetrue epipolar geometry. (b) is a spurious epipolar geometry that �ts the data Clearlythe data set is degenerate as it admits to multiple solutions.Input: de�ned as in Section 4.1.1.Output:� no F gives the number of real solution� big result a no F �9 array of the solutions f .5.2.2 MAPSAC Function: torr mapsac Ffunction [f,f_sq_errors, n_inliers,inlier_index]= torr_mapsac_F(x1,y1,x2,y2, no_matches, m3, no_samp, T)Input:� x1,y1,x2,y2, no matches, m3 de�ned as in Section 4.1.1.� no samp the maximum number of samples to be drawn.� T, threshold for inliers.Output:� f de�ned as in Section 4.1.1..� f sq errors the squared error for each match.� n inliers the number of inliers!� inlier index 1 if a match is inlying, 0 otherwise.



CHAPTER 5. ROBUST ESTIMATION OF F 445.2.3 Least Median EstimatorSurprisingly, RANSAC originated in the �eld of computer vision and it was a fewyears later that a similar highly robust estimator was developed in the �eld of statistics,namely Rousseeuw's least median square (LMS) estimator [40]. The algorithms differslightly in that the solution giving least median is selected as the estimate in [40]. Bothestimators perform very well, RANSAC gives better performance for up to 35% abovewhich LMS gives a marginally better performance.5.3 MaximumLikelihood Estimation in the Presence ofOutliers: MAPSACMAPSAC stands for Maximum a posteriori sample consensus, and is a generalizationof my previous algorithm, MLESAC to the Bayesian case, although when there is auniform prior on the parameters the two are the same. Within this section the maximumlikelihood formulation is given for computing any of the multiple view relations, as theprior on F is not overly important in the case of estimation, and the MLE derivation ismuch simpler to follow than the MAP derivation e.g. [50, 62].In the following we make the assumption, without loss of generality, that the noisein the two images is Gaussian on each image coordinate with zero mean and uniformstandard deviation �. Thus given a true correspondence the probability density functionof the noise perturbed data isPr(DjM) = Yi=1:::n� 1p2���n e��Pj=1;2(xji�xji )2+(yji�yji )2�=(2�2) ; (5.4)where n is the number of correspondences andM is the appropriate 2 view relation,e.g. the fundamental matrix or projectivity, and D is the set of matches. The negativelog likelihood of all the correspondences x1;2i , i = 1::n :� Xi=1:::n log(Pr(x1;2i jM; �)) = Xi=1:::n Xj=1;2 �(xji � xji )2 + (yji � yji )2� ; (5.5)discounting the constant term. Observing the data, we infer that the true relationMminimizes this log likelihood. This inference is called �Maximum Likelihood Estima-tion�.Given two views with associated relation for each correspondence x1;2 the task be-comes that of �nding the maximum likelihood estimate, x̂1;2 of the true position x1;2,such that x̂1;2 satis�es the relation and minimizesPj=1;2 �x̂ji � xji�2 + �ŷji � yji�2.The MLE error ei for the ith point is thene2i = Xj=1;2�x̂ji � xji�2 + �ŷji � yji�2 (5.6)ThusPi=1:::n e2i provides the error function for the point data, andM for whichPi e2iis a minimum is the maximum likelihood estimate of the relation (fundamental matrix,



CHAPTER 5. ROBUST ESTIMATION OF F 45or projectivity). Hartley and Sturm [23] show how e, x̂ and x̂0 may be found as the so-lution of a degree 6 polynomial. A computationally ef�cient �rst order approximationto these is given in Torr et al. [54, 55, 56].The above derivation assumes that the errors are Gaussian, often however featuresare mismatched and the error on m is not Gaussian. Thus the error is modeled as amixture model of Gaussian and uniform distribution:-Pr(e) = � 1p2��2 exp(� e22�2 ) + (1� )1v� (5.7)where  is the mixing parameter and v is just a constant, � is the standard deviation ofthe error on each coordinate. To correctly determine  and v entails some knowledge ofthe outlier distribution; here it is assumed that the outlier distribution is uniform, with� v2 :: + v2 being the pixel range within which outliers are expected to fall (for featurematching this is dictated by the size of the search window for matches). Therefore theerror minimized is the negative log likelihood:�L = �Xi log � 1p2���n exp � Xj=1;2(xji � xji )2 + (yji � yji )2! =(2�2) + (1� ) 1v!! :(5.8)Given a suitable initial estimate there are several ways to estimate the parameters of themixture model, most prominent being the EM algorithm [10, 34], but gradient descentmethods could also be used. Because of the presence of outliers in the data the standardmethod of least squares estimation is often not suitable as an initial estimate, and it isbetter to use a robust estimate such as RANSAC which is described in the next section.5.4 The robust estimators: MAPSACThe RANSAC algorithm has proven very successful for robust estimation, but havingde�ned the robust negative log likelihood function�L as the quantity to be minimizedit becomes apparent that RANSAC can be improved on.One of the problemswith RANSAC is that if the thresholdT for considering inliersis set too high then the robust estimate can be very poor. Consideration of RANSACshows that in effect it �nds the minimum of a cost function de�ned asC =Xi � �e2i � (5.9)where �() is �(e2) = � 0 e2 < T 2constant e2 � T 2 : (5.10)In other words inliers score nothing and each outlier scores a constant penalty. Thusthe higher T 2 is the more solutions with equal values of C tending to poor estimatione.g. if T were suf�ciently large then all solutions would have the same cost as all thematches would be inliers. In Torr and Zisserman [55] it was shown that at no extra



CHAPTER 5. ROBUST ESTIMATION OF F 461. Detect corner features using the Harris corner detector [18].2. Putative matching of corners over the two images using proximity and cross correla-tion.3. Repeat until no samp samples have been taken or �jump out� occurs as describedin Section 5.2.(a) Select a random sample of the minimum number of correspondences Sm =fx1;2i g.(b) Estimate the image relationM consistent with this minimal set using the meth-ods described in Section 5.2.(c) Calculate the error ei for each datum.(d) Calculate C2.4. Select the best solution over all the samples i.e. that with lowest C2. Store the set ofcorrespondences Sm that gave this solution.5. Minimize robust cost function over all correspondences, using iterative non-linearmethods, as described in Section 4.9.Table 5.4: A brief summary of all the stages of estimationcost this undesirable situation can be remedied. Rather than minimizing C a new costfunction can be minimized C2 =Xi �2 �e2i � (5.11)where the robust error term �2 is�2(e2) = � e2 e2 < T 2T 2 e2 � T 2 : (5.12)This is a simple, redescending M-estimator [26]. It can be seen that outliers are stillgiven a �xed penalty but now inliers are scored on how well they �t the data. We setT = 1:96� so that Gaussian inliers are only incorrectly rejected �ve percent of the time.The implementation of this new method (one incarnation of the general MAPSACprinciple) yields a modest to hefty bene�t to all robust estimations with absolutely noadditional computational burden. Once this is understood there is no reason to useRANSAC in preference to this method. Similar schemes for robust estimation usingrandom sampling and M-estimators were also proposed in [51] and [46].



CHAPTER 5. ROBUST ESTIMATION OF F 475.5 Standard DeviationThis section gives a method for robustly estimating the standard deviation of the errorterm. Robust techniques to eliminate outliers are all founded upon some knowledgeof the standard deviation � of the error. Generally, given �, outliers are calculated asfollows: z = � non outlier jdj � t = 1:96�outlier otherwise; (5.13)where t = 1:96� is a user de�ned threshold. In the case of the fundamental matrixthere are two errors for each correspondence�the epipolar distances d1, d2 in eachimage. There are two options: either both can be tested by rule (5.13) and if either d1,d2 is greater than t then the correspondence is considered outlying; or, the two maybe combined for a single test. The latter approach is followed, noting that d21 + d22 isapproximated by a �2 variable with two degrees of freedom leads to the following 95%con�dence test: zi = � non outlier d21 + d22 � t = 5:99�2outlier otherwise; (5.14)The standard deviation is related to the characteristics of the image, the featuredetector and the matcher. Often the value of � is unknown, in which case it must be es-timated from the data. If there are no outliers in the data the � can be estimated directlyas the standard deviation of the residuals of a non-linear least squares minimization�e.g.N3. If there are outliers and they are in the minority, a �rst estimate of the variancecan be derived from the median squared error of the chosen parameter �t [40]. It isknown that medijdij=��1(0:75) is an asymptotically consistent estimator of � whenthe di are distributed like N(0; �2), where � is the cumulative distribution functionfor the Gaussian probability density function1. Empirically it has been shown [40] thatwhen n � 2p the correction factor of �1 + 5n�p� improves the estimate of the standarddeviation. Noting 1=��1(0:75) = 1:4826 the estimate of � is� = 1:4826�1 + 5n� p�medijdij : (5.15)The LMS algorithm is used to get the estimate of the median. The standard deviationcan be estimated between each pair of images and the results �ltered over time. Imagepairs that give rise to unusually high standard deviations might possess independentlymoving objects. Given random perturbations of the image correspondences with unitstandard deviation then the estimate of the standard deviation ofF was found to be 1:3,this being a con�ation of the image error and the error in the estimator.
1N(0; �2) signi�es a Gaussian or Normal distribution mean 0 and variance �2.



Chapter 6RematchingIn version 1 this is not implemented, hopefully I will get round to it!Epipolar Geometry and Feature MatchingOnce the epipolar geometry has been estimated this can be used to aid matching.In [11, 2] the epipolar geometry is used to constrain the search area for a given match.Our proposal goes further in that we aim to conjoin the estimation of epipolar geome-try and matching. As the match may be incorrect, it is desirable that, if in the courseof the estimation process it is discovered that the feature is mismatched, then it canbe rematched to another feature. In order to achieve this not only is a feature's initialmatch stored, based on cross correlation, but all its candidate matches that have a sim-ilarity score over a user de�ned threshold. After the robust estimation of the epipolargeometry all corners are rematched to the candidate with smallest epipolar distance.The epipolar geometry may then be further re�ned. In all the examples that follow theinliers and outliers are from the raw matches based only on cross correlation, in orderto demonstrate the success of a given estimation.
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Chapter 7Self Calibration, establishing aprojective frameOnce the fundamental matrix is estimated the projective structure is recovered. Thischapter is a just sketch outline, and the user is referred for more details to [13, 25, 33].All typos spotted please mail me!It is possible to obtain only a projective reconstruction from the fundamental ma-trix, as shown in Section 7.1. A Euclidean reconstruction would be preferable. Inorder to achieve this the process has to stages (1) is to recover the camera positionsand motions (modulo a scaling). Once this is done step (2) involves triangulation torecover the 3D points. Stage (1) requires some sort of calibration to convert from theuncalibrated fundamental matrix to the essential matrix. Here a self calibration pro-cess is implemented, described in Section 7.4.1, although there are other options (suchas use of a calibration grid etc.). It is assumed only the focal length is unknown, andthe Sturm [47] self calibration method used. Note that the focal length cannot be deter-mined from a pure translation. Once the essential matrix is recovered, if the �rst camerais assumed to be at the origin of the coordinate system, then it is a simple matter to cal-culate the rotation and translation of the second camera relative to the �rst, describedin Section 7.4.3. To improve the estimates of the camera intrinsic and extrinsic param-eters a non linear optimization is used, see Section 7.4.5. Once these parameters areestimated then the camera projection matrices may be recovered and used to estimatethe structure using generic projective methods as described in Section 7.1. The samemethod of triangulation can be used for projective or Euclidean reconstruction as it isthe image error that is to be minimized.7.1 Recovery of Projection MatricesAs laid out in Section 4.3, perspective projection from 3D to 2D by a 3 � 4 cameramatrixP x = PX and x0 = P0X49



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME50Thus if P;P0 are known then X may be recovered from from the matches x;x0. For-tunately, it is well known that given F then P;P0 can be estimated. One solution forestablishing a projective frame is as follows [3]1. Set P = [Ij0]2. Compute F, Compute e0 such that e0>F = 0, letM = [e0]�F.3. Set the second projection matrix asP0 = [M+ e0b>jce0] (7.1)where b and c are an arbitrary 3-vector and scalar respectively, thus there arefour degrees of freedom DOF in this choice (as there are 11 DOF in P and 7DOF in F: 11-7 = 4).4. Normalize so that det ~P > 0, where ~P is the �rst 3�3matrix ofP, this is usefulfor determining which side of the camera points are on in section 7.4.3.This leads to projective reconstruction of the world, so called because a 3D projectivetransformation of the world coordinatesX0 = HX, would lead to the same fundamen-tal matrix. The following algorithm extracts the P:7.1.1 P,P0 from Ffunction [P1,P2] = torr_PfromF(FMat,m3)Input: Input parameters de�ned as in Section 4.1.1.Output: P1, P2 the two 3� 4 projection matrices.7.2 Recovery of Projective StructureOnce the P matrices are recovered the structure X may be recovered by triangula-tion [24] however obtaining an optimal solution can be costly. This is because theoptimal estimate would minimize the reprojection error of the 3D points i.e. minimizethe sum of squares of Euclidean distance between the observed point in each imageand the reprojection using the projection matrices and putative 3D structure i.eminX eu(x;PX)2 + eu(x0;P0X)2 (7.2)where eu(a;b) is the Euclidean distance between a and b. This is equivalent to �nding(x̂; ŷ; x̂0; ŷ0) such thatX e = (x� x̂)2 + (y � ŷ)2 + (x̂0 � x0)2 + (ŷ0 + y0)2 (7.3)



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME51is a minimum and (x̂; ŷ; x̂0; ŷ0) satis�eŝx>Fx̂ = 0 (7.4)where x = (x; y; 1)> and x0 = (x0; y0; 1)>.This is a computationally expensive thing to do thus I have implemented a simplerscheme: (a) correct the point matches, using a �rst order correction based on Sampson(b) use a SVD method to estimate X from x. First the SVD method is described. Insection 7.3 the correction is described. Let p1�3 be the three rows of P and p01�3 bethe three rows of P0 then it can be seenxp3>X� p1X = 0yp3>X� p2X = 0xp2>X� yp1X = 0thus an equation of the formAX = 0 may be written withA = 2664 xp3> � p1>yp3> � p1>x0p03> � p01>y0p03> � p02> 3775 (7.5)thus onceA is foundX can be solved for using torr ls, the function that does thisis: torr triangulate which is described next. However, in the noisy case, thisshould not be applied until the image coordinates have been corrected.7.2.1 Quick triangulation function torr triangulatefunction X = torr_triangulate(matches, m3, P1, P2)Input:1. matches n� 4 array of matches.2. m3 third homogeneous coordinate.3. P1, P2 the two 3� 4 projection matrices.Output: X 4� n array of homogeneous structure points.7.3 Correction of the matchesSampson's �rst order correction has been studied in detail in [25, 29], it is stated herewithout proof (until I get time to put one in) that the �rst order correction to a point issimply: 0BB@ x̂̂ŷx0ŷ0 1CCA = 0BB@ xyx0y0 1CCA� r(rr)2 0BB@ rxryrx0ry0 1CCA (7.6)



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME52contrary to the statement in [25] that this �rst order projection was only valid for onepixel noise, I have found it to give good results over a wide range of noise values.Once the points are corrected they should satisfy x̂0Fx̂ = 0 thus the triangulationmethod given above should give equal results to that of [24] with only a fraction of thecomputational cost. The intuition here is to take a tangent plane to the manifold of thefundamental matrix and project points orthogonally down onto the manifold.7.3.1 Correction function torr correctx4FThis function generates the corrected matches as described in the previous subsection.function [corrected_matches,sq_errors]= torr_correctx4F(f, nx1,ny1,nx2,ny2, no_matches, m3)Input: Input parameters de�ned as in Section 4.1.1.Output:1. corrected matches the set of n� 4 corrected matches.2. sq errors the n� 1 array of squared errors.7.3.2 Testing the two viewmatch correction: torr test correct scThis simple script generates some random matches, estimates the fundamental matrix,and then corrects them to lie on the fundamental matrix, note how near to zero theresulting residuals are.%torr_test_correct_sc.mm3 = 256;method = 2;[true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_t, true_E] =torr_gen_2view_matches;no_matches = length(nx1);matches = [nx1,ny1,nx2,ny2];set_rank2 = 0;%first estimate F[f, e1, n_inliers,inlier_index,nF] =torr_estimateF( matches, m3, [], method, set_rank2);



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME53%next correct the points so that they lie on a fundamental matrix[corrected_matches error2] =torr_correctx4F(f, nx1,ny1,nx2,ny2, no_matches, m3);%check errors (should be near zero)e = torr_errf2(f, corrected_matches(:,1), corrected_matches(:,2),corrected_matches(:,3), corrected_matches(:,4),no_matches, m3)7.4 Self CalibrationIn section 7.1 it was shown that there is a four degree of freedom ambiguity in the re-covery of the projection matrices. Ideally when resolving this ambiguity we would liketo choose the projection matrices so that they would be as close to the true (Euclidean)matrices as possible. In order to do that a self calibration method is used, even if it isnot totally accurate it should help to produce projection matrices that look near to theEuclidean ones, and hence structure that looks reasonable.Road map1. Recover F, see last chapter.2. Self Calibrate to getC, Section 7.4.1.3. Recover E = C>EC14. Decompose E intoR and t.5. OptimizeC,R and t.7.4.1 Recovery of COnce the fundamental matrix has been recovered the camera calibration matrix (4.3)can be recovered. At present only the case of self calibration with unknown focal lengthis considered implemented. This is because it can generally be assumed, for modernwell engineered cameras, that the principal point (px; py) is at the centre of the imageand that the aspect ratio is one. It is also assumed that the calibration matrix is the samebetween the images (i.e. no zoom). Peter Sturm recently presented a new method forself calibration in this case [47] 1. His analysis is based on theG matrix, which is halfway between the essential and fundamental matrices:G = 24 a 0 00 1 �py�px �py 1=f 35F24 a 0 �px0 1 �py0 0 1=f 35 (7.7)and diag(1; 1; f)E diag(1; 1; f): (7.8)1It is important to note that the focal length cannot be determined in the case of pure translation.



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME54At the moment the reader is referred to Sturm for the details of the self calibrationmethod. One failure of the Sturm method is that we are �tting a 6 DOFG to a 7 DOFF which means that the E is not guaranteed to have two equal singular values, in orderto �x this, once E is recovered the two non zero singular values are set to be equal andE.7.4.2 Sturm Self Calibration functionfunction [focal_length, E, CC_out] = torr_self_calib_f(F,CC)Input:1. F: the 3� 3 fundamental matrix F.2. CC: the estimated calibration matrix.Output:1. focal length: estimate of focal length.2. E: estimate of essential matrix.3. CC out: estimate of calibration matrix.7.4.3 Recovery ofR and tGiven an Essential matrix it can be decomposed as follows [20, 33]. Suppose that theSVD of E is E = U�V>. De�neW = 24 0 �1 01 0 00 0 1 35 and Z = 24 0 1 0�1 0 00 0 0 35The two possible factorizationE = TRj as follows:T = UZU> (7.9)and R1 = UWV> or R2 = UW>V>:Let t be the right epipole of E, given by the third column of U. Then, if the �rstprojection matrix is set to P = C[Ij0] (7.10)there are four choices for P0:P0 = [R1jt] or P0 = [R1j � t] or P0 = [R2jt] or P0 = [R2j � t] (7.11)



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME55It can be seen that two pairs of the solutions simply have the translation reversed. Theother two pairs are called �twisted pairs� and in these the camera is rotated by 180degrees about the line joining the camera centres. Richard Hartley [21, 25] proposed ascheme to resolve the ambiguity by looking at which side of the camera a reconstructedpoint lay. For only one of the four putative solutions forP0 will the reconstructed pointX lie in front of the camera in both views. In order to determine this the cameramatrices must �st be normalized so that the determinate of the �rst 3 � 3 matrix isgreater than zero. Let x and x0 be the homogeneous image coordinate projections of apointX, thenX is in front of both cameras ifx3X4 > 0 and x03X4 > 0Once the rotation matrix is found it can written in terms of a minimal parametriza-tion using Rodrigues' formulaR = cos!I+ sin![l]� + (1� cos!)ll> (7.12)where l is the axis of rotation, which may be recovered from the elements ofR as:l = 0@ R32 �R23R13 �R31R21 �R12 1A (7.13)and ! is the angle of rotation,! = arccos� traceR� 12 � (7.14)7.4.4 Function forR and t; torr linear EtoPXfunction [P1,P2,R,t,rot_axis,rot_angle]= torr_linear_EtoPX(E,matches,C,m3)Input:1. E: Essential matrix E.2. matches : n� 4 array of matches.3. C: calibration matrixC.4. m3: third homogeneous image coordinate.Output:1. P1,P2: estimated projection matricesP;P02. R,t: estimated rotation and translationR; t3. rot axis,rot angle: angle and axis of rotation l and !



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME567.4.5 Non-linear Optimization ofGOnce extrinsic parametersR and t and the intrinsic parameter f have been recovered,they may be further optimized by gradient descent. There are 6 DOF in this formu-lation, a good minimal parametrization, represented by the 6 � 1 vector g is f thefocal length, t the translation vector (parametrized in 2 spherical coordinates), l theaxis of rotation (parametrized in 2 spherical coordinates), and ! the angle of rotation.Note the following two functions are provided for going from unit vectors to sphericalcoordinates and vice versa torr unit2sphere and torr sphere2unit. .Given these six parametersg plus the calibrationmatrixC, it is possible to calculateF, the function provided to do this is torr g2F. OnceF is obtained the Sampson errormay be computed in the usual way. The function provided to do this torr errg sseThus it is possible to do gradient descent of the error function for g. The function todo this is torr nonlinG.7.4.6 Non Linear minimization of gfunction [g,f] =torr_nonlinG(g_init,nx1,ny1,nx2,ny2, no_matches, m3, C)Input:1. nx1,ny1,nx2,ny2, no matches, m3,: de�ned as in Section 4.1.1.2. g init: initial estimate of g obtained from torr linear EtoPX.3. C: the calibration matrixC.Output:1. f: f .2. g: g.7.5 Testing Self Calibration torr test calib scThis script generates some synthetic matches as described in Chapter 8. Then a funda-mental matrix is estimated, then calibration recovered (assuming everything is knownbar the focal length). Then Essential matrix, rotation matrix and angle and axis of ro-tation are recovered. The script prints out the estimated and ground truth rotation axis,angle, translation and focal length. As a debugging exercise set no noise = 1 online 25. The script runs on the noise free data, the astute reader will notice that theresult and ground truth are the same.%this is a script to test the self calibration stuff%torr_test_calib_sc.m%main()



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME57%profile onclear all;m3 = 256;method = 'mapsac';method = 'linear';%randn('state',0)rand('state',0)no_test = 1;for(i = 1:no_test)% [true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2] = ...% torr_gen_2view_matches(foc, no_matches, noise_sigma,translation_mult, translation_adder, ...% rotation_multplier, min_Z,Z_RAN,m3);[true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_TX, true_E] =torr_gen_2view_matches;no_matches = length(nx1);%if we set this to one then the result should be the same as the groundtruth...no_noise = 0;if (no_noise)nx1 = x1;nx2 = x2;ny1 = y1;ny2 = y2;endmatches = [nx1,ny1,nx2,ny2];perfect_matches = [x1,y1,x2,y2];set_rank2 = 1;%first estimate F[f, e1, n_inliers,inlier_index,nF] =torr_estimateF( matches, m3, [], method, set_rank2);%next correct the points so that they lie on a fundamental matrix[corrected_matches error2] =torr_correctx4F(f, nx1,ny1,nx2,ny2, no_matches, m3);%now guess the camera calibration matrixCC = diag(ones(3,1),0);CC(3,3) = 1;



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME58%next self calibrate for focal length[focal_length, nE,CCC] = torr_self_calib_f(nF,CC);%now we have an Essential matrix we can establish the camera frame...[P1,P2,R,t,srot_axis,rot_angle,g] = torr_linear_EtoPX(nE,matches,CCC,m3);%next convert the 6 parameters of g to a fundamental matrixf2 = torr_g2F(g,CCC);disp('error before non-linear minimization')e = torr_errf2(f2, nx1,ny1,nx2,ny2, length(nx1), m3);norm(e)[g,f] = torr_nonlinG(g ,nx1,ny1,nx2,ny2, no_matches, m3, CCC)disp('error after')e2 = torr_errf2(f, nx1,ny1,nx2,ny2, length(nx1), m3);norm(e2)%the question now arises: how good is the fit? compare to groundtruthtrue_rot_axis = [true_R(3,2)-true_R(2,3), true_R(1,3) - true_R(3,1), true_R(2,1) -true_R(1,2)]';true_rot_axis = true_rot_axis /norm(true_rot_axis);true_rot_angle = acos( (trace(true_R)-1)/2);true_t(1) = -true_TX(2,3);true_t(2) = true_TX(1,3);true_t(3) = -true_TX(1,2);true_t = true_t/norm(true_t);disp('true camera parameters')true_ttrue_rot_axistrue_rot_angletrue_Crot_axis = torr_sphere2unit([g(2) g(3)]);tt = torr_sphere2unit([g(5) g(6)]);rot_angle = g(4);CCC(3,3) = 1/g(1);disp('estimated camera parameters')ttrot_axisrot_angleCCC



CHAPTER 7. SELF CALIBRATION, ESTABLISHING A PROJECTIVE FRAME59end7.5.1 Displaying Structure, torr display structureAn example of synthetic matches and structure generated from them is given in �g-ure 7.1. The 3D structure can be displayed usingf1 = torr_display_structure(X, P1, P2,display_numbers,f1).The test diagnostics include, comparing the estimated structure with the groundtruth, and examining the distance of the reprojected estimated structure to the groundtruth image points. If the user sets show result = 1 these quantities are displayed.If the user sets no noise = 1 then the algorithm is tested on noise free points (fordebugging). Note once the 3D points are displayed in a MATLAB �gure, MATLABprovides a whole set of menu functions for altering the view of the 3D point set; fur-thermore it is easy to save the �gure in any format e.g. encapsulated postscript.Input:1. X: either 3� n inhomogeneous 3D coordinates or 4� n homogeneous 3D coor-dinate.2. P1, P2: two 3� 4 projection matrices.3. f1: �gure handle of the �gure for the matches to be displayed in.4. display numbers: if set to 1 then displays the index of each match.Output:1. f1: : �gure handle of the �gure for the matches to be displayed in.7.5.2 An example script for 3D structure generationThe script torr test SFMsc creates some synthetic matches, and then displays the3D structure. The �rst half of the script follows torr test calib sc; the secondhalf is self explanatory and is listed here:%next convert the 6 parameters of g to a fundamental matrixf2 = torr_g2F(g,CCC);%next correct the points so that they lie on the fundamental matrix[corrected_matches error2] = torr_correctx4F(f2, nx1,ny1,nx2,ny2, no_matches, m3);%next we need to obtain P1 & P2[P1, P2] = torr_g2FP(g,CCC);
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(a) (b)Figure 7.1: (a) A set of synthetic matches generated by torr gen 2view matches,displayed by torr display matches. (b) the 3D structure displayed bytorr display structure%now use P matrices and corrected matches to get structure:X = torr_triangulate(corrected_matches, m3, P1, P2);torr_display_structure(X, P1, P2, 1);%testXX = [X(1,:) ./ X(4,:) ; X(2,:) ./ X(4,:) ; X(3,:) ./ X(4,:) ];disp('ratio of estimated and true X');XX ./true_Xshow_result = 1;if show_resultdisp('look at reprojection error to groundtruth points')x1_rp = P1 * X;x1_rp(1,:) = x1_rp(1,:) ./ x1_rp(3,:) * m3;x1_rp(2,:) = x1_rp(2,:) ./ x1_rp(3,:) * m3;(x1 - x1_rp(1,:)')'(y1 - x1_rp(2,:)')'x2_rp = P2 * X;x2_rp(1,:) = x2_rp(1,:) ./ x2_rp(3,:) * m3;x2_rp(2,:) = x2_rp(2,:) ./ x2_rp(3,:) * m3;(x2 - x2_rp(1,:)')'(y2 - x2_rp(2,:)')'end



Chapter 8Generating Synthetic DataData is randomly generated in R3 so that the imaged points lie in the range boundedby the the lines y = �256, y = 256, x = �256, x = 256 pixels for two imaginarycameras. The intrinsic parameters of the synthetic cameras can be represented by thematrix C = 24 1:00 0:00 00:00 1:00 00:00 0:00 1=f 35 ; (8.1)corresponding to an aspect ratio of 1, with an optic centre at the image centre, and afocal length of f = foc. The camera motion is a random translation and rotation, thetranslation is a multiple of the focal length. The rotation is generated using Rodrigues'formula R = cos!I+ sin![l]� + (1� cos!)ll> (8.2)where l is the axis of rotation (a random unit vector), and ! the angle of rotation aboutthis axis.The synthetic image positions are perturbed by Gaussian noise standard deviationby default 1:0 pixels and then quantized to the nearest pixel, simulating quite noisyimage conditions.8.0.3 Synthetic Two view match functionfunction [true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_t, true_E] = ...torr_gen_2view_matches(foc, no_matches, noise_sigma,translation_mult, translation_adder, ...rotation_multplier, min_Z,Z_RAN,m3)Input:1. foc: focal length.2. no matches: n the number of matches.61



CHAPTER 8. GENERATING SYNTHETIC DATA 623. noise sigma: � of noise e(�) added to generated matches such that nx1 =x1: +e(�) etc.4. translation adder, translation mult: the translation varies uni-formly betweentranslation adder andtranslation adder + trans-lation mult:.5. rotation multplier: the Euler angles of the rotation go between 0 androtation multplier:.6. min Z, Z RAN: the depth varies uniformly betweenmin Z and min Z + Z RAN:.7. m3 third homogeneous coordinate.Output:1. true F: true F.2. x1,y1,x2,y2 true x; y; x0; y0.3. nx1,ny1,nx2,ny2: noisy x; y; x0; y0.4. true C, true R,true t, true E: trueC,R, t and E.8.0.4 A Script to generate and display synthetic matchesThe script torr test mat generates some synthetic matches and then displays them.[true_F,x1,y1,x2,y2,nx1,ny1,nx2,ny2,true_C,true_R,true_t, true_E]= torr_gen_2view_matches;no_matches = length(nx1);matches = [nx1,ny1,nx2,ny2];%displayes matchestorr_display_matches(matches)



Chapter 9The Torr tool GUIThe GUI for the SAM library is the torr tool. At present it is not fully �nishedand so the documentation and help in this chapter is not yet complete. The GUI putstogether all the functions that have been described so far into an application, whichcan display the images and results. A rough and ready help can be obtained by typ-ing guide torr tool and using the property inspector to examine the call backroutines of the buttons.Some things to note:1. The image coordinate system is chosen with origin at the centre of the image bysetting the XData and YData properties image.2. The demo images supplied are j1.bmp, j2.bmp.3. m3 the third homogeneous coordinate is 256.9.1 ExampleA quick tour1. click on load demo images this loads j1.bmp and j2.bmp2. click on load corners, and load tab.cor this displays Harris corners (detectedby pressing Detect Corners). Observe the corners displayed by little crosses.3. click on load matches, and load table.matches, this displays a whole loadof correlation matches (detected by correlation matching)4. click on load mat and F, load table.fmatches this loads a whole load ofinlying matches to a precalculatedF (via the MAPSAC button)5. click on epipolar geometry, then click in the image and depress return, this showsthe point clicked on and its corresponding epipolar line.6. click on SFM to perform self calibration (here just for focal length) and create3D structure for the inliers. 63
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Figure 9.1:



CHAPTER 9. THE TORR TOOL GUI 659.2 Manual Addition of Matchesfunction [matches12,minc,mat12] =torr_add_manual_matches(f,axes2,axes3,)Input:� f the vector form f of the fundamental matrix.� axes2, axes3 handles of the axes where matches are to be selected usingginput.Output:� matches12matches in an n� 4 array of matches (x; y; x0y0), in this case n isthe number of matches.� minc is the minimum value of C for each corner.� mat12 is de�ned such that mat(i) = j means corner i matches to corner j.



Chapter 10Conclusion and Future WorkThe content of version 1 is just the bare minimum to do point based SAM recovery.The aim in version 2 is to complete the system: images in-dense 3D reconstructionout. Once the system is completed it will provide anyone with the tools to try out newdevelopments in SAM by pulling out one module and replacing it with another. Keythings on the critical path are� Dealing with multiple images (loading in AVI's)� Better Calibration.� Much better feature detection and matching.� Dense Stereo.� Model selection.

66



Appendix ADerivation of the FundamentalMatrixThis appendix introduces the elementary concepts concerning two view epipolar ge-ometry, which is algebraically described in terms of, in the calibrated case the essen-tial [31] matrix, and, in the uncalibrated case, the fundamental matrix [19, 12]. Theessential matrix was developed for calibrated cameras and used as the starting point ofthe 8-point algorithm which recovered structure, it is now stated without proof:Theorem 4 (Longuet-Higgins [31]) Given a pin hole camera let the set of homoge-neous image points fxig; i = 1; : : :N; be transformed to the set fx0ig on the imageplane by the motion parameters fR; tg such that t 6= 0. Then there exists a 3 � 3essential matrix E = R[t]� such thatx0>i Exi = 0 (A.1)for all i.It can also be shown that kEk = p2 and that the singular values of E are 1,1 and 0,and so jEj = 0. Given a perfect camera one can recover the motion parameters purelyfrom point correspondences without knowledge of the scene structure, given that thepoints do not lie in special con�guration.The analysis for the calibrated case has been extended to that where the calibrationis unknown. It is a remarkable fact that if neither the internal camera calibration northe camera motion are known then there is still a set of linear equations linking thepoints in the two images. The case for algorithms that do not require calibration hasbeen strongly made in [12]. Camera calibration is at best dif�cult possibly introducingcorrelated errors into the system, and at worst it is often impossible. The fundamentalmatrix constraint is now stated and proved:Theorem 5 (Faugeras [12], Hartley [19]) Given an uncalibrated camera let the setof homogeneous image points fxig; i = 1; : : : N; be transformed to the set fx0ig on67



APPENDIX A. DERIVATION OF THE FUNDAMENTAL MATRIX 68the image plane by the motion parameters fR; tg such that t 6= 0. Then there exists a3� 3 matrix F such that x0>i Fxi = 0 (A.2)for all i.Proof. Let a real world point x = (x; y; z) 2 R3 and let x and x0 be the homogeneouscoordinates of the image points with the camera at 0 and t respectively. If C givesthe camera's intrinsic parameters then the camera transformations are given by P =[C j 0] and P0 = [CR j Ct] before and after the motion. As before we determine theepipolar line of x in the second image by looking at the image under P0 of the cameracentre (0; 0; 0; 1) and the point at in�nity (C�1x; 0). The images of these two pointsunderP0 areCt andCRC�1x respectively. Thus the epipolar line n is given byn = Ct�CRC�1x (A.3)Since x0 lies on this epipolar x0>Fx = 0 (A.4)where we term F the fundamental matrix such that F = Ct�CRC�1.If a and b are 3-dimensional column vectors andC is a 3� 3 matrix, thenCa�Cb � C�(a � b) (A.5)where C� is the adjoint of C. This fact allows us to write the fundamental matrix interms of the intrinsic matrix and the essential matrix:F = C�>EC�1 (A.6)thus the fundamental matrix at most of rank two. In order to proceed only from imagemeasurementsF is the key concept, as it encapsulates all the geometric information oncamera and motion contained within a set of point correspondences. The fundamentalmatrix is determined by and determines the epipolar transformation. Theorem 5 leadsto the following lemma.Lemma 2 If F is a fundamental matrix corresponding to a pair of image and x is apoint in the �rst image, thenFx is the epipolar line in the second image correspondingto x.From F and the image correspondences it is straightforward to recover projectivestructure as has been pointed out by Faugeras [12] and Hartley [19]:Theorem 6 (Faugeras [12],Hartley [19]) Given a set of image correspondences suf�-cient to determine the fundamental matrix, the corresponding world space coordinatesare determined up to a collineation of projective 3-space P3.Proof. We shall not present a formal proof, but note that if a set of points xi �P3 are visible to a pair of camera with transform matrices P and P0, and if G is anarbitrary non-singular 4� 4 matrix, then replacing xi byG�1xi, P byPG andP0 byP0G preserves the object-point to image-space correspondences. As may be seen, theinternal parameters of one of the cameras may be changed arbitrarily. Thus points thatare consistent with Equation (A.4) can be said to move rigidly modulo a collineation.



Appendix BSingular Value Decompositionand Least SquaresLet the singular value decomposition ofD (eg. [48, 59]), be given byD = V�U> ; (B.1)whereV is a n�pmatrix whose columns are the left hand singular vectors ofD,U is ap� pmatrix whose columns are the right hand singular vectors ofD and � is the diag-onal matrix of the corresponding singular values ofD: � = diag(� 12 1; � 12 2; : : : ; � 12 p)in ascending order such that � 12 1 is the minimum singular value. U is row and columnorthogonal i.e. U>U = I;UU> = I; V is column orthogonal such that V>V = I.The SVD gives orthonormal bases for the null space and range of D. The columns ofV corresponding to zero singular values form a basis for the range ofD. The columnsofU corresponding to zero singular values form a basis for the null space.It is clear that the SVD of D is very closely related to the eigensystem of themoment matrix: Z>Z = D>D, D = V�U> (B.2)) D>D = U�V>V�U> (B.3)= U�2U> (B.4)) D>DU = U�2 : (B.5)Thus we see that the columns of U are eigenvectors of Z>Z, and that the squares ofthe singular values of D are the eigenvalues of Z>Z. The solution to the orthogonalregression problem: f = min f (f>Z>Zf) (B.6)is well known to be the eigenvector ofZ>Z corresponding to the minimum eigenvalue,this is simply u1 the �rst column of U, which is the shortest principal axis. Thus wehave selected the direction of minimum variation as normal to our �tted plane. Thesum of squares of residuals in this direction is �1, similarly, if we were to choose u2 as69



APPENDIXB. SINGULARVALUEDECOMPOSITIONANDLEAST SQUARES70our solution then the sum of squares of residuals would be �2. Thus if �2 is close to �1we can see that there might not be a unique solution. The residuals, i.e. the projectionsof each point onto u1 can be ef�ciently calculated by noting that DU = V�, thusri = � 12 1V(i; 1) where V(i; 1) is the element of V on the ith row and �rst column.Similarly u>k zi = � 12 kV(i; k).We shall prefer the use of the SVD rather than the eigen-decomposition of Z>Zfor numerical reasons [4]: namely that the SVD relates directly to the data matrixand the algorithms in existence for its computation are more stable than those thatcalculate the eigensystem of Z>Z, especially if D is ill-conditioned. Furthermore, inoperating directly on the n�p data matrix we avoid the np2 sums and products neededto calculate Z>Z. In passing we note that in the case of classical least squares the hatmatrix is easily computed from the SVD:H = VV> (B.7)this form of calculation is preferable especially ifD is of less than full rank.



Appendix COrthogonal Regression�af�necaseConsider �tting a hyperplane f = (f1; f2; : : : ; fp) through a set of n p-dimensionalpoints with homogeneous coordinates zi = (zi1; zi2; : : : ; zip�1; 1). This can alterna-tively be viewed as either �tting a hyperplane in p-dimensions through the origin usinghomogeneous coordinates or �tting a hyperplane in p � 1 dimensions not through theorigin using inhomogeneous coordinates zi = (zi1; zi2; : : : ; zip�1). The best �ttinghyperplane f is estimated by minimizing the perpendicular sum of Euclidean distancesfrom the points to the plane. This is accomplished by minimizingPni=1(f>zi)2 sub-ject to the constraint1 Pp�1i=1 (f )2 = 1. This constraint ensures that the estimate willbe invariant to equiform transformation of the inhomogeneous coordinates. For exam-ple the best �tting line to a 2 dimensional scatter (xi; yi), i = 1 : : : n is estimated byminimizingPni=1(ax+ by + c)2 subject to the constraint a2 + b2 = 1 [37].LetM = Z>Z be the moment matrix then the estimate f minimizes f>Mf subjectto f>Jf = constant, where J = diag(1; 1; 1; : : : ; 1; 0). This estimate is given by theeigenvector corresponding to the minimum eigenvalue of the centred moment matrix.Centring is a standard statistical technique that involves shifting the coordinate systemof the data points so that the centroid lies at the origin. This can be effected by sub-tracting ~1 zj from each column of Z. Where ~1 is an n dimensional vector such that~1 = (1; 1; 1; : : : ; 1)> and zj is the mean of that column.Proof: Let us partition f into (f1jf 2) with components of length p � 1 and 1 re-spectively, and letM be partitioned in a corresponding manner:M = � M11 M12M21 M22 � ; (C.1)then f>Mf = f>1M11f 1 + 2f>1M12f2 + f>2M22f 2 : (C.2)1With non-af�ne higher order surfaces the constraint will be more complex involving higher order com-binations of the coef�cients. 71



APPENDIX C. ORTHOGONAL REGRESSION�AFFINE CASE 72For any �xed f>1 , f>Mf is minimal when@f>Mf@f>2 = 0 (C.3)i.e. 2f>1M12 + f>2 M22 = 0 (C.4)which implies f>2 = �2f>1M12M�122 ; (C.5)therefore f>Mf = f>1 (M11 �M12M�122M21)f1 : (C.6)Let us de�ne ~M def= M11 �M12M�122M21 (C.7)To minimize this for f>Jf = constant, let � be a Lagrangian multiplier for the con-straint. Then we must set to zero the derivative with respect to zero of f>1 ~Mf 1 ��f>1 Jf1. This yields: 2f>1 ~M = 2�f>1 J = 2�f>1 (C.8)so that � is an eigenvalue of ~Mwith f>1 the corresponding eigenvector. The eigenvectorof the best geometric �t usually corresponds to the smallest eigenvalue. It shall beshown elsewhere that the matrix ~M is related to the covariance matrix of the residuals.What form has ~M? In the af�ne case it can be seen thatM = Z>Z leads toM22 = 1thus ~M =M11 �M12M21 (C.9)using the fact X(x� x)(y � y) = X(xy � xy � yx+ x y= X(xy)�XxX ythen equation (C.9) becomes~M = 264 P z2i1 P(zi1zi2) : : :P(zi2zi1) P z2i2 : : :... ... ... 375� 264 (P zi1)2 P zi1P zi2 : : :P zi2P zi1 (P zi2)2 : : :... ... ... 375= 264 P z2i1 � (P zi1)2 P(zi1zi2)�P zi1P zi2 : : :P(zi2zi1)�P zi2P zi1 P z2i2 � (P zi2)2 : : :... ... ... 375from which it can be seen that ~M is the centred moment matrix.A formal proof is not presented, rather it is noted that if a set of points xi �P3 are visible to a pair of camera with transform matrices P and P0, and if G is anarbitrary non-singular 4� 4 matrix, then replacing xi byG�1xi, P byPG andP0 byP0G preserves the object-point to image-space correspondences. As may be seen, theinternal parameters of one of the cameras may be changed arbitrarily. Thus points thatare consistent with Equation (4.10) can be said to move rigidly modulo a collineation.



Appendix DVariance of residualsIn Section 4.7 it was shown how each constraint may be reweighted by the variance ofits corresponding residual, in order to provide a more statistically sound minimizationmeasure. In this appendix an expression for the variance of each residual is derived,also bias in linear estimation is discussed.Consider the problem of �tting a fundamental matrix to the data points zi; i =1 : : : n, de�ned in (4.20). Let f be the exact fundamental matrix, written in vector formand let f be the estimate. If f is computed by the least squares optimization:f = minf nXi=1 (f>zi)2wi (D.1)wherewi is the optimal weight (being the variance of the residual). LetZ be the matrixwhose rows are z>i =wi andM = Z>Z be the p-dimensional symmetricmomentmatrixM = nXi=1 ziz>iw2i (D.2)If M has eigenvalues, in increasing order, �1 : : : �p and corresponding eigenvectorsu1 : : :up thenTheorem 7 (Weng et al [61]) If covariance matrix for f = u1 is�f = EfÆu1Æu>1 g (D.3)the optimal weighting is wi = f>�zif : (D.4)and that the covariance matrix for f is�f = �2 pXk 6=1 uku>k�k : (D.5)73



APPENDIX D. VARIANCE OF RESIDUALS 74Proof: Following the analysis of Weng et al [61]. Let the homogeneous image pointsxi = (xi; yi; �) in the �rst image be matched to x0i = (x0i; y0i; �) in the second image.The noise in the data matrix Z is due to noise in the image coordinates, arising fromspatial quantisation, feature detection errors, point mismatching and camera distortion.We shall assume that the noise in the image coordinates has zero mean and knownvariance. If the noise arises from many sources and is in�uenced by the sum of manyfactors, its distribution is roughly Gaussian by the central limit theorem. (In fact, as weshall see, steps can be taken to ensure that the methods we use are robust not only tooutliers, but also to departure from the Gaussian distributions.) We shall further assumethat the noise is uncorrelated between different image points and that the noise in thetwo components of the image coordinates is also uncorrelated. The covariance matrixof f is derived on the basis of �rst order perturbations. Consider two image coordinatesx and y with small errors: x = x+ Æxy = y + Æy:To �rst order xy � xy + Æxy + Æyx: (D.6)The perturbed data matrix Z = Z+ ÆZ gives rise to a perturbed moment matrixMM+ ÆM = (Z+ ÆZ)>(Z+ ÆZ)= Z>Z+ ÆZ>Z+ Z>ÆZ+O2:Thus to �rst order ÆM = ÆZ>Z+ Z>ÆZ; (D.7)where the rows of ÆZ are Æzi def=� Æxix0i + Æx0ixi Æyix0i + Æyix0i Æx0i� Æy0ixi + Æxiy0i Æy0iyi + Æyiy0i Æy0i� Æxi� Æyi� 0 � :Under the assumption that there is no cross correlation of error between correspon-dences we de�ne the covariance matrix of any two rows of Z to beE(ÆziÆz>j ) = � 0 if i 6= j�zi if i = j (D.8)where �zi = �2 24 x0ix0i 0 00 x0ix0i 00 0 x0ix0i 35+ �2 24 x2J xyJ x�JxyJ y2J y�Jx�J y�J �2J 35 (D.9)and with J = 24 1 0 00 1 00 0 0 35 : (D.10)



APPENDIX D. VARIANCE OF RESIDUALS 75Given �zi we can derive the estimated variance of each residual. If zi is perturbed intozi = zi + Æzi, then ri = f>z0 can be written to a �rst approximation asri = f>Æzi (D.11)assuming that f is known. As f is unknown we must use its estimation f in its place,it is hoped that f will converge to f as the algorithm progresses. The residual ri is arandom variable with mean zero and variance given by�2i = E(r2i ) = f>E(ÆziÆz>i )f = f>�zif : (D.12)Thus we set wi = �2i in equation (D.1), providing the maximum likelihood estimateof f (if the ri follow a Gaussian distribution). By equating coef�cients it can be shownthat f>�zif = �2(rri)2 (D.13)where the gradient,rr, is easily computed:rr = (r2x + r2y + r2x0 + r2y0) 12rx = f1x0 + f4y0 + f7�ry = f2x0 + f5y0 + f8�rx0 = f1x+ f2y + f3�ry0 = f4x+ f5y + f6�;where rx denotes the partial derivative of r (given in Equation (4.23)) with respect to x.The optimal weights involve the unperturbed points z, so we must approximate themby their sample values. This forms the basis of Sampson's method.Next we shall derive the covariance matrix for f = u1. If the moment matrix isperturbed by ÆM then the solution is perturbed byÆu1 = pXk 6=1 u>k ÆMu1�k uk: (D.14)Noting that u>k ÆMu1 = nXi=1 u>k ziÆz>i u1wi ; (D.15)and de�ning vectors si = pXk 6=1 u>k zi�k uk; (D.16)it can be seen that Æu1 = nXi=1 Æz>i u1siwi : (D.17)



APPENDIX D. VARIANCE OF RESIDUALS 76Hence the covariance matrix �f is given by�f = nXi;j=1 E  (Æz>i u1Æz>j u1)sis>jwiwj != nXi;j=1 E  (u>1 Æz>i Æzj)u1sis>jwiwj ! :Using (D.8) we see that �f = nXi;j=1 Æiju>1 �ziu1sis>jwiwj ;where the Kronecker delta Æjk = 0 if j 6= k, Æjk = 1 if j = k. From (D.4) we see that= nXi;j=1 Æijwisis>iwiwj= nXi=1 sis>iwi :We are now in a position to expand the s vectors giving�f = nXi=1 1wi pXk;l6=1 u>k ziz>i ul�k�l uku>k : (D.18)Since uk and ul are eigenvectors ofM we have:u>kMul = nXi=1 u>k ziz>i ulwi= �kÆkl:and thus we obtain �f = �2 pXk 6=1 uku>k�k : (D.19)D.1 Bias in Linear EstimationAn estimate is statistically biased if the expectation of the error is zero, and statisticallybiased otherwise. Following [28] it can be seen that the true perturbation ofM isÆM = ÆZ>Z+ Z>ÆZ+ ÆZ>ÆZ (D.20)rather than that given in Equation (D.7), and its expectation is not zero:E(ÆM) = ÆZ>ÆZ : (D.21)



APPENDIX D. VARIANCE OF RESIDUALS 77Kanatani suggests (in the case of conics [28]) that the bias may be removed by sub-tracting the bias term E(ÆM) from the moment matrix prior to �nding the eigenvectors.In other words taking as our solution the eigenvector corresponding to the minimumeigenvalue of M� E(ÆM) : (D.22)
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