
Programming and modelling

Part - Programming

Lecture 5

Recapitulate

• What is higher (lower) level programming
language?

– examples
• low level: assembler

• high level: Pascal, C, PHP, Java, JavaScript

– compiler language
• Cobol, Fortran, Pascal, C/C++, Ada

– interpreted language
• JavaScript, PHP, Python, Basic

Recapitulate

• What does it mean?

– compile, compiler, linker

– object files (.o, .obj)

– libraries (.lib, .a)

– syntax, semantics

– lexical elements of the language

– lexical and syntactic analysis

C Programming Language

• 70th - AT&T Bell Laboratories

• authors: Kernighan a Ritchie

– the first specification: K&R 77 (you can see

in some literature K&R 78)

• strongly tied to UNIX

• 1988 – ANSI C standard

– ANSI 99

– ANSI C1X (2011)

How is Compiling in C processed?

• header files .h (.hpp)

– files contain prototypes (headers of

functions)

• preprocessor

– it makes text modifications of the source

code (replaces symbols, includes header

files, removes comments, …)

– directives of preprocessor – starts with #,

they are not terminated by ;

– example: #define MAX 10

#include <stdio.h>

How is Compiling in C processed?

Note:

#include <stdio.h>

• the preprocessor searches stdio.h file in

standard subdirectories of the installed compiler
(typically subdirectory include)

#include "myfile.h"

• the preprocessor searches myfile.h file in the

actual directory (typically where the project is
stored)

• the path can be written:

#include "incl/soubor.h„

#include <ole/access.h>

header file

.h

source code

.h

Preprocessor

Compiler

object code

.o (.obj)

libraries

.a (.lib .o .obj)

Linker

Final executable file

.exe (ELF)

• we can realize conditional assembly
using directive #define:

#define DEBUG

#ifdef DEBUG

printf("Test print: ");

printf("x = %X",x);

#endif

• we can realize conditional assembly
using directive #define:

#define DEBUG

#ifdef DEBUG

printf("Test print: ");

printf("x = %X",x);

#else

printf("x = %d",x);

#endif

C++ Programming Language

• 1983 - AT&T Bell Laboratories

Bjarne Stroustrup - „C with objects“

• 1986 Bjarne Stroustrup

The C++ Programming Language

• 1990 Bjarne Stroustrup:

The Annotated C++ Reference Manual

• 1995 M.Ellis, B.Stroustrup

The Annotated C++ Reference Manual

• 1997 - ANSI/ISO standard of C++

– ISO/IEC 14882:1998

– standard notated as C++98

• 2003 C++03

• 2011 C++11

• 2014 C++14

• 2017 C++17

• 2020 C++20

• 2023* C++23

*exactly 12/2022

• C++ language is extended C (object

oriented programming is added), but

this sentence is not exact:

– C is not a subset of C++, some "non-

object" features are different from original

C standard (especially K&R)

• nevertheless most programs in C is

possible to compile with C++ compiler,

namely if ANSI C standard is complied

Recapitulation of C

• weak typing (in C++ stronger)

• case sensitive

• features of functional language

• block marked by { }

• one function in the code must have the
the identifier main
– void main()

– int main(int argc, char* argv[])

Note: identifier = name of the function, variable

Literals (lexical elements):

• constants

– decimal constants: 13, -5, 15L

– octal constants: 056

– hexadecimal constants: 0x20, 0X1F

– floating point constants (double): 5.3, -4E-3

– characters: 'a','\n','\t'‚'0x0A'

– string constants: "Hello, world!"

• variable identifiers

– they must start with letter, the accepted

length depends on compiler (usually 31),

C++ usually unlimited

Data types – "simple"

• integers

– char (8 bits)

– short, int, long (unsigned, signed), long long

– sizeof(short) sizeof(int) sizeof(long)
sizeof(long long)

• floating point

– float, double, long double (ANSI)

– some compilers: long long double

Typical sizes of types

Type Size [bit] Range

char 8 -128 to +127

short 16 -32 768 to +32 767

int 32 -2 147 483 648 to +2 147 48 3647

long 32 (64) -2 147 483 648 to +2 147 48 3647

long long 64 -9 223 372 036 854 775 808 to +9 223 372 036 854 775 807

float 32 -3,40282310+38 to +3,40282310+38

the lowest positive number 1,17549410-38

valid digits 7 or 8

double 64 -1, 797693134862315710+308 to +1, 7976931348623157103+308

the lowest positive number 2,22507385850720210-308

valid digits 15 to 16

long double 96 (80)

128 in

64-bit

compiler

-3,410+4932 to +3,410+4932

the lowest positive number 1,110-4932

valid digits 19

Typical sizes of types

• standard of C does not define the sizes of

types, it depends on compiler

• the following inequality must be satisfied:

sizeof(short) sizeof(int) sizeof(long) sizeof(long long)

• ranges are defines as symbolic constants
(macros) in limits.h, resp. climits and

float.h, resp. cfloat

– INT_MAX, INT_MIN, LONG_MAX, ...

– FLT_MAX, DBL_MAX, LDBL_MIN, ...

• extended definitions of int data types are defined
in stdint.h

• boolean

– boolean type is not defined in C, it is replaced
by int type

• whatever non-zero value means true

– type bool is defined in C++ with values

true, false

bool is_open = true;

if (is_open) …

if (is_open == false) …

• string

– string type is not defined in C, string variables

are represented by arrays of char (char*)

– string type is defined in C++

Comments

• multi-line comments in C

/* This is a multi – line

comment

*/

• single line comments in C ++

// This is a single line comments

Variables:

• global

• local (in block)

• variable declaration:

type identifier_of_var;

int x=10; // initialization

char c;

float radius, area;

/* The variable "selection" is global,

visible in both functions area and main*/

int selection;

int area()

{/* The variables x and y are local in this

function and they are visible only here*/

float x, y;

}

int main(int argc, char **argv)

{

/* The variable a is local in main and it is

visible only in main */

int a;

}

• C

– only at the beginning of blocks,

before the first command

• C++

– everywhere in block

Where can be variables declared?

Notes to declaration

int main()

{ int i;

…

for(i=0;i<10;i++)

{ int x;

…

}

/* only i exists in this place,

not x */

}

Overlapping of declarations

int main()

{ int x;

…

for(i=0;i<10;i++)

{ int x; /* this declaration overlaps

(shadows) previous declaration */

…

}

/* "original" x is visible */

}

New user type definition

• with keyword typedef

• example: definition of enumerate data type
– next week - structures

Problem:

• we want to store in our program information

about colors, for example colors of car

• the source code must be readable, clear,

modificable

1. using constants directly

int color;

color = 0;

if (color == 0)

– I make a note on paper: 0 means black, 1

means red, …

• the worst case

– better: I put this information as comment at

the beginning of the source code

/* 0 – black, 1 – red */

Solution

2. definition of symbolic constants (macros)
in the source code, variable is int

#define BLACK 0

#define RED 1

int color;

color = RED;

if (color == RED)

• clear solution

Solution

3. definition of user data enum type

• the definition of user type in the beginning of

the source code or in separate header file

typedef enum

{BLACK, RED, WHITE} Colors;

• the variable of the type Colors can be

declared

Colors color;

color = WHITE;

if (color == RED)

• how is enumerate type implemented

internally?

typedef enum

{BLACK, RED, WHITE} Colors;

– using integers, it means BLACK by 0, RED

by 1, WHITE by 2

– internal values can defined by the programmer
typedef enum {BLACK, RED, WHITE

=6} Color;

• WARNING

typedef enum {BLACK, RED, WHITE,

BLUE=1} Colors;

– BLACK by the value 0, RED by the value 1,

WHITE by the value 2, BLUE by the value 1

• thank to weak typing, the compile passes

color = 4;

• compileable in C

• compile error in C++ (invalid conversion

from 'int' to ‘Colors')

Definitions of Constants

• in K&R: only symbolic ones (macros)

#define MAX 10

• in ANSI C a C++: keyword const

– "variable" with allocated memory

– it is not possible to use

„everywhere“ (size of arrays in C)

const int MAX = 10;

Assignment:

• assignment is defined as expression in C:

y = 3*a + 12 i=j=1

– consequences will be explained

• assignment command

– expression terminated by ; is a command

y = 3*a + 12; a = 10; c = 'a';

car_color = WHITE;

Operations:

• arithmetical operators: +, - ,* , /

– % - modulo

– warning: division – one operator for floor

(integer) division and "normal" division

• it depends on operands

•5/3, 5/3.0

•int a,b,n; a/b, (double) a/b

•1/n 1.0/n

– there is no operator for power in C/C++, only
function double pow(double b,double exp);

• bitwise operators: &, |, ~, ^

Bitwise operators

Operator Operation

& Bitwise AND

| Bitwise OR

^ eXclusive bitwise OR- XOR

~ Bitwise negation (complement)

<< Bitwise left shift

>> Bitwise right shift

unsigned char a = 0x85;

/* 133 dec, 10000101 bin */

unsigned char b = 0x46;

/* 70 dec, 01000110 bin */

unsigned char c,d,e,f,g,h;

c = a & b;

d = a | b;

e = a ^ b;

f = ~ a;

g = a << 2; // 2 bits left shift

h = b >> 3; // 3 bits right shift

10000101 10000101 10000101 10000101

01000110 01000110 01000110

0111101000000100 11000111 11000011

Results of Bitwise Operations

& | ^ ~

10000101 01000110

<< 2

00010100 00001000

Results of Bitwise Operations

>> 3

What Good is it ?

• example: some function returns 8-bits value

(unsigned char) and each bit carries some

piece of information, for example several type

of error; return value is stored in the variable
error

00010100

• we need to find out, if this bit is set

• we use constant called mask:
00000100

00000100 bin = 04 hex

• if (error & 0x04 != 0)

• unary increment, decrement (post- and
pre-form (prefix, postfix forms): ++, --

a++; ++a; a--; --a;

y = 3*a++; z = 5/--a;

• assignment operator op=

y *= 3; is the same like y = y*3;

y += 3; is the same like y = y+3;

y >>= 2;

Commands

• each command terminated by ;

• condition (branch):
if (a < 5) error();

if (x != 0) compute(); else err();

• relational operators:

<,<=,>,>=,!=,==

• logical operators:

&&,||,!

– lower priority than arithmetical ones

Attention:

if (a == 5) ... comparison

if (a = 5) ... assignment

int c;

c = getchar();

if (c==‘\n’) ...

if ((c=getchar())==’\n’) ...

if (a) ... comparison with 0

the same as if (a != 0) …

• loops:
while(expression) command;

do command; while(expression);

do { command1; command2; }

while(expression);

• loops:
for(expr1;expr2;expr3) command;

equivalent with:

expr1;

while(expr2)

{ command;

expr3;

}

– most frequently used:

for(i=1;i<n;i++)

for(i=1;i<n;i=i+2)

• semicolon !!!

• what about "comma" operator ?

• continue and break in loops

– break finish the loop immediately

– continue finish actual execution of loop body

and jumps to condition

i = 0;

while (i < n)

{

…

if (x) continue;

…

if (!x) break;

…

i++;

}

We create a program which reads from standard input

(keyboard) the sequence of English characters

terminated by Enter. It changes all upper characters to

lower ones and it prints the text.

int main(int argc, char **argv)

{

int c;

c = getchar();

while(c!='\n')

{

if (c >='A' && c <= 'Z') c+=('a'-'A');

putchar(c);

c = getchar();

}

return 0;

}

• more effectively

int main(int argc, char **argv)

{

int c;

while((c = getchar())!='\n')

{

if (c >='A' && c <= 'Z') c+=('a'-'A');

putchar(c);

}

return 0;

}

Conditional expression

• conditional expression: ternary operator

(uses three expressions)

• syntax:
expr1 ? expr2 : expr3

• the result of conditional expression is expr2, if

expr1 is non-zero (is true); otherwise, the result

is expr3

• (a==3) ? 1 : 0

// if a is equal to 3, the value of

conditional expression is 1, otherwise 0

Conditional expression

• using in assignment:

• x = (a==3) ? 1 : 0

// if a is equal to 3, the value of 1

is assigned to x, otherwise 0

Notes:

• naturally, we can write this assignment using if:
if (a==3) x = 1; else x = 0;

• it is not necessary to put the first expression in (),

but programmers do it for clarity of the code

• arbitrary condition can not be replaced by conditional
expression!

• version of the program with conditional expression

int main(int argc, char **argv)

{

int c;

while((c = getchar())!='\n')

{

putchar((c >='A' && c <= 'Z') ? c+('a'-'A'):c);

}

return 0;

}

• demonstration of break a continue (it is not

transparent code)
int main(int argc, char **argv)

{

int c;

while(1)

{

c = getchar();

if (c=='\n') break;

if (c >='A' && c <= 'Z')

{

putchar(c+('a'-'A')); continue;

}

putchar(c);

}

return 0;

}

Operator "comma"

• "speciality" of C

• single expressions are separated in "multi-expression"

(this allows to put several expressions where only one

expression is allowed in C)

expr1, expr2, expr3

• these expressions are considered as one expression

• meaning:
• expr1 is evaluated firstly, then expr2 and finally expr3

• the final value of "multi-expression" is the value of the last

expression

Operator "comma"

Example:
x = a=1, 3, a+b;

• firstly, assignment a=1 is evaluated, a is set to 1

• secondly, the expression 3 (constant is evaluated),

the result is 3, but it is "forgotten"
• finally, a and b are added; because od a+b is the

last expression in the "multi-expression", the result

of the "multi-expression" is this addition and it

assigned to variable x

Operator "comma"

Operator is practically used only in for loop:

s=0;

for(i=1;i<=n;i++) s += i;

for(s=0,i=1;i<=n;i++) s += i;

Example – operator “comma“

We create a program that reads one integer

from the standard input and stores it to the x

variable. If the value is negative the program

prints a message and assign an absolute value

of x to the y. We use conditional expression,

operator comma, printf.

Solution:

• remember: printf is a function and it can be

used in the expression. The solution can look

like this:

Example – operator “comma”

int main(int argc, char **argv)

{

int x,y;

scanf("%d",&x);

y = (x<0) ? printf("You entered value < 0."),-x : x;

system("PAUSE");

return 0;

}

• branches:
switch (x)

{

case 1: command1; break;

case 2:

case 3: command3; break;

default: command4;

}

• break !!!!

• continue is bind only with loops, not
with switch !

Console input / output in C

• file stdio.h

• printf(const char*format,...)

• scanf(const char*format, ...)

• scanf: operator &

scanf("%d",&x)

Tools and environments

• Bloodshed Dev C++

– http://www.bloodshed.net/devcpp.html

• CodeBlocks

• event. MS Visual C++

