
Structures

Motivation

• we want to process points in 2D space in the
sense of analytic geometry

– each point is represented by coordinates [x, y]

– we define the function that calculates the

distance of the point from the origin

float distance(float x, float y)

{

return sqrt(x*x+y*y);

}

int main()

{

float xA,yA; // point A

float xB,yB; // point B

float d;

xA = 3.5; yA = 2;

d = distance(xA,yA);

}

It is not so elegant

• the point is understood as a couple of
coordinates x, y, but "this couple" is not
evident from the source code

– logically: two points – two variables instead

of four ones

– if we want to store point into array we must

define two arrays for each coordinate

float X[20];

float Y[20];

Structured data type

• structured data type is heterogeneous
data type

– the variable of the structured data type is a

collection of several items of different types

• elements are logically related

– structures allow "common naming" of several

items

Variable of Structured Data Type

• declaration of the variable point of the
structured data type that represents point
in 2D space:

struct {

float x;

float y;

} point;

• structured data type can’t be used in other place

of the code because it has no name

• named structure:

struct Point {

float x;

float y;

} point;

• declaration of new variables p2, p2:

struct Point p1, p2;

• the named structure can be used as the
type of the parameter in functions, but
the keyword struct must be always
written

• declaration of new user - type Point:

typedef struct {

float x;

float y;

} Point;

• declaration of the variable point1 that
is of the type Point:

Point point1;

• declaration of the array:
Point points[20];

• access to the elements: using
dot notation:

point.x = -3; point.y = 5;

point1.x = 2; point1.y = 0;

points[0].x= 0; points[0].y = 1;

• storage structure in memory:

5

-3

y

xpoint:

• array of the structures
Point points[20];

– storage in memory

points:

x y

0 1
…

0 1 2 … 19

• items can be initialized within
declaration (by constructor):

Point p1 = {3,-1};

Pointers to structures

• declaration

Point *pp;

• dynamic allocation of one structure (array of
the length 1)

– in C

pp = (Point*)malloc(sizeof(Point));

– in C++

pp = new Point;

• access

*pp.x = 5; or pp->x

Pointers to structures

• dynamic allocation of the array of the length
n

– in C

pp = (Point*)malloc(sizeof(Point)*n);

– in C++

pp = new Point[n];

• access

pp[1].x = 5; or *(pp+1).x or (pp+1)->x

Passing structures to functions

• function definition

float distance(Point p)

{

return sqrt(p.x*p.x+p.y*p.y);

}

• calling

distance(p1);

• non-effective, whole structure (all
elements) are copies to the stack

Passing structures to functions

• using pointers

float distance(Point *p)

{

return sqrt(p->x*p->x+p->y*p->y);

}

• calling

distance(&p1);

• only address is passed to the stack

Passing structures to functions

• using reference parameter

float distance(Point &p)

{

return sqrt(p.x*p.x+p.y*p.y);

}

• calling

distance(p1);

• internally only address is passed to the
stack

Note
• other data type exists in C:

union

union {

char x;

int v;

} uv;

x

v

typedef struct

{

char vehicle[30];

char LN[10];

int volume_of_cylinder;

} Car;

Car my_car;

Example

• access to items:

my_car.volume_of_cylinder = 1221;

strcpy(my_car.vehicle,"VW");

strcpy(my_car.LN,"1A1 01 01");

• library function strcpy must be used in C to copy

strings

• new type string is defined in C++

typedef struct

{

string vehicle;

string LN;

int volume_of_cylinder;

} Car;

my_car.volume_of_cylinder = 1221;

my_car.vehicle = "VW";

my_car.LN = "1A1 01 01";

typedef struct

{

int day;

int month;

int year;

} Date;

Date birth_date;

birth_date.day = 5;

birth_date.month = 12;

Store date using structure

typedef struct

{

string first_name;

string surname;

Date birth_date;

...

} Person;

The structure can be part of another

structure

Person student;

student.name = "Vit";

student.birth_date.day = 5;

student.birth_date.month = 5;

The structure can be part of another

structure

Note

• we want to store data about people to
array using structure …

• one array of structures is declared:

Person people[20];

people[0].first_name = "Martin";

lide[0].surname = "Smith";

lide[0].birth_date.day = 19;

Note

• if we had no structures we would declare
five arrays:

string first_name[20];

string surname[20];

int day[20];

int month[20];

int year[20];

Example – BMP format

• graphical format to store pictures

• the file contains header of the length 14
bytes in the beginning

Item Size Description

type 2 bytes 2 characters „BM“

size 4 bytes the total size of the file

reserved1 2 bytes
reserved for future use, must be set to

0

reserved2 2 bytes
reserved for future use, must be set to

0

offset 4 bytes

the offset, i.e. starting address, of the

byte where the bitmap image data

(pixel array) can be found in the file

• we suppose:

– Intel platform

• little-endian, i.e. the least significant bytes at

lower addresses

– sizeof(unsigned short) == 2

– sizeof(unsigned int) == 4

• structure data type corresponding to the
structure of the head:

typedef struct

{

unsigned char B;

unsigned char M;

unsigned int size;

unsigned short res1;

unsigned short res2;

unsigned int offset;

} THeadBMP;

• declaration the variable to store header:

THeadBMP header;

• reading the header from the file fi which was
opened in binary mode using fopen:

fread((void*)&header,sizeof(THeadBMP),1,fi)

• important note:
– compilers optimize access to the memory (reading from bus)

and items of the structures are not placed one after another
but they are aligned to addresses divided by 2 or 4. In this
case the gap of 2 bytes is between items M and size and the
size of the whole structure is bigger than 14 bytes. When
block of bytes is read from the file in this case data is not
correctly in items. Packing structures must be switched on –
for example by switch -fpack-struct=1 in GCC, or using
directive #pragma pack(1) (items alignment to 1 Byte –
compatibility with Microsoft compilers)

