
Trees

Introduction

Trees

Tree:

• connected graph without cycles
(acyclic)

• usage:

– computer graphic

– effective searching

– computational trees

– decision trees

Undirected tree

Directed tree

root

list

internal node

parent (father, precedesor)

child (son)

Rooted tree

• rooted tree with the root u
– directed tree where each path P(u,v) is an

oriented path

• node depth d(x) of the node x in the
root tree
– distance from tree

• depth of the tree
– max d(x) x∈V

Binary tree

• each node has max. 2 children

• ordered binary tree

– nodes are labeled (by numbers,…)

– the label of the left child is always less or

equal than parent

– the label of the right child is always greater

than parent

– ordered binary trees are effective for

searching: complexity is log2n (height of

the tree)

10

5 12

2 7 11

Ordered binary tree

edge orientation

10

5 12

2 7 11

Full binary tree
of the depth 2

13

• full binary tree of the depth k has count
of nodes

n = 2k+1-1

• the minimal depth of binary tree (not
necessarily full) with n nodes is

– example: tree with n = 5 nodes

)(log2 nk =
floor

 232,2)5(log2 ===k

• pointer to the root (root node)

• root is represented with the structure:
– label of the node

– pointers to left and right children (subtrees)

typedef struct TNode {

int label;

TNode *left;

TNode *right;

} TNode;

• the list has both pointers left, rights set to NULL

Tree representation

• operations are (usually) recursive
– depends on the problem

• complete traversal must be programmed using recursion
(tracing depth)

• searching element (only) can be implemented non-
recursively

Operations over tree

• operations over tree
– tree traversal (can be combined with some

action)

• depth-first

• breadth-first

– searching node

– insert new node as a list

– delete node

– delete tree

10

5 12

2 7 11

Depth-first Tree Traversal

10

5 12

2 7 11

Breadth-first tree traversal

General depth-first tree traversal
recursive algorithm

void traverse(TNode *u)

{

if (u==NULL) return;

action(u->label);

traverse(u->left);

traverse(u->right);

}

Variants of depth-tree traversal

• left order

– left subtree, node action, right subtree

• right order

– right subtree, node action, left subtree

• preorder

– node action, left subtree, right subtree

• another permutations, if they make sense

Example – left order

• print all nodes of ordered tree

void print_node(TNode *u)

{

if (u==NULL) return;

print_node(u->left);

printf(″%d ″,u->label);

print_node(u->right);

}

Example – pre order

(expression representation by tree)

*

+ -

2 5 11 7

• the tree represents expression:

(2+5)*(11-7)

• print it in pre-order form (Polish notation)

* + 2 5 – 11 7

void print_node_pre(TNode *u)

{

if (u==NULL) return;

printf(″%c ″,u->label);

print_node_pre(u->left);

print_node_pre(u->right);

}

Note:

• tree representation is usually used in
compilers to represent expressions

• the tree is traversed post-order to
evaluate an expression

Node search

• returns 1, if the value is found

int find(TNode *u, int x)

{

if (u==NULL) return 0;

if (u->label==x) return 1;

if (x < u->label)

return find(u->left,x);

else

return find(u->right,x);

}

Non-recursive version

• returns 1, if the value is found

int find_nonrecurs(Node *root, int x)

{

while(root != NULL && root->label != x)

{

if (x < root->label)

root = root -> left;

else

root = root -> right;

}

if (root == NULL) return 0;

else return 1;

}

Insert new list

void insert_new(TNode **u, int x)

{

if (*u == NULL)

{

u = (TNode)malloc(sizeof(TNode));

(*u) -> label = x;

(*u) -> left = NULL;

(*u) -> right = NULL;

}

else

if (x <= (*u)->label)

insert_new (&((*u)->left),x);

else insert_new (&((*u)->right),x);

}

Delete tree

void delete(TNode *u)

{

if (u==NULL) return;

delete(u->left); delete(u->right);

free(u);

}

void main(void)

{

TNode *tree = NULL;

insert_new(&tree,10);

insert_new(&tree,5);

insert_new(&tree,7);

insert_new(&tree,2);

insert_new(&tree,12);

insert_new(&tree,11);

find(tree,5);

delete(tree);

}

Which tree is created?

void main(void)

{

TNode *tree = NULL;

insert_new(&tree,10);

insert_new(&tree,5);

insert_new(&tree,7);

insert_new(&tree,2);

insert_new(&tree,11);

insert_new(&tree,12);

}

And now?

void main(void)

{

TNode *tree = NULL;

insert_new(&tree,12);

insert_new(&tree,11);

insert_new(&tree,10);

insert_new(&tree,7);

insert_new(&tree,5);

insert_new(&tree,2);

}

• the tree degrades to the linear list

10

5

12

2

7

11

The aim is to create balanced tree, where the

height of the left and right tree differs max. 1. It

must be satisfied for each subtree (node). If it is

not satisfied the operation balancing is executed.

10

5

12

2

7

11

10

5 12

2 7 11

