
16.3 Huffman codes 389

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

55

0 1

a:45

100

0 1

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

55

0 1

a:45

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16

30

0 1

a:45

e:9f:5

14

0 1

c:12 b:13

25

0 1

d:16 a:45

e:9f:5

14

0 1

c:12 b:13 d:16 a:45e:9f:5 c:12 b:13 d:16 a:45(a)

(c)

(e)

(b)

(d)

(f)

Figure 16.5 The steps of Huffman’s algorithm for the frequencies given in Figure 16.3. Each part

shows the contents of the queue sorted into increasing order by frequency. At each step, the two trees

with lowest frequencies are merged. Leaves are shown as rectangles containing a character and its

frequency. Internal nodes are shown as circles containing the sum of the frequencies of its children.

An edge connecting an internal node with its children is labeled 0 if it is an edge to a left child and 1

if it is an edge to a right child. The codeword for a letter is the sequence of labels on the edges

connecting the root to the leaf for that letter. (a) The initial set of n = 6 nodes, one for each letter.

(b)–(e) Intermediate stages. (f) The final tree.

optimal prefix code for C in which the codewords for x and y have the same length

and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary optimal

prefix code and modify it to make a tree representing another optimal prefix code

such that the characters x and y appear as sibling leaves of maximum depth in the

new tree. If we can do this, then their codewords will have the same length and

differ only in the last bit.


