Projects and Grants

The information comes from the university database V3S.

Principal Investigator:
doc. Ing. Zdeněk Lokaj, Ph.D., LL.M.
Co-Investigators:
Ing. Miroslav Vaniš, Ph.D.
Annotation:
The aim of the project is to develop a secure system for the detection of various variables and events within a vehicle sensor network with autonomous control system, which would provide trusted and reliable information throughout the entire information flow, i.e. from the actual sensor measuring physical variables to the central component, along the chain of acquisition, validation, processing and evaluation in a secure and trustworthy manner. The system will then undergo verification and testing both in the Czech Republic and in Saxony and, based on the evaluation of the results, it will be debugged. At the same time, the project will address a methodological procedure for the independent certification and assessment of such devices in terms of the trustworthiness and reliability of the data and information provided.
Department:
Year:
2024 - 2025
Program:
Program podpory aplikovaného výzkumu, experimentálního vývoje a inovací DELTA 2

Principal Investigator:
doc. Ing. Zdeněk Lokaj, Ph.D., LL.M.
Co-Investigators:
Ing. Miroslav Vaniš, Ph.D.
Annotation:
This research project aims to address the challenges in developing deep learning-based computer vision applications for intelligent autonomous vehicles (IAVs) under adverse weather conditions, particularly in the presence of haze. Existing datasets used to train IAVs have limitations in capturing the diversity of haze conditions, leading to reduced performance in such weather. To overcome these limitations, the project introduces a novel haze dataset generation method called the Domain Flow Adaptation Network (DFA-Net). DFA-Net leverages semantic information from clear images and haze representations from reference hazy images to generate high-quality hazy images with diverse density levels. The project prioritizes data integrity and security for both real-world and synthetic data in the development of computer vision applications for IAVs, with a focus on blockchain technology to ensure data authenticity and prevent breaches. These augmented datasets can significantly improve computer vision applications such as object detection and target tracking in hazy conditions. The project includes various modules such as Semantic Extraction, Haze Extraction, Image Production, and Image Assessment. Real-world experiments will be conducted to evaluate the effectiveness and applicability of the proposed approach. Additionally, this is a bilateral project between the Czech Republic and Taiwan, aimed at fostering technology exchanges and contributing to the advancement of knowledge in the field. The project further plans to disseminate its findings by publishing in top journals, ultimately aspiring to apply the research to benefit industrial products and real-world applications.
Department:
Year:
2024 - 2024
Program:
Joint research projects between TAIPEI TECH and CTU

Principal Investigator:
doc. Ing. Zdeněk Lokaj, Ph.D., LL.M.
Co-Investigators:
doc. Ing. Tomáš Tichý, Ph.D., MBA; Ing. Miroslav Vaniš, Ph.D.; Ing. Martin Zajíček
Annotation:
The main goal of the project is to create tools for detecting security incidents and procedures to ensure a defined level of cyber security on critical transport infrastructure with a focus on modern SCADA systems of tunnel technologies. Particular emphasis will be placed on the development of algorithms for detecting cyber incidents based on vulnerabilities in tunnel technologies as selected parts of critical transport infrastructure, reflecting in particular the trajectories of potential attacks and a tool to support emergency management, including decision support. The acquired knowledge will be reflected in developed outputs that will include safety procedures designed for critical infrastructure, tunnnel system and ITS system to ensure business continuity.
Department:
Year:
2023 - 2025
Program:
Program na podporu aplikovaného výzkumu, experimentálního vývoje a inovací v oblasti dopravy - DOPRAVA 2020+

Principal Investigator:
doc. Ing. Zdeněk Lokaj, Ph.D., LL.M.
Co-Investigators:
doc. Ing. Tomáš Tichý, Ph.D., MBA; Ing. Miroslav Vaniš, Ph.D.; Ing. Martin Šrotýř, Ph.D.
Annotation:
Cílem projektu tak bude pilotně otestovat a definovat možnosti využití HD map pro potřeby autonomní mobility. Během projektu bude vytvořen testovací úsek, který bude vybaven dodatečnou senzorikou, která bude umožňovat v reálném čase detekovat překážky na vozovce a v jejím okolí. Na tomto úseku se budou zároveň pohybovat testovací vozidla, která budou vybavena další senzorikou pro detekci mimořádností na vozovce. Detekované informace budou přenášeny na server, kde se budou veškerá data agregovat a budou použita také k doplnění stávajícího 3D modelu města Plzně. Vznikne tak dynamický digitální model (tzv. digitální dvojče) pilotního úseku. Na základě provedených testů na závěr vznikne metodika, která bude jasně definovat požadavky na dynamické HD mapy pro potřeby autonomního mobility.
Department:
Year:
2022 - 2024
Program:
Program na podporu aplikovaného výzkumu, experimentálního vývoje a inovací v oblasti dopravy - DOPRAVA 2020+

Principal Investigator:
Ing. Šárka Jozová, Ph.D.
Co-Investigators:
doc. Ing. Ivan Nagy, CSc.; Ing. Miroslav Vaniš, Ph.D.
Annotation:
This project aims to extend the method of independent mixtures, which was solved within the SGS in 2020. During the development of the method, some other possible procedures for achieving better prediction results were identified. The aim of this project is to explore these procedures and show the benefits of these procedures on real discrete data.
Department:
Year:
2021 - 2021
Program:
Studentská grantová soutěž ČVUT - SGS21/077/OHK2/1T/16

Principal Investigator:
doc. Ing. Zdeněk Lokaj, Ph.D., LL.M.
Co-Investigators:
Ing. Miroslav Vaniš, Ph.D.; prof. Ing. Tomáš Zelinka, CSc.
Annotation:
The goal of this project is to identify the scope of non-personal data which is processed by autonomous driving systems, and to categorize such data in terms of the attendant risk of a privacy infringement. The project also seeks to define and test procedures to be followed by developers and operators of autonomous driving to be able to determine and categorize non-personal data and ensure that it is being processed in compliance with the applicable laws, through the adoption of appropriate measures. For this reason, it is crucial that the risks associated with the processing of such data be properly assessed. At the same time the goal will be to propose regulatory changes so that those systems are from the very beginning built and operated in "privacy by default" mode.
Department:
Year:
2021 - 2022
Program:
Program na podporu aplikovaného výzkumu, experimentálního vývoje a inovací v oblasti dopravy - DOPRAVA 2020+

Principal Investigator:
Ing. Šárka Jozová, Ph.D.
Co-Investigators:
doc. Ing. Ivan Nagy, CSc.; Ing. Miroslav Vaniš, Ph.D.
Annotation:
The grant aims at a prediction of an output variable based on input (explanatory) variables and a comparison with the current used prediction methods. All variables will be modelled by mixtures and an analysis of clustering will be also carried out. It will be possible to set up independences between variables in the clusters. This will certainly reduce dimensionality and the number of parameters necessary for prediction. The prediction obtained based on this approach will be then compared to the current discrete prediction methods.
Department:
Year:
2020 - 2020
Program:
Studentská grantová soutěž ČVUT - SGS20/080/OHK2/1T/16

Principal Investigator:
doc. Ing. Zdeněk Lokaj, Ph.D., LL.M.
Co-Investigators:
Ing. Miroslav Vaniš, Ph.D.; Ing. Martin Šrotýř, Ph.D.
Annotation:
Cílem projektu je identifikovat rozsah osobních údajů, které jsou a v budoucnu mohou být přenášeny v rámci systémů autonomního řízení, resp. jejich komponent, kterými jsou např. kooperativní systémy a posoudit míru zásahu do soukromí fyzických osob. Na základě těchto analýz je cílem vytvořit metodiku hodnocení míry zásahu do soukromí fyzických osob a způsobů jejich eliminace, a to jak z pohledu právního, tak z pohledu technického, aby byly tyto systémy uživateli akceptovány a byly rovněž rozptýleny pochybnosti, že se jedná o systémy, které jejich uživatele sledují či zásadním způsobem zasahují do jejich soukromi. Klíčovými dokumenty pro hodnocení a následné návrhy budou mj. nařízení GDPR, zákon o zpracování osobních údajů a rovněž návazné evropské a národní právní dokumenty.
Department:
Year:
2020 - 2022
Program:
Programme of applied research and experimental development in social sciences and humanities ETA

Principal Investigator:
Ing. Šárka Jozová, Ph.D.
Co-Investigators:
doc. Ing. Ivan Nagy, CSc.; Ing. Miroslav Vaniš, Ph.D.
Annotation:
The main objective of this grant is to find an appropriate probability distribution for a real variable mainly from traffic data. The most accurate probability distribution will be categorical, in which relative frequencies determine the probability of a variable's value. However, this distribution has also some disadvantages: curse of dimensionality, the number of parameters of the distribution. The goal of this grant is to find some distribution which replace the categorical one. The presumed further research is to apply mixtures on the real variable.
Department:
Year:
2019 - 2019
Program:
Studentská grantová soutěž ČVUT - SGS19/078/OHK3/1T/16

Principal Investigator:
Ing. Miroslav Vaniš, Ph.D.
Co-Investigators:
doc. Ing. Ivan Nagy, CSc.; Ing. Krzysztof Paweł Urbaniec, Ph.D.
Annotation:
Bayesian networks are known as a tool for data analysis in many areas: chemistry, decision making, medicine etc. The main benefit of using Bayesian networks is to connect expert knowledge with data. The network structure can be determined by an algorithm (based on data) or by an expert. The main goal of this grant is to propose an algorithm based on Bayesian networks created from different sources (algorithm, expert) which can merge these networks into one with the best evaluation.
Department:
Year:
2018 - 2018
Program:
Studentská grantová soutěž ČVUT - SGS18/091/OHK3/1T/16