Publikace

informace pocházejí z univerzitní databáze V3S

Autoři:
Publikováno:
2024, Vol. 48 (2024): 19th Youth Symposium on Experimental Solid Mechanics, Praha, České vysoké učení technické v Praze), p. 15-21), ISBN 978-80-01-07358-2
Anotace:
The paper deals with the examination of the ageing effects on the mechanical properties stability of 3D printed material via stereolithography under compression when subjected to various conditions, including UV radiation, X-rays, and the effects of time, from the opening of the bottle with the material to the 3D-printing process. The sets of samples under investigation were subjected to quasi-static and dynamic compression loading using an Split Hopkinson Pressure Bar. The aim of this paper is to investigate the long-term stability of the samples in terms of their mechanical properties and material behaviour and their degradation pattern. Despite the manufacturer’s information, it was found that the mechanical behaviour of the printed samples was significantly affected by the ageing process.
DOI:
Typ:
Stať ve sborníku z prestižní konf. (Scopus)

Autoři:
Ing. Veronika Drechslerová; Ing. Jan Falta; Ing. Tomáš Fíla, Ph.D.; Ing. et Ing. Radim Dvořák; doc. Ing. Daniel Kytýř, Ph.D.
Publikováno:
2023, Vol. 42 (2023): 18th Youth Symposium on Experimental Solid Mechanics, Praha, České vysoké učení technické v Praze), p. 1-5), ISBN 978-80-01-07237-0, ISSN 2336-5382
Anotace:
This paper focuses on stereolithography (an additive manufacturing technology working on the principle of curing liquid resins layer by layer using ultraviolet radiation) and the effect of aging on the mechanical properties of the material and printed samples. The aging of the material could be a problem for its subsequent use as the stability of the mechanical properties would not be maintained and unwanted deterioration of the material could occur. As part of the research, sets of samples were printed and subjected to different aging methods and subsequently subjected to quasi-static and dynamic uni-axial load tests. From the data obtained, the basic mechanical properties of the material were calculated and compared with each other. The aim of this paper was to investigate whether aging process causes significant changes in the mechanical properties of the materials used, which could have a consequential impact on their use in different industries.
DOI:
Typ:
Stať ve sborníku z prestižní konf.

Autoři:
Ing. Jan Šleichrt, Ph.D.; Ing. Jan Falta; Ing. Michaela Jurko; Ing. Veronika Drechslerová; Ing. Petr Koudelka, Ph.D.; Ing. Václav Rada; Ing. Tomáš Fíla, Ph.D.; prof. Ing. Ondřej Jiroušek, Ph.D.
Publikováno:
2023, Advanced Engineering Materials, 25 (24), ISSN 1527-2648
Anotace:
The paper deals with the dynamic penetration of 3D printed panels with auxetic and conventional honeycomb unit cell-based cores. The geometry of the unit cells and their periodic assembly in the resulting lattices were selected to ensure the same relative density and overall weight of the individual sample types. Such a similarity of both specimen types allowed the evaluation of differences between conventional and auxetic lattices in terms of penetration characteristics and deformation energy mitigation properties. Dynamic penetration of the samples was performed using a fully strain-gauge instrumented Open Hopkinson Pressure Bar (OHPB) at three impact velocities resulting in three loading scenarios. All performed experiments were captured by two optical cameras for detailed observation and for tracking of an impactor movement using Digital Image Correlation (DIC). The force-penetration depth relation was used to evaluate the elastic and post-yield compression characteristics of the lattices together with their deformation energy mitigation capabilities. The results show that the main differences in the deformation response of lattices consist of lower overall stiffness and effective yielding of the auxetic lattices at higher penetration depth. Numerical simulation using an explicit solver was performed to analyze the deformation mechanism of the individual core types.
DOI:
Typ:
Článek v periodiku excerpovaném SCI Expanded

Autoři:
Ing. Veronika Drechslerová; Ing. Michaela Jurko; Ing. Jan Falta; Ing. Jan Šleichrt, Ph.D.; Ing. et Ing. Radim Dvořák
Publikováno:
2023, Inovace v aditivních technologiích INAM 2023, Jihlava, Vysoká škola polytechnická Jihlava), p. 13-13), ISBN 978-80-88064-66-4
Anotace:
Příspěvek je zaměřený na vhodnost využití stereolitografie (SLA) pro výrobu porézních struktur s potenciálem vysoké absorpce energie nárazu. SLA je technologií aditivní výroby využívající principu vytvrzování tekutých pryskyřic pomocí záření určité vlnové délky [I. Romero-Ocaña, S.I. Molina 2022]. Pro posouzení vlivu použitého materiálu na výsledné mechanické vlastnosti byly sady testovacích vzorků vyrobeny ze tří různých pryskyřic a následně vystaveny kvazi - statickým jednoosým tahovým a tlakovým zkouškám. Z naměřených dat byly vytvořeny diagramy napětí - deformace a spočítány základní materiálové vlastnosti. Na základě získaných poznatků bylo optimalizováno nastavení parametrů výrobního procesu pro zajištění požadované kvality tisku, odezvy 3D tištěných vzorků na zatěžování v závislosti na volbě použité pryskyřice a zhodnocena celková vhodnost metody SLA pro výrobu pokročilých celulárních struktur.
DOI:
Typ:
Abstrakt ve sborníku z lokální konf. česky

Autoři:
Ing. Jan Šleichrt, Ph.D.; Ing. Jan Falta; Ing. Veronika Drechslerová; Ing. Michaela Jurko; Ing. Petr Koudelka, Ph.D.; Ing. Václav Rada; Ing. Tomáš Fíla, Ph.D.; prof. Ing. Ondřej Jiroušek, Ph.D.
Publikováno:
2022, International Conference on Nonlinear Solid Mechanics, abstract book, International Research Center on Mathematics and Mechanics of Complex Systems), p. 104-104)
Anotace:
The mechanical response of sandwich panels tailored to specific applications investigated becomes an extensively topic for research teams. Sandwich panels typically consist of a lightweight core (porous materials, meta-materials structures) and covering shell (solid or composite layer). These materials can be used as, e.g., the main component of crumple zones in vehicles or low-velocity protection in many applications, due to their high specific energy absorption and low density. An unique loading mode in dynamic mechanical testing is a dynamic indentation where combining multi-directional stress distribution in sandwich panels is not an easy task for description. The main aim of this work is to compare sandwich panels with two different types of core (3D inverted honeycomb and conventional honeycomb structures with similar specific densities). Based material of the aforementioned cores is photopolymer resin which allows the manufacturing of complex shapes of cores by stereolithography technology. All specimens, equipped with a spreading thin layer of polyethylene shell, are subjected to dynamic penetration to evaluate the mechanical behavior, penetration resistance, and energy-absorbing capability at different impact velocities. An in-house developed direct impact Hopkinson bar is used for dynamic indentation experiments. The loading apparatus is equipped with strain gauges and the measured signals are used for the calculation of an applied force and impact velocity. A pair of highspeed cameras are used for optical inspection of the experiments. A targeted camera is used for evaluating the velocity of the projectile using the digital image correlation method (DIC) for comparison with strain-gauge measurement, and an overview camera is used for capturing the surroundings of the impact plane.
Typ:
Abstrakt ve sborníku z mezinár. konf.