Published:
2019, TRANSPORT MEANS 2019 - PROCEEDINGS OF THE 23rd INTERNATIONAL SCIENTIFIC CONFERENCE, Kaunas, Kaunas University of Technology), p. 1197-1202), ISSN 1822-296X
Annotation:
Since the beginning, aviation has been exposed to the risk of threats of unlawful acts, such as attacks, hijacks, or bomb attacks. The priority of current safety systems is to eliminate the risk of possible unlawful acts to critical infrastructure. However, tightening the net of security checks has a downside - individuals or organizations execute the act of violence even before the baggage security check done by mainstream spectroscopic methods. Thus, airport terminals with large crowd concentration are becoming a perfect target for terrorists to attack. A factor contributing to forming a crowd is a thorough, time-consuming security check. In a short time, the crowd concentration rapidly increases in an unsecured perimeter and as such, is an easy target. Man-made explosives, as well as several military, industry or difficult to access, have a common component - ammonia. Bombs could be made by various forms of ammonia, like ammonium nitrate, chloraminȩ or a compound of ammonia and aluminum oxide. For that reason, the detection of ammonia present in airports becomes a frequently discussed topic among aviation security experts. The paper aims to create a concept of the sensory network able to monitor in 2D or localize a source of ammonia trace elements. The proposed idea is intended to use in airports, but the concept is also applicable in places where a noninvasive and contact-less passenger or baggage security check is needed.